Lublin, 23 X 2012 r. Nadprzewodnictwo. - od badań podstawowych do zastosowań. Tadeusz Domański Instytut Fizyki UMCS
|
|
- Mariusz Chmielewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański Instytut Fizyki UMCS
2 Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański Instytut Fizyki UMCS
3 Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański Instytut Fizyki UMCS
4 Nadprzewodnictwo dlaczego taki temat?
5 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze:
6 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badania przyznano już 5 Nagród Nobla z fizyki (w sumie dla 10 osób)
7 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badania przyznano już 5 Nagród Nobla z fizyki (w sumie dla 10 osób) Aspekty technologiczne:
8 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badania przyznano już 5 Nagród Nobla z fizyki (w sumie dla 10 osób) Aspekty technologiczne: nowe technologie m.in. w transporcie, medycynie itp.
9 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badania przyznano już 5 Nagród Nobla z fizyki (w sumie dla 10 osób) Aspekty technologiczne: nowe technologie m.in. w transporcie, medycynie itp. Aspekty ekonomiczne:
10 Nadprzewodnictwo dlaczego taki temat? Aspekty poznawcze: za badania przyznano już 5 Nagród Nobla z fizyki (w sumie dla 10 osób) Aspekty technologiczne: nowe technologie m.in. w transporcie, medycynie itp. Aspekty ekonomiczne: olbrzymie oszcze dności w wydatkach na energetyke
11 Aspekty ekonomiczne istotne fakty Na rynkowa cene energii elektrycznej składaja sie :
12 Aspekty ekonomiczne istotne fakty Na rynkowa cene energii elektrycznej składaja sie : koszty produkcji,
13 Aspekty ekonomiczne istotne fakty Na rynkowa cene energii elektrycznej składaja sie : koszty produkcji, koszty przesyłania.
14 Aspekty ekonomiczne istotne fakty Na energii elektrycznej sie : rynkowa cene składaja koszty produkcji, koszty przesyłania. Straty w przesyłaniu energii około 7 procent. wynosza
15 Aspekty ekonomiczne istotne fakty Na energii elektrycznej sie : rynkowa cene składaja koszty produkcji, koszty przesyłania. Straty w przesyłaniu energii około 7 procent. wynosza Dzie ki zastosowaniu nadprzewodników można zredukować te straty do zera!
16 Nadprzewodniki futurystyczne perspektywy
17 Nadprzewodniki futurystyczne perspektywy Energie można byłoby przesyłać np. od solarów rozmieszczonych na Saharze.
18 Opór elektryczny istota zjawiska
19 Opór elektryczny istota zjawiska Pod wpływem zewne trznych pól (elektrycznego lub magnetycznego) elektrony walencyjne sa zmuszone do przemieszczania.
20 Opór elektryczny istota zjawiska Ruch elektronów odbywa sie w sieci jonów ulegaja c różnym procesom rozpraszania, co przejawia sie makroskopowo jako opór.
21 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A,
22 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ
23 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ zależy od: rodzaju materiału,
24 Opór elektryczny istota zjawiska Opór całkowity wynosi R = ρ l A, gdzie opór właściwy ρ zależy od: rodzaju materiału, temperatury.
25 Opór elektryczny przykłady w temperaturze 20 o C
26 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m
27 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium 1, Ω m 2, Ω m
28 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo 1, Ω m 2, Ω m 1, Ω m
29 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit 1, Ω m 2, Ω m 1, Ω m 2, Ω m
30 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit german 1, Ω m 2, Ω m 1, Ω m 2, Ω m 4, Ω m
31 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit german krzem 1, Ω m 2, Ω m 1, Ω m 2, Ω m 4, Ω m 6, Ω m
32 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit german krzem diament 1, Ω m 2, Ω m 1, Ω m 2, Ω m 4, Ω m 6, Ω m Ω m
33 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit german krzem diament guma 1, Ω m 2, Ω m 1, Ω m 2, Ω m 4, Ω m 6, Ω m Ω m Ω m
34 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit german krzem diament guma teflon 1, Ω m 2, Ω m 1, Ω m 2, Ω m 4, Ω m 6, Ω m Ω m Ω m Ω m
35 Opór elektryczny przykłady w temperaturze 20 o C miedź aluminium żelazo grafit german krzem diament guma teflon 1, Ω m 2, Ω m 1, Ω m 2, Ω m 4, Ω m 6, Ω m Ω m Ω m Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!
36 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m. aluminium 2, Ω PRZEWODNIKI m żelazo grafit german krzem diament guma teflon 1, Ω m 2, Ω m 4, Ω m 6, Ω m Ω m Ω m Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!
37 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m. aluminium 2, Ω PRZEWODNIKI m żelazo 1, Ω m grafit 2, Ω m german. 4, Ω m PÓŁPRZEWODNIKI krzem diament guma teflon 6, Ω m Ω m Ω m Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!
