Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.
|
|
- Klaudia Dziedzic
- 8 lat temu
- Przeglądów:
Transkrypt
1 WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. Wstęp teoretyczny: Półprzewodniki ogólnie mówiąc, są to substancje, które ze względu rezystywność można umiejscowić między izolatorami, a przewodnikami. Podając mały przykład: 8 -miedź: 10 Ω (przewodnik); m 14 -mika: 10 Ω (izolator); m 3 -krzem: 2*10 Ω (półprzewodnik); m można łatwo dostrzec różnicę. Ponad to właściwości półprzewodników silnie zależą od padającego na nie promieniowania oraz temperatury, w której pracują. Wraz z jej wzrostem, wzrasta także liczba swobodnych nośników w półprzewodniku. Za to w przewodniku następuje wzrost rozpraszania nośników na fononach, czyli w efekcie wzrasta rezystywność. Model pasmowy: pasmo przewodnictwa pasmo zabronione, tzw. przerwa energetyczna (dla germanu 0,7 ev) pasmo walencyjne Na poniższym rysunku można zobaczyć różnicę pokazaną na modelu pasmowym między półprzewodnikiem, przewodnikiem i izolatorem. przewodnik półprzewodnik izolator Półprzewodniki samoistne to półprzewodniki bez dodanych domieszek (krzem, german czy też GaAs), a nośnikami w nich są elektrony i dziury. Wzrost ilości nośników jest spowodowany m.in. temperaturą oraz promieniowaniem (kwanty światła wybijają elektrony). Półprzewodnik samoistny charakteryzuje się tym, że ilość dziur jest równa ilości elektronów. Najczęściej jednak używamy (np.: tranzystory) półprzewodników domieszkowych. Rozróżniamy dwa rodzaje: typu N (donorowe) i typu P (akceptorowe). Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 1
2 Jeżeli półprzewodnik będziemy domieszkować pierwiastkami z grupy V (np.: fosfor, arsen, antymon) otrzymamy półprzewodnik donorowy, w którym nośnikami większościowymi będą elektrony. Model pasmowy takiego półprzewodnika dodatkowo składa się z dodatkowo zjonizowanych poziomów umieszczonych w przerwie energetycznej blisko pasma przewodnictwa. Półprzewodniki typu P powstają poprzez domieszkowanie pierwiastkami z grupy III (np.: bor, aluminium, gal). W tym przypadku nośnikami większościowymi są dziury, a tzw. Poziomy dozwolone znajdują się bliżej pasma walencyjnego. Przypadek najbardziej rzeczywisty to taki, w którym mamy domieszki obu rodzajów. W takim przypadku rodzaj półprzewodnika określamy na podstawie ilości domieszek. Jeżeli jest więcej domieszek donorowych to półprzewodnik jest typu N, jeżeli akceptorowych to typu P. Kolejnym przypadkiem, na który należy zwrócić uwagę jest taka sama ilość domieszek donorowych i akceptorowych. Półprzewodnik, w którym zachodzi takie zjawisko nazywamy półprzewodnikiem skompensowanym. Nośnikami w półprzewodnikach są elektrony i dziury (dziura to brak elektronu). Najlepszą ilustracją koncentracji nośników w półprzewodnikach domieszkowanych od temperatury będzie wykres: W temperaturze 0-150K wzrasta ilość zjonizowanych atomów domieszek. Kolejnym charakterystycznym przedziałem temperaturowym jest K (300K to w przybliżeniu temperatura pokojowa), w którym koncentracja jest stała, a wszystkie atomy domieszek są zjonizowane. Powyżej 450K wzrasta koncentracja nośników za przyczyną nośników samoistnych. Dla pewnego ciekawego zjawiska można pokazać wykres konduktywności od odwrotności temperatury. Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 2