38 Opór elektryczny przykłady w temperaturze 20 o C miedź 1, Ω m. aluminium 2, Ω PRZEWODNIKI m żelazo 1, Ω m grafit 2, Ω m german. 4, Ω m PÓŁPRZEWODNIKI krzem 6, Ω m diament Ω m guma Ω m IZOLATORY teflon Ω m Wartości oporu różnia sie o ponad 30 rze dów wielkości!
39 Odkrycie nadprzewodnictwa
40 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika.
41 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
42 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
43 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
44 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
45 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
46 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
47 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
48 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
49 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
50 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
51 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
52 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
53 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
54 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
55 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika. opor, temperatura [K]
56 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika.
57 Odkrycie nadprzewodnictwa 8 kwietnia 1911 r. Stan nadprzewodza cy odkryto (przypadkowo) podczas badania oporu rte ci. Poniżej temperatury T c = 4,2 K (czyli -269 o C) opór całkowicie zanika.. (Lejda, Holandia) Heike Kamerlingh Onnes
58 Nadprzewodniki efekt Meissnera
59 Nadprzewodniki efekt Meissnera Nadprzewodniki charakteryzuja sie jednocześnie idealnym diamagnetyzmem. Zjawisko to polega na całkowitym ekranowaniu pola magnetycznego. W. Meissner, R. Ochsenfeld ( 1933 r. )
60 Nadprzewodniki efekt Meissnera Zjawisko Meissnera wykorzystuje sie np. do profilowania linii sił pola magnetycznego.
61 Nadprzewodniki efekt Meissnera W ten sposób można skompensować siłe grawitacji, uzyskuja c efekt lewitacji.
62 Nadprzewodniki efekt Meissnera W ten sposób można skompensować siłe grawitacji, uzyskuja c efekt lewitacji.
63 Nadprzewodniki efekt Meissnera W ten sposób można skompensować siłe grawitacji, uzyskuja c efekt lewitacji.
64 Nadprzewodniki efekt Meissnera Perspektywa: Skarpety lewituja ce wraz z właścicielem?
65 Nadprzewodniki kolejne odkrycia
66 Nadprzewodniki kolejne odkrycia Stan nadprzewodza cy został później odkryty w kilku innych pierwiastkach oraz stopach. Oto wybrane przykłady:
67 Nadprzewodniki kolejne odkrycia Stan nadprzewodza cy został później odkryty w kilku innych pierwiastkach oraz stopach. Oto wybrane przykłady: 80 ciekly N 2 60 T c (K) ciekly H 2 Nb 3 Ge Nb 3 Sn Nb Pb NbN V Si Nb Al Ge 3 Hg rok
68 Nadprzewodniki kolejne odkrycia Stan nadprzewodza cy został później odkryty w kilku innych pierwiastkach oraz stopach. Oto wybrane przykłady: 80 ciekly N 2 skroplony azot 60 T c (K) ciekly H 2 Nb 3 Ge Nb 3 Sn Nb Pb NbN V Si Nb Al Ge 3 Hg rok skroplony neon skroplony wodór skroplony hel
69 Zagadka nadprzewodnictwa problemy z wyjaśnieniem
70 Zagadka nadprzewodnictwa problemy z wyjaśnieniem Przez niemal 50 lat nie potrafiono wyjaśnić mechanizmu odpowiedzialnego za stan nadprzewodza cy. Problemem tym zajmowali sie tacy wybitni naukowcy, jak:
71 Zagadka nadprzewodnictwa problemy z wyjaśnieniem Przez niemal 50 lat nie potrafiono wyjaśnić mechanizmu odpowiedzialnego za stan nadprzewodza cy. Problemem tym zajmowali sie tacy wybitni naukowcy, jak: R. Feynman
72 Zagadka nadprzewodnictwa problemy z wyjaśnieniem Przez niemal 50 lat nie potrafiono wyjaśnić mechanizmu odpowiedzialnego za stan nadprzewodza cy. Problemem tym zajmowali sie tacy wybitni naukowcy, jak:. R. Feynman W. Heisenberg
73 Zagadka nadprzewodnictwa problemy z wyjaśnieniem Przez niemal 50 lat nie potrafiono wyjaśnić mechanizmu odpowiedzialnego za stan nadprzewodza cy. Problemem tym zajmowali sie tacy wybitni naukowcy, jak:.. R. Feynman W. Heisenberg N. Bohr
74 Zagadka nadprzewodnictwa problemy z wyjaśnieniem Przez niemal 50 lat nie potrafiono wyjaśnić mechanizmu odpowiedzialnego za stan nadprzewodza cy. Problemem tym zajmowali sie tacy wybitni naukowcy, jak:.. R. Feynman W. Heisenberg N. Bohr A. Einstein
75 Zagadka nadprzewodnictwa problemy z wyjaśnieniem Przez niemal 50 lat nie potrafiono wyjaśnić mechanizmu odpowiedzialnego za stan nadprzewodza cy. Problemem tym zajmowali sie tacy wybitni naukowcy, jak:.. R. Feynman W. Heisenberg N. Bohr A. Einstein No one is smart enough to explain it R. Feynman
76 Istota nadprzewodnictwa pomocne fakty
77 Istota nadprzewodnictwa pomocne fakty Kluczowe znaczenie dla zrozumienia mechanizmu nadprzewodnictwa (klasycznego) miały naste puja ce fakty:
78 Istota nadprzewodnictwa pomocne fakty Kluczowe znaczenie dla zrozumienia mechanizmu nadprzewodnictwa (klasycznego) miały naste puja ce fakty: doświadczalne odkrycie efektu izotopowego (1950 r.) T c 1 M M - masa jonów
79 Istota nadprzewodnictwa pomocne fakty Kluczowe znaczenie dla zrozumienia mechanizmu nadprzewodnictwa (klasycznego) miały naste puja ce fakty: doświadczalne odkrycie efektu izotopowego (1950 r.) T c 1 M M - masa jonów teoretyczne obliczenia H. Fröhlicha (1950 r.)