3 1-zakres jonizacji domieszek; 2-zakres stałej koncentracji domieszek (wszystkie domieszko są zjonizowane), wraz ze wzrostem temperatury wzrastają efekty związane z rozpraszaniem na fononach; 3-zakres wzrostu generacji nośników samoistnych; Wyniki pomiarów (dla germanu): t [ºC] R [Ω] T [K] 1/T [1/K] logr 19, ,6 0,0034 6,10 20, ,0 0,0034 6,08 25, ,0 0,0034 6,03 30, ,0 0,0033 5,93 35, ,0 0,0032 5,78 40, ,0 0,0032 5,62 45, ,0 0,0031 5,44 50, ,0 0,0031 5,24 55, ,0 0,0030 5,04 60, ,0 0,0030 4,84 65, ,0 0,0030 4,64 70, ,0 0,0029 4,47 75, ,0 0,0029 4,25 80, ,0 0,0028 4,08 85, ,0 0,0028 3,91 90, ,0 0,0028 3,74 95, ,0 0,0027 3,56 Opracowanie wyników pomiarów (dla germanu): Zależność ln(r)=f(1/t) 6,50 y = 3734,2x - 6,4521 6,00 5,50 ln(r) 5,00 4,50 4,00 3,50 0,0025 0,0026 0,0027 0,0028 0,0029 0,0030 0,0031 0,0032 0,0033 0,0034 0,0035 1/T [1/K] Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 3
4 Na powyższym wykresie jest przedstawiona zależność logarytmu naturalnego oporu próbki germanu od odwrotności temperatury. Prosta na wykresie jest dopasowana metodą najmniejszych kwadratów. Równanie regresji liniowej: y = 3734,2x 6,4521 Później odpowiednie współczynniki będziemy nazywać: a = 3734,2 (współczynnik kierunkowy prostej) b = -6,4521 Wartość przerwy energetycznej została obliczona ze wzoru: E = 2ak, gdzie a to współczynnik kierunkowy prostej, a k to stała Boltzmana, Przerwa energetyczna w germanie wynosi: E g = 0,64eV g 5 k = 8,617 *10 [ ev ]. K Niepewność współczynnika kierunkowego u(a) policzyliśmy ze wzoru: 2 n S ua ( ) = gdzie n to liczba wykonanych pomiarów, a pozostałe wartości wyrażają się n 2 W n n n wzorami: S = [ yi ( axi + b)] i W = n xi [ xi]. i= 1 i= 1 i= 1 Po wstawieniu danych do wzorów otrzymaliśmy niepewność u(a)=132,58. Ostatecznie szerokość energetyczna w germanie wynosi: E g = 0,64(0,02) ev Wyniki pomiarów (dla termistora): t [ºC] R [kω] T [K] 1/T [1/K] logr 19,6 13,34 292,6 0,0034 9,50 20,0 12,25 293,0 0,0034 9,41 25,0 10,82 298,0 0,0034 9,29 30,0 8,78 303,0 0,0033 9,08 35,0 7,25 308,0 0,0032 8,89 40,0 5,96 313,0 0,0032 8,69 45,0 4,79 318,0 0,0031 8,47 50,0 3,98 323,0 0,0031 8,29 55,0 3,38 328,0 0,0030 8,13 60,0 2,83 333,0 0,0030 7,95 65,0 2,36 338,0 0,0030 7,77 70,0 2,00 343,0 0,0029 7,60 75,0 1,69 348,0 0,0029 7,43 80,0 1,46 353,0 0,0028 7,29 85,0 1,25 358,0 0,0028 7,13 90,0 1,07 363,0 0,0028 6,98 95,0 0,92 368,0 0,0027 6,82 Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 4
5 Opracowanie wyników pomiarów (dla termistora): Zależność ln(r)=f(1/t) 10,00 9,50 y = 3802,3x - 3,4857 9,00 ln(r) 8,50 8,00 7,50 7,00 6,50 0,0027 0,0028 0,0029 0,0030 0,0031 0,0032 0,0033 0,0034 0,0035 1/T [1/K] Powyższy wykres przedstawia zależność ln(r)=f(1/t) dla termistora. Prosta na wykresie została dopasowana za pomocą metody najmniejszych kwadratów. Oto wzór prostej regresji: y = 3802,3x 3, 4857 Wiemy, że wartość współczynnika B=a, gdzie a jest współczynnikiem kierunkowym prostej regresji, stąd: B = a = 3802 [K] Przeprowadzając identyczne rozumowanie jak dla germanu otrzymujemy wartość niepewności współczynnika kierunkowego: ua ( ) = ub ( ) = 27,7 28 [K] Ostatecznie wartość współczynnika B jest równa: B = 3802(28) K Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 5
6 Zależność oporu termistora od temperatury 16,00 14,00 12,00 R [10^3 om] 10,00 8,00 6,00 4,00 2,00 0,00 290,0 300,0 310,0 320,0 330,0 340,0 350,0 360,0 370,0 T [K] Powyższy wykres przedstawia zależność oporu termistora od temperatury. Jak widać jest on bardzo dobrym potwierdzeniem teorii mówiącej o tym, iż wraz ze wzrostem temperatury maleje opór, a w rezultacie rezystywność półprzewodnika. Wnioski: Wartość przerwy energetycznej w germanie udało się nam wyznaczyć z dokładnością do 3%. Jednocześnie potwierdziliśmy fakt, że wraz ze wzrostem temperatury maleje opór półprzewodnika. Dzięki dokładności i sprawności dostępnych urządzeń przeprowadzenie tego ćwiczenia było przyjemnościa. Załączniki: [1] wykresy zależności ln(r)=f(1/t) wykonane w pracowni laboratoryjnej dla krzemu i termistora; Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 6
7 Poprawa (wnioski do termistora): Po wykonaniu ćwiczenia i opracowaniu wyników można stwierdzić, że opór termistora maleje wraz ze wzrostem temperatury. Jest to spowodowane znacznym zwiększeniem ilości nośników swobodnych. Fakt ten doskonale potwierdza założenia teoretyczne. W wyniku spracowania pomiarów dla termistora otrzymaliśmy następującą wartość współczynnika B25 = 3780K. Analizując poniższą tabelkę: 85 R [ ] 25 4,7 6, B25 [ K ] możemy dojść do wniosku, że opór termistora w okolicy 25 C (298K) wynosił w przybliżeniu 10 kω, co potwierdzają nasze pomiary. Przerwa energetyczna w germanie Jacek Mostowicz i Grzegorz Baran 7
2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.
2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały
Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
Teoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
Półprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW
1. PÓŁPRZEWODNIKI 1.1. PODSTAWOWE WŁAŚCIWOŚCI PÓŁPRZEWODNIKÓW Najprostsza definicja półprzewodników brzmi: "Półprzewodniki są materiałami, których rezystywność 1 jest większa niż rezystywność przewodników
Podstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Badanie charakterystyki diody
Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,
POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY
ĆWICZENIE 44 POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: Pomiar zależności oporu elektrycznego (rezystancji) metalu i półprzewodnika od temperatury oraz wyznaczenie temperaturowego
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
WFiIS. Wstęp teoretyczny:
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka
Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII
E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5
1/5 Celem ćwiczenia jest poznanie temperaturowej zależności przepływu prądu elektrycznego przez przewodnik i półprzewodnik oraz doświadczalne wyznaczenie energii aktywacji przewodnictwa dla półprzewodnika
Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE
Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając
VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY
Oporność właściwa (Ωm) 1 VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: pomiar zależności oporności elektrycznej (rezystancji) metalu i półprzewodnika od temperatury,
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
W1. Właściwości elektryczne ciał stałych
W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3
Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
BADANIE CHARAKTERYSTYK FOTOELEMENTU
Ćwiczenie E7 BADANIE CHARAKTERYSTYK FOTOELEMENTU Przyrzady: Przyrząd do badania zjawiska fotoelektrycznego, płytki absorbenta suwmiarka, fotoelementy (fotoopór, fotodioda, lub fototranzystor). Zjawisko
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO METALU I PÓŁPRZEWODNIKA OD TEMPERATURY
Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 57 ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I WSTĘP I.1. Prąd elektryczny Dla dużej grupy przewodników
P R A C O W N I A
P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy
METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4
MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
ELEKTRONIKA I ENERGOELEKTRONIKA
ELEKTRONIKA I ENERGOELEKTRONIKA wykład 2 PÓŁPRZEWODNIKI luty 2008 - Lublin krzem u ej n o z r o w t rze i p o ytk d u pł m rze k Od m ik ro pr oc es or ET F S MO p rzy rząd Od p iasku do Ten wykład O CZYM
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Struktura pasmowa ciał stałych
Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................
Przewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I.. Prąd elektryczny Dla dużej grupy przewodników prądu elektrycznego (metale, półprzewodniki i inne) spełnione jest prawo Ohma,
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
ZADANIE Co się dzieje z elektronami w atomie, a co w krysztale?
1. Wstęp teoretyczny ZADANIE 108 WYZNACZANIE PRZERWY ENERGETYCZNEJ INSB. W ćwiczeniu tym wyznaczymy przerwę energetyczną E G materiału półprzewodnikowego mierząc opór elektryczny próbki w funkcji temperatury.
Projekt FPP "O" Kosma Jędrzejewski 13-12-2013
Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru
Cel ćwiczenia: Wyznaczenie współczynnika oporu platyny. Pomiar charakterystyki termopary miedź-konstantan.
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Skręcenie wektora polaryzacji w ośrodku optycznie czynnym
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów
Badanie emiterów promieniowania optycznego
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 9 Badanie emiterów promieniowania optycznego Cel ćwiczenia: Zapoznanie studentów z podstawowymi charakterystykami emiterów promieniowania optycznego. Badane elementy:
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Temperaturowa charakterystyka termistora typu NTC
Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Temperaturowa charakterystyka termistora typu NTC ćwiczenie nr 37 Opracowanie ćwiczenia: dr J. Woźnicka, dr S. elica Zakres zagadnień obowiązujących do ćwiczenia
Podstawy działania elementów półprzewodnikowych - diody
Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony
elektryczne ciał stałych
Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.2017 1 2 Własności elektryczne
WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.1 Model pasmowy przewodników, półprzewodników i dielektryków.
Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 1 str.1/10 ĆWICZENIE 1 WYBRANE ELEMENTY I UKŁADY ELEKTRONICZNE W ZASTOSOWANIU DLA CELÓW AUTOMATYZACJI. 1.CEL ĆWICZENIA: Zapoznanie się z podstawowymi
Ćwiczenie 241. Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) .. Ω.
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 241 Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) Opór opornika
35 KATEDRA FIZYKI STOSOWANEJ
35 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 35. Wyznaczanie charakterystyk diod półprzewodnikowych Wprowadzenie Substancje w przyrodzie mają dużą rozpiętość wartości oporu właściwego od najmniejszej
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza)
Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel i program ćwiczenia. Celem ćwiczenia jest: zapoznanie się z budową diody półprzewodnikowej
LABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4..--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
POMIAR KONDUKTYWNOŚCI ELEKTRYCZNEJ MATERIAŁÓW PRZEWODOWYCH
1. CEL ĆWICZENIA POMIAR KONDUKTYWNOŚCI ELEKTRYCZNEJ MATERIAŁÓW PRZEWODOWYCH Poznanie własności przewodnictwa materiałów elektrotechnicznych oraz sposobu pomiaru konduktywności materiałów przewodzących..
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
elektryczne ciał stałych
Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał
Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN
Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN Budowa i właściwości elektryczne ciał stałych - wprowadzenie Budowa atomu: a) model starożytny b) model J.J. Thompsona c) model E. Rutherforda
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Zapoznanie się ze zjawiskiem Seebecka i Peltiera. Zastosowanie elementu Peltiera do chłodzenia i zamiany energii cieplnej w energię elektryczną.
FiIS PRAONIA FIZYZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆIZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OENA el ćwiczenia: Zapoznanie się ze
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
EFEKT HALLA W PÓŁPRZEWODNIKACH.