80 Istota nadprzewodnictwa pomocne fakty Kluczowe znaczenie dla zrozumienia mechanizmu nadprzewodnictwa (klasycznego) miały naste puja ce fakty: doświadczalne odkrycie efektu izotopowego (1950 r.) T c 1 M M - masa jonów teoretyczne obliczenia H. Fröhlicha (1950 r.) Pod wpływem drgań sieci krystalicznej elektrony przycia gaja sie!
81 Mikroskopowa teoria 1957 r.
82 Mikroskopowa teoria 1957 r. Za opracowanie mikroskopowej teorii nadprzewodnictwa (tzw. teorie BCS) przyznano Nagrode Nobla w 1972 roku.
83 Nadprzewodnictwo pary elektronów
84 Nadprzewodnictwo pary elektronów Elektrony we druja ce w drgaja cej sieci krystalicznej ła cza sie w pary.
85 Nadprzewodnictwo jako zjawisko emergentne
86 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego:
87 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony ła cza sie w pary Coopera
88 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony w pary Coopera ła cza sie i kolektywnie na zewne trzne zaburzenia reaguja
89 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony ła cza sie w pary Coopera i reaguja kolektywnie na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!)
90 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony ła cza sie w pary Coopera i reaguja kolektywnie na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Taki kondensat par Coopera jest odpowiedzialny za:
91 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony ła cza sie w pary Coopera i reaguja kolektywnie na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Taki kondensat par Coopera jest odpowiedzialny za: idealne przewodnictwo (ruch bez rozpraszania)
92 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony ła cza sie w pary Coopera i reaguja kolektywnie na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Taki kondensat par Coopera jest odpowiedzialny za: idealne przewodnictwo idealny diamagnetyzm (ruch bez rozpraszania) (efekt Meissnera)
93 Nadprzewodnictwo jako zjawisko emergentne W pobliżu powierzchni Fermiego: elektrony ła cza sie w pary Coopera i reaguja kolektywnie na zewne trzne zaburzenia (jak gigantyczny superatom identycznych obiektów!) Taki kondensat par Coopera jest odpowiedzialny za: idealne przewodnictwo idealny diamagnetyzm (ruch bez rozpraszania) (efekt Meissnera) inne nowe zjawiska (pra dy Josephsona, wiry kwantowe itp.)
94 Efekt Josephsona pra d par Coopera
95 Efekt Josephsona pra d par Coopera nadprzew. 1 izolator nadprzew. 2 I > 0 U=0 Zła cze utworzone z dwóch nadprzewodników i cienkiej warstwy izolatora.
96 Efekt Josephsona pra d par Coopera SQUID Superconducting QUantum Interferometer Device. Takie urza dzenia sa w stanie wykryć bardzo małe pola magnetyczne T.
97 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć
98 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Alex Müller, Georg Bednorz / IBM Rüschlikon, Szwajcaria / W 1986 r. odkryto, że materiał ceramiczny La 2 x Sr x CuO 4 (który dla x=0 jest izolatorem typu Motta) w zakresie domieszkowania 0,05 < x < 0,25 staje nadprzewodnikiem. sie Maksymalna temperatura krytyczna La 2 x Sr x CuO 4 wynosi T c =36 K.
99 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Alex Müller, Georg Bednorz. Nagroda Nobla, 1987 r. / IBM Rüschlikon, Szwajcaria / W 1986 r. odkryto, że materiał ceramiczny La 2 x Sr x CuO 4 (który dla x=0 jest izolatorem typu Motta) w zakresie domieszkowania 0,05 < x < 0,25 staje sie nadprzewodnikiem. Maksymalna temperatura krytyczna La 2 x Sr x CuO 4 wynosi T c =36 K.