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Andrzej Kubiaczyk 30 EFEKT HALLA W PÓŁPRZEWODNIKACH. 1. Podstawy fizyczne 1.1. Ruch ładunku w polu elektrycznym i magnetycznym Na ładunek
10 K AT E D R A F I Z Y K I S T O S OWA N E J
10 K AT E D R A F I Z Y K I S T O S OWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 10. Wyznaczanie charakterystyk diod półprzewodnikowych Wprowadzenie
Przewodniki, półprzewodniki i izolatory
Przewodniki, półprzewodniki i izolatory Według współczesnego poglądu na budowę materii zawiera ona w stanie normalnym albo inaczej - obojętnym, równe ilości elektryczności dodatniej i ujemnej. JeŜeli takie
elektryczne ciał stałych
Wykład 22: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Domieszkowanie półprzewodników
Jacek Mostowicz Domieszkowanie półprzewodników Fizyka komputerowa, rok 4, 10-06-007 STRESZCZENIE We wstępie przedstawiono kryterium podziału materiałów na metale, półprzewodniki oraz izolatory, zdefiniowano
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
1 Wprowadzenie. WFiIS
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko:. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
str. 1 d. elektron oraz dziura e.
1. Półprzewodniki samoistne a. Niska temperatura b. Wzrost temperatury c. d. elektron oraz dziura e. f. zjawisko fotoelektryczne wewnętrzne g. Krzem i german 2. Półprzewodniki domieszkowe a. W półprzewodnikach
CEL ĆWICZENIA: Celem ćwiczenia jest zapoznanie się z zastosowaniem diod i wzmacniacza operacyjnego
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA: Celem ćwiczenia
3.1 Temperaturowa zależność oporu przewodników(e3)
126 Elektryczność 3.1 Temperaturowa zależność oporu przewodników(e3) Celem ćwiczenia jest zbadanie temperaturowej zależności oporu i wyznaczenie temperaturowego współczynnika oporu właściwego α dla kilku
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
Prawo Ohma. qnv. E ρ U I R U>0V. v u E +
Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja
Krawędź absorpcji podstawowej
Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 28 : Wyznaczanie charakterystyk termistorów I. Zagadnienia do opracowania. 1. Pasma energetyczne w
elektryczne ciał stałych
Wykład 24: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.2018 1 2 Własności elektryczne
Pomiar charakterystyk statycznych tranzystora JFET oraz badanie własności sterowanego dzielnika napięcia.
WFiIS LABORATORIUM Z ELEKTRONIKI Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA CEL ĆWICZENIA Pomiar charakterystyk
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
Półprzewodniki typu n, p, złącze p-n - diody
Półprzewodniki typu n, p, złącze p-n - diody Wrocław 2016 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych). Ruchy
Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH
INSTYTUT SYSTEMÓW ELEKTRONICZNYCH WEL WAT ZAKŁAD EKSPLOATACJI SYSTEMÓW ELEKTRONICZNYCH Ćwiczenie nr 5: BADANIE CHARAKTERYSTYK TEMPERATUROWYCH REZYSTANCYJNYCH ELEMENTÓW ELEKTRONICZNYCH A. Cel ćwiczenia:
W5. Rozkład Boltzmanna
W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został
Opracował: mgr inż. Grzegorz Strzeszewski
Elektrotechnika jest działem nauki, zajmującym się wyjaśnianiem podstaw teoretycznych i zastosowaniem zjawisk fizycznych z dziedziny elektryczności i magnetyzmu. Podstawowe zagadnienia, wchodzące w zakres
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
I. DIODA ELEKTROLUMINESCENCYJNA
1 I. DIODA LKTROLUMINSCNCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: misja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w
Ćwiczenie nr 43: HALOTRON
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel
ĆWICZENIE 6. Metale, półprzewodniki, izolatory
ĆWICZENIE 6 Metale, półprzewodniki, izolatory Podstawy fizyczne przewodnictwa elektrycznego w ciałach stałych Elektronowa teoria ciała stałego, stanowiąca bazę do opracowania teorii półprzewodników zajmuje