100 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć
101 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Odkrycie to zapocza tkowało burzliwy okres historii rozwoju nadprzewodnictwa.
102 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Odkrycie to zapocza tkowało burzliwy okres historii rozwoju nadprzewodnictwa. 180 * HgBa 2 Ca 2 Cu 3 O 8+δ HgBa 2 Ca 2 Cu 3 O 8+δ 120 Tl 2 Ba 2 Ca 2 Cu 3 O 10 T c (K) ciekly N 2 Bi 2 Ba 2 Ca 2 Cu 3 O 10 YBa 2 Cu 3 O 7 δ La 2 δ Sr δ CuO 4 20 ciekly H Nb 2 Nb 3 Sn 3 Ge Hg Pb Nb NbN V Si Nb Al Ge rok
103 Nadprzewodniki wysokotemperaturowe nowa epoka odkryć Odkrycie to zapocza tkowało burzliwy okres historii rozwoju nadprzewodnictwa. 180 * HgBa 2 Ca 2 Cu 3 O 8+δ HgBa 2 Ca 2 Cu 3 O 8+δ T c (K) ciekly N 2 Tl 2 Ba 2 Ca 2 Cu 3 O 10 Bi 2 Ba 2 Ca 2 Cu 3 O 10 YBa 2 Cu 3 O 7 δ temp. pow. Ksie życa skroplony azot La 2 δ Sr δ CuO 4 20 ciekly H Nb 2 Nb 3 Sn 3 Ge Hg Pb Nb NbN V Si Nb Al Ge rok temp. pow. Plutonu skroplony wodór skroplony hel
104 Nadprzewodnictwo zwia zków żelaza współczesność
105 Nadprzewodnictwo zwia zków żelaza współczesność
106 Zestawienie od epoki kamienia do epoki żelaza
107 5. Zastosowania nadprzewodników
108 1. Linie przesyłowe pra du stałego/zmiennego
109 1. Linie przesyłowe pra du stałego/zmiennego Long Island Power Authority (AmSC, USA)
110 1. Linie przesyłowe pra du stałego/zmiennego Long Island Power Authority (AmSC, USA) Od kwietnia 2008 r. trójfazowa linia wysokiego napie cia zaopatruje w pra d energetyczny około udbiorców indywidualnych.
111 1. Linie przesyłowe pra du stałego/zmiennego Long Island Power Authority (AmSC, USA) Kable wykonano z nadprzewodnika Y-Ba-Cu-O, które w miedzianej osłonie sa zanurzone w ciekłym azocie (izoluja c od otoczenia).
112 2. Bezpieczniki/ograniczniki pra du stałego/zmiennego Nexan SuperConductors (Niemcy) Nadprzewodnikowe bezpieczniki umożliwiaja wyła czenie pra du podczas zwarcia. Automatyczne odblokowanie sieci naste puje po upływie około 1/60 sekundy.
113 3. Silniki do nape du samochodów W 2008 r. przedstawiono prototyp samochodu (wersja Toyoty Crown) zasilanego silnikiem elektrycznym o mocy 365 kw. Sumitomo Electric (Japonia)
114 3. Silniki do nape du samochodów W 2008 r. przedstawiono prototyp samochodu (wersja Toyoty Crown) zasilanego silnikiem elektrycznym o mocy 365 kw. Sumitomo Electric (Japonia) Zwoje silnika wykonano z nadprzewodnika wysokotemperaturowego, które sa na stałe zanurzone w ciekłym azocie (w temperaturze poniżej o C).
115 3. Silniki do nape du statków Nape d statków pasażerskich oraz wojskowych be dzie zasta piony silnikami elektrycznymi wykonanymi z nadprzewodników wysokotemperaturowych.
116 3. Silniki do nape du statków Nape d statków pasażerskich oraz wojskowych be dzie zasta piony silnikami elektrycznymi wykonanymi z nadprzewodników wysokotemperaturowych. American Superconductors Corporation (USA) Takie silniki sa 3-krotnie mniejsze od konwecjonalnych oraz lżejsze i cichsze.
117 4. Magnesy pola stałego
118 4. Magnesy pola stałego W akceleratorze LHC wykorzystano magnesy nadprzewodnikowe ze stopu NbTi CERN (Szwajcaria/Francja)
119 5. Medycyna obrazowanie rezonansem magnetycznym (MRI) Najważniejsza cze ścia urza dzenia jest magnes, w którym pole magnetyczne uzyskuje sie dzie ki przepływowi pra du przez zwoje nadprzewodza ce. W ten sposób łatwo kontroluje sie nate żenie pole niezbe dne do obrazowania. Na świecie jest użytkowanych ponad 20 tys. tego rodzaju urza dzeń
120 5. Medycyna magnetoencefalografia (MEG) Najnowsze urza dzenia technologii biomagnetycznej skonstruowane sa w oparciu o zastosowanie SQUID-ów (interferencji pra dów Josephsona). Urza dzenia sa tak dokładne, że wyczuwaja pola magnetyczne miliard razy słabsze od pola poruszaja cego igłe w kompasie. Dzie ki SQUID-om możliwa jest nieinwazyjna metoda tomografii
121 6. Gradiometria pomiary pól grawitacyjnych Interferometry SQUID też pośrednio sa wykorzystywane w gradiometrach grawitacyjnych. Bardzo precyzyjne żyroskopy z wbudowanymi interferometrami SQUID stosowano w próbach pomiarów efektów zwia zanych z zakrzywieniem przestrzennoczasowym w pobliżu Ziemi. W badaniach kosmologicznych dotycza cych tzw. ciemnej materii oraz ciemnej energii (95 % Wszechświata) również używane ultraprecyzyjne sa detektory podła czone do cewek z wbudowanymi SQUID-ami.
122 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle
123 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle W 1996 roku uruchomiono pierwsza linie lewituja cych pocia gów firmy Yamanashi. MAGLEV (Japonia)
124 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle Testowy pocia g Maglev osiagna ł w 2003 roku rekordowa pre dkość 581 km/h
125 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle Od 2027 r. linia be dzie obsługiwała regularne poła czenia na trasie Tokyo Osaka.
126 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle Regularna linia MAGLEV (30 km) obsługuje obecnie pasażerów podróżuja cych z Szanghaju do lotniska Pudong jest to wspólna inwestycja niemiecko-chińska. Szanghaj (Chiny)
127 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle Regularna linia MAGLEV (30 km) obsługuje obecnie pasażerów podróżuja cych z Szanghaju do lotniska Pudong jest to wspólna inwestycja niemiecko-chińska. Szanghaj (Chiny)
128 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle Regularna linia MAGLEV (30 km) obsługuje obecnie pasażerów podróżuja cych z Szanghaju do lotniska Pudong jest to wspólna inwestycja niemiecko-chińska. Szanghaj (Chiny)
129 7. Lewituja ce pocia gi MAGLEV = Magnetically Levitated Vehicle Regularna linia MAGLEV (30 km) obsługuje obecnie pasażerów podróżuja cych z Szanghaju do lotniska Pudong jest to wspólna inwestycja niemiecko-chińska. Szanghaj (Chiny)
130 Podsumowanie
131 Podsumowanie
132 Podsumowanie
Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych
LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach
Nadprzewodniki: właściwości i zastosowania
Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania Tadeusz Domański Instytut Fizyki Uniwersytet M. Curie-Skłodowskiej Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania
Lublin, 27 XI 2015 r. Nadprzewodnictwo. możliwość realizowania ujemnego oporu. Tadeusz Domański Instytut Fizyki UMCS
Lublin, 27 XI 2015 r. Nadprzewodnictwo możliwość realizowania ujemnego oporu Tadeusz Domański Instytut Fizyki UMCS Lublin, 27 XI 2015 r. Nadprzewodnictwo możliwość realizowania ujemnego oporu Tadeusz Domański
Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy
Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911
Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA
LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA Prof. nz. dr hab. inż. Antoni Cieśla, AKADEMIA GÓRNICZO - HUTNICZA Wydział EAIiIB Katedra Elektrotechniki i Elektroenergetyki Agenda wykładu:
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie Anna Rutkowska IMM sem. 2 mgr Gdańsk, 2012 Spis treści: 1. Nadprzewodnictwo...3 2. Efekt Meissnera...5 2.1 Lewitacja...5 3. Zastosowanie...6 3.1
POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych
NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
Nadprzewodnictwo i nadciekłość w układach oddziałuja. cych mieszanin bozonowo-fermionowych. Tadeusz Domański
Toruń, 22 września 2006 r. Nadprzewodnictwo i nadciekłość w układach oddziałuja cych mieszanin bozonowo-fermionowych Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures
S. Baran - Podstawy fizyki materii skondensowanej Nadprzewodnictwo. Nadprzewodnictwo
Nadprzewodnictwo Definicja, odkrycie nadprzewodnictwo spadek oporu elektrycznego do zera poniżej charakterystycznej temperatury zwanej temperaturą krytyczną. Po raz pierwszy zaobserwował nadprzewodnictwo
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie.
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Aleksandra Galikowska IMM, sem.2, st.ii Spis treści 1. Wstęp, historia... 3 2. Nadprzewodnictwo... 4 3. Własności nadprzewodników... 5 3. Teoria
Nadprzewodnikowe zasobniki energii (SMES)
Nadprzewodnikowe zasobniki energii (SMES) Superconducting Magnetic Energy Storage dr hab. inŝ. Antoni Cieśla, prof. n. Wydział EAIiE Katedra Elektrotechniki i Elektroenergetyki Agenda wystąpienia: 1. Gromadzenie
Wybrane zastosowania nadprzewodników wysokotemperaturowych
Wybrane zastosowania nadprzewodników wysokotemperaturowych Ryszard Pałka Department of Electrical Engineering West Pomeranian University of Technology Szczecin KETiI Zakres prezentacji 1. Wprowadzenie
Nadprzewodniki wysokotemperaturowe. Joanna Mieczkowska
Nadprzewodniki wysokotemperaturowe Joanna Mieczkowska Zastosowanie nadprzewodnictwa na szeroką skalę, szczególnie do przesyłania energii na duże odległości, było dotychczas ograniczone z powodu konieczności
Nadprzewodniki nowe fakty i teorie
Warszawa, 13 września 2005 r. Nadprzewodniki nowe fakty i teorie T. DOMAŃSKI Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Schemat referatu: Schemat referatu: Wste
Nadpłynność i nadprzewodnictwo
Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...
Nadprzewodniki wysokotemperatu rowe. I nie tylko.
Nadprzewodniki wysokotemperatu rowe. I nie tylko. Odkrycie nadprzewodnictwa: H. Kamerlingh Onnes (1911) Table from Burns Pierwiastki Li: pierwiastek o najwyższej T c K. Shimizu et al., Nature 419, 597
Kondensat Bosego-Einsteina okiem teoretyka
Kondensat Bosego-Einsteina okiem teoretyka Krzysztof Sacha Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński Plan: Kondensacja Bosego-Einsteina. Teoretyczny opis kondensatu. Przyk lady.
) (*#)$+$$ poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00
poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00 8 wykładów, 3 wiczenia: w, w, w, w, c, w, w, c, w, w, c(kolo) kolokwium na ostatnich cw. historia zerowy opór efekt Meissnera temperatura, pole
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Duży, mały i zerowy opór. Od czego zależy, czy materiał przewodzi prąd?
Duży, mały i zerowy opór Od czego zależy, czy materiał przewodzi prąd? 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Page 1 Przewodnictwo
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć?
Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć? 1 Główne nadprzewodniki Compound wysokotemperaturowe:t c T b liquid nitrogen Hg-1223 Tl-2223 Tl-1223 Bi-2223
Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII
Nagrody Nobla z dziedziny fizyki ciała stałego Natalia Marczak Fizyka Stosowana, semestr VII Zaczęł ęło o się od Alfred Bernhard Nobel (1833 1896) Nadprzewodnictwo Kamerlingh-Onnes Heike (1853-1926) 1926)
Pierwiastki nadprzewodzące
Pierwiastki nadprzewodzące http://www.magnet.fsu.edu/education/tutorials/magnetacademy/superconductivity101/fullarticle.html Materiały nadprzewodzące Rodzaj Materiał c (K) Uwagi Związki międzymetaliczne
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Struktura elektronowa
Struktura elektronowa Struktura elektronowa atomów układ okresowy pierwiastków: 1) elektrony w atomie zajmują poziomy energetyczne od dołu, inaczej niż te gołębie (w Australii, ale tam i tak chodzi się
WŁAŚCIWOŚCI ELEKTRYCZNE. Oddziaływanie pola elektrycznego na materiał. Przewodnictwo elektryczne. Podstawy Nauki o Materiałach
Podstawy Nauki o Materiałach WŁAŚCIWOŚCI ELEKTRYCZNE Oddziaływanie pola elektrycznego na materiał Pole elektromagnetyczne MATERIAŁ Przepływ prądu Polaryzacja Odkształcenie Namagnesowanie... Przepływ prądu
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności
Karol Fijałkowski 1, Wojciech Grochala Wydział Chemii i ICM, Uniwersytet Warszawski Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności Wstęp W ostatnim czasie coraz
Laboratorium z Konwersji Energii. Ogniwo fotowoltaiczne
Laboratorium z Konwersji Energii Ogniwo fotowoltaiczne 1.0 WSTĘP Energia słoneczna jest energią reakcji termojądrowych zachodzących w olbrzymiej odległości od Ziemi. Zachodzące na Słońcu przemiany helu
POŻYTKI Z NISKICH TEMPERATUR czyli dlaczego na zimno widzimy więcej
POŻYTKI Z NISKICH TEMPERATUR czyli dlaczego na zimno widzimy więcej Maciej CHOROWSKI POLITECHNIKA WROCŁAWSKA Wydział Mechaniczno-Energetyczny Zakład Kriogeniki i Technologii Gazowych O czym rozmawiamy
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
Sprawozdanie z laboratorium inżynierii nowych materiałów
P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium inżynierii nowych materiałów Temat: Badanie podstawowych właściwości nadprzewodnika wysokotemperaturowego. Marcin Kowalski, Aleksandra
Pole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Natężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Spis treści. nadprzewodnictwo. Historia nadprzewodnictwa... Historia nadprzewodnictwa. Pierwsze osiagnięcia
Spis treści 1 Historia nadprzewodnictwa Pierwsze osiagnięcia dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 2 Wstęp Podstawowe własności Rodzaje nadprzewodnictwa
POLITECHNIKA GDAŃSKA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY,,ZMIANA WŁASNOŚCI CIAŁ W TEMPERATURACH KRIOGENICZNYCH Jakub Bazydło Inżynieria Mechaniczno-Medyczna Sem. II mgr GDAŃSK 2012/2013 1. KRIOGENIKA Kriogenika - Słowo
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Techniki niskotemperaturowe w medycynie
Politechnika Gdańska Wydział Mechaniczny Katedra Energetyki i Aparatury Przemysłowej Zakład Termodynamiki, Chłodnictwa i Klimatyzacji Przedmiot: Techniki niskotemperaturowe w medycynie Temat: Zmiana własności
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Jak budowano LHC. Andrzej SIEMKO CERN, Departament Technologii Akceleratorów
Jak budowano LHC Andrzej SIEMKO CERN, Departament Technologii Akceleratorów Plan wykładu Wstęp Czym jest Wielki Zderzacz Hadronów LHC Wybrane wyzwania LHC Nadprzewodnictwo w LHC i urządzenia nadprzewodnikowe
Menu. Badające rozproszenie światła,
Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»
Proste struktury krystaliczne
Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne
1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F
SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne
W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej.
W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. Na całość pracy składają się dwie części (cz. I Fizyka klasyczna J. Massalski, M. Massalska).
TEST DIAGNOZUJACY Z FIZYKI DLA UCZNIÓW KLAS I GIMNAZJUM
Henryk Rej nauczyciel fizyki Gimnazjum Nr 1 43-100 Tychy ul. Brzozowa 24 PROPOZYCJA ZAJĘĆ Z FIZYKI: TEST DIAGNOZUJACY Z FIZYKI DLA UCZNIÓW KLAS I GIMNAZJUM CELE OGÓLNY: popularyzacja nauk przyrodniczych
POLITECHNIKA POZNAŃSKA Wydział: BMiZ Kierunek: MiBM / KMiU Prowadzący: dr hab. Tomasz Stręk Przygotował: Adrian Norek Plan prezentacji 1. Wprowadzenie 2. Chłodzenie największego na świecie magnesu w CERN
Czego oczekujemy od LHC? Piotr Traczyk. IPJ Warszawa
Czego oczekujemy od LHC? Piotr Traczyk IPJ Warszawa Plan 1)Dwa słowa o LHC 2)Eksperymenty i program fizyczny 3)Kilka wybranych tematów - szczegółowo 2 LHC Large Hadron Collider UWAGA! Start jeszcze w tym
P R A C O W N I A
P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I
UKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI PRZEWODNICTWO ELEKTRYCZNE METALI. rezystywność
rezystancja szczątkowa rezystywność NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI Klasyczna Teoria Drudego (1900) nośnikami ładunku są elektrony swobodne podlegające rozkładowi oltzmanna, wszystkie
Najzimniejsze atomy. Tadeusz Domański. Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie.
Odolanów, 10 lipca 2008 r. Najzimniejsze atomy Tadeusz Domański Instytut Fizyki, Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman Referat be dzie dotyczyć : kondensacji i nadciekłości
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH
PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH Krzysztof Horodecki, Artur Ludwikowski, Fizyka 3. Podręcznik dla gimnazjum, Gdańskie Wydawnictwo Oświatowe
Coś niecoś o SQUID-ach
24 FOTON 78, Jesień 2002 Coś niecoś o SQUID-ach Michał Rams Instytut Fizyki UJ 1. Wstęp Wyraz SQUID jest skrótem od pełnej nazwy: Superconducting QUantum Interference Device. Superconducting oznacza, że
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii
Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)
Elektryczne właściwości materii. Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej.
Elektryczne właściwości materii Materiały dydaktyczne dla kierunku Technik Optyk (W10) Szkoły Policealnej Zawodowej. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki I
Podstawy fizyki wykład 4
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Elektryczne właściwości materiałów. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.
Elektryczne właściwości materiałów Materiały dydaktyczne dla kierunku Technik Optyk (W) Kwalifikacyjnego kursu zawodowego. Podział materii ze względu na jej właściwości Przewodniki elektryczne: Przewodniki
Instytutu Ceramiki i Materiałów Budowlanych
Instytutu Ceramiki i Materiałów Budowlanych Scientific Works of Institute of Ceramics and Building Materials Nr 27 (październik grudzień) Prace są indeksowane w BazTech i Index Copernicus ISSN 1899-3230
Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność)
Teoria cząstek elementarnych 23.IV.08 1948 nowa faza mechaniki kwantowej precyzyjne pomiary wymagały precyzyjnych obliczeń metoda Feynmana Diagramy Feynmana i reguły Feynmana dziś uniwersalne narzędzie
Magnetyczne metale i izolatory od antycznych odkryć do wspó lczesnej teorii
Magnetyczne metale i izolatory od antycznych odkryć do wspó lczesnej teorii Krzysztof Byczuk Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Polska Instytut Fizyki, Uniwersytet Augsburski, Niemcy
Nadprzewodnictwo. Eryk Buk. 29 października 2018 r.
29 października 2018 r. Plan seminarium Definicja i podstawowe właściwości nadprzewodników. Przykłady nadprzewodników.. Co to są nadprzewodniki? Pierwsza własność (Kamerlingh Onnes, 1911) Nadprzewodnik
Kwazicza stki Bogoliubova w nadprzewodnikach
Lublin, 20 stycznia 2009 r. Kwazicza stki Bogoliubova w nadprzewodnikach TADEUSZ DOMAŃSKI http://kft.umcs.lublin.pl/doman/lectures Plan referatu: Plan referatu: Wprowadzenie / istota stanu nadprzewodza
Rok akademicki: 2016/2017 Kod: NIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Fizyka ciała stałego Rok akademicki: 2016/2017 Kod: NIM-1-306-s Punkty ECTS: 5 Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia I stopnia
N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji
Katowice, 12 listopada 2008 r. N a d p r z e w o d n i c t w o - przegla d faktów i koncepcji T. DOMAŃSKI Uniwersytet M. Curie-Skłodowskiej w Lublinie http://kft.umcs.lublin.pl/doman/lectures Plan referatu:
O egzotycznych nuklidach i ich promieniotwórczości
O egzotycznych nuklidach i ich promieniotwórczości Marek Pfützner Instytut Fizyki Doświadczalnej Uniwersytet Warszawski Tydzień Kultury w VIII LO im. Władysława IV, 13 XII 2005 Instytut Radowy w Paryżu
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy
Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy
100 lat fizyki niskich temperatur i nadprzewodnictwa
100 lat fizyki niskich temperatur i nadprzewodnictwa Tadeusz Wasiutyński IFJ PAN 9 maja 2013 Wstęp teoria BCS teoria Ginzburga Landaua nowe nadprzewodniki wysokotemperaturowe co z tego mamy Heike Kamerlingh
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules
S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne
Pasma energetyczne Niedostatki modelu gazu Fermiego elektronów swobodnych Pomimo wielu sukcesów model nie jest w stanie wyjaśnić następujących zagadnień: 1. różnica między metalami, półmetalami, półprzewodnikami
Pierwiastek: Na - Sód Stan skupienia: stały Liczba atomowa: 11
***Dane Pierwiastków Chemicznych*** - Układ Okresowy Pierwiastków 2.5.1.FREE Pierwiastek: H - Wodór Liczba atomowa: 1 Masa atomowa: 1.00794 Elektroujemność: 2.1 Gęstość: [g/cm sześcienny]: 0.0899 Temperatura
Teoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Fizyka. Klasa II Gimnazjum. Pytania egzaminacyjne. 1. Ładunkiem ujemnym jest obdarzony: a) kation, b) proton, c) neutron, d) elektron.
Fizyka Klasa II Gimnazjum Pytania egzaminacyjne 2017 1. Ładunkiem ujemnym jest obdarzony: a) kation, b) proton, c) neutron, d) elektron. 2. Naelektryzowany balonik zbliżono do strugi wody; w konsekwencji:
ANALIZA ZAMROŻONEGO STRUMIENIA W NADPRZEWODNIKACH WYSOKOTEMPERATUROWYCH
Jacek SOSNOWSKI Daniel GAJDA ANALIZA ZAMROŻONEGO STRUMIENIA W NADPRZEWODNIKACH WYSOKOTEMPERATUROWYCH STRESZCZENIE Liczne zastosowania materiałów nadprzewodnikowych oparte są na wykorzystaniu ich podstawowej
Specyficzne własności helu w temperaturach kriogenicznych
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Specyficzne własności helu w temperaturach kriogenicznych Opracowała: Joanna Pałdyna W ramach przedmiotu: Techniki niskotemperaturowe w medycynie Kierunek studiów:
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Zaburzenia periodyczności sieci krystalicznej
Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom
W1. Właściwości elektryczne ciał stałych
W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3
Ładunki puszczamy w ruch. Wykład 12
Ładunki puszczamy w ruch. Wykład 12 Prawa przepływu prądu stałego 12. 1. Podstawowe definicje dla prądu elektrycznego 12.2. Elektrony w ciałach stałych pasma energetyczne 12.3. Prawo Ohma 12.3.1.Opór elektryczny
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Klasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp