Topologiczny diagram fazowy półprzewodników IV-VI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Topologiczny diagram fazowy półprzewodników IV-VI"

Transkrypt

1 Topologiczny diagram fazowy półprzewodników IV-VI Tomasz Story (IF PAN) Półprzewodniki IV-VI jako materiały topologiczne Koncepcje teoretyczne stanów topologicznch w materiałach IV-VI i ich weryfikacja doświadczalna Topologiczny diagram fazowy - powierzchniowe (3D) i krawędziowe (2D) stany elektronowe Podsumowanie

2 Izolatory topologiczne: podstawowa właściwości fizyczne Silne oddziaływanie spin-orbita E so E G Odwrócona symetria pasm Nieparzysta liczba stożków Diraca Metaliczne, helikalne spinowo stany powierzchniowe Ochrona topologiczna

3 Inwersja pasm w półprzewodnikach P. Barone et al., Phys. Rev. B (2013)

4 Izolatory topologiczne 3D Bi, Sb półmetale z silnym oddziaływaniem spin-orbita Bi 1-x Sb x półprzewodnikowy stop materiał termoelektryczny L. Fu & C. Kane przewidywania teoretyczne dla Bi 1-x Sb x (PRB 2007) Weryfikacja doświadczalna: Hsieh et al., Nature 2008

5 Topologiczne stany elektronowe krawędziowe w heterostrukturach 2D powierzchniowe w kryształach 3D S. Murakami, J. Phys. Conf. Ser. 302, (2011)

6 Topologiczne stany elektronowe Metody doświadczalne: Fotoemisyjna spektroskopia elektronowa z rozdzielczością kątową ( ARPES) i spinową (SRPES) Skaningowa mikroskopia i spektroskopia tunelowa (STM) Transport elektronowy; magneto-przewodnictwo Magneto-optyka Mikro-magnetometria (np. mikro-squid) Magnetyzm, nadprzewodnictwo ( )

7 DOS Core level Fotoemisyjna spektroskopia elektronowa Vacuum level Intensity hn Valence band Energy Energy analyzer hn e - Sample Electron detector Secondary electrons Kinetic energy Binding energy E F

8 Fotoemisja metoda badania powierzchni kryształów photons electrons nm nm W. Mönch Semiconductor surfaces and interfaces 1993

9 Półprzewodniki rodziny IV-VI Binarne związki chemiczne: PbTe, PbSe, PbS, SnTe, GeTe Podstawieniowe roztwory stałe: Pb 1-x Sn x Te, Pb 1-x Sn x Se Półprzewodniki półmagnetyczne: Sn 1-x Mn x Te

10 Półprzewodniki rodziny IV-VI Struktura NaCl Wąska (0-0.3 ev), prosta przerwa energetyczna w punkcie L - 4 doliny Oddziaływanie relatywistyczne 1-go rzędu Małe masy efektywne, duże ruchliwości elektronów i dziur Materiały termoelektryczne i optoelektroniczne (lasery podczerwone).

11 Struktura elektronowa półprzewodników IV-VI Oddziaływania relatywistyczne w PbTe i PbSnTe

12 300 K Pb 1-x Sn x Te podstawieniowy roztwór stały 0,4 0,3 R. Dornhaus, G. Nimtz, and B. Schlicht, Springer Tracts in Modern Physics vol. 98, Narrow-Gap Semiconductors (Springer, Berlin, 1983) Pb 1-x Sn x Te L 6 0,2 0,1 L K E g (ev) 0,0-0,1-0,2 L K -0,3 L 6 TCI -0,4 0,0 0,2 0,4 0,6 0,8 1,0 Sn content, x

13 Podstawieniowy roztwór stały Pb 1-x Sn x Se 0,3 300 K Pb 1-x Sn x Se L 6 0,2 195 K L + 6 E g (ev) 0,1 0,0 77 K 4 K ü exp. data ý ţ A.J. Strauss x=0.23 x=0.27 x=0.30 L + 6-0,1 L 6 TCI -0,2 0 0,1 0,2 0,3 0,4 Sn content, x

14 Topologiczne izolatory krystaliczne: SnTe - wskazania teorii SnTe - teoretyczna analiza topologiczna wskazuje na stany elektronowe TCI z 4 stożkami Diraca w pobliżu punktów X strefy Brillouina (powierzchniowej) Przejście Lifshitza - zmiana kształtu powierzchni Fermiego T.H. Hsieh,L. Fu, Nature Commun. 3, 982 (2012).

15 Topologiczne izolatory krystaliczne: SnTe vs PbTe analiza teoretyczna PbTe trywialny izolator pasmowy E G >0 SnTe topologiczny izolator krystaliczny (TCI) E G <0 T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Nature Commun. 3, 982 (2012).

16 Struktura elektronowa Pb 1-x Sn x Te - obliczenia metodą ciasnego wiązania PbSnTe w obszarze inwersji pasm: A) izolator pasmowy B) zerowa przerwa C) odwrócona przerwa - TCI D) SnTe - TCI S. Safaei, P. Kacman, R. Buczko, Phys. Rev. B 88, (2013)

17 Izolatory topologiczne a topologiczne izolatory krystaliczne Metaliczne stany powierzchniowe (krawędziowe) o liniowej dyspersji (Diraca). Symetria pasma przewodnictwa i pasma walencyjnego odwrócona w wyniku oddziaływań relatywistycznych (spinowo-orbitalnych). Ochrona topologiczna i brak rozpraszania do tyłu. Polaryzacja spinowa (helikalność). Mechanizm ochrona topologicznej: symetria odwrócenia czasu - zwierciadlana symetria krystaliczna Rozmieszczenie i liczba stożków Diraca nieparzysta (TRI) / parzysta Niezmiennik topologiczny: liczba Cherna (Z 2 ) zwierciadlana liczba Cherna

18 Wzrost monokryształów PbSnSe metodą SSVG A. Szczerbakow, monokryształ Pb 0.76 Sn 0.24 Se w ampule kwarcowej

19 Pomiary struktury elektronowej (ARPES) Pb 0.77 Sn 0.23 Se T=199 K E T=284 K E G vs. T T=144 K T=126 K T=111 K k

20 Strefa Brillouina dla powierzchni (001)

21 Struktura elektronowa - ARPES Relacje dyspersji w obszarze stożka Diraca dla różnych temperatur P. Dziawa, B.J. Kowalski, K. Dybko et al., Nat. Mat. 11, 1023 (2012)

22 Struktura elektronowa ARPES Relacje dyspersji E(k) dla kierunków X- i X-M

23 Struktura elektronowa - ARPES Przekroje powierzchni Fermiego E(k x, k y ) dla różnych energii wiązania

24 B.E. (ev) Dirac point Dirac point Pb 0.67 Sn 0.33 Se, T=87 K, hn=18.5 ev B.E. (ev) X 0.4 M X M X X Theory- R. Buczko, P. Kacman, S. Safaei X

25 Izolator trywialny (pasmowy) PbSe a topologiczny izolator krystaliczny Pb 1-x Sn x Se x=0, 0.15, 0.19, 0.23, 0.30, 0.37 T=300 K 0,3 300 K Pb 1-x Sn x Se L 6 0,2 195 K L + 6 T= 200 K E g (ev) 0,1 0,0 77 K 4 K ü exp. data ý ţ A.J. Strauss x=0.23 x=0.27 x=0.30 L + 6 T=100 K -0,1 L 6 TCI -0,2 0 0,1 0,2 0,3 0,4 Sn content, x T=9 K B.M. Wojek, P. Dziawa, B.J. Kowalski et al., Phys. Rev. B (R) (2014)

26 Cienkie warstwy Pb 1-x Sn x Se/BaF 2 (111) C.P. Polley, P. Dziawa et al., Phys. Rev. B 89, (2014)

27 Polaryzacja spinowa stanów TCI: obliczenia modelowe Pb 0.76 Sn 0.24 Se B.M. Wojek, R. Buczko et al., Phys. Rev. B 87, (2013)

28 Polaryzacja spinowa stanów topologicznych w SnTe S. Safaei, P. Kacman, R. Buczko, Phys. Rev. B 88, (2013) Obiczenia metodą ciasnego wiązania

29 Polaryzacja spinowa stanów TCI: eksperyment SRPES Pb 0.76 Sn 0.24 Se B.M. Wojek, R. Buczko et al., Phys. Rev. B 87, (2013)

30 Polaryzacja spinowa stanów TCI: SRPES Pb 0.6 Sn 0.4 Te S.-Y. Xu et al., Nat. Commun. 3, 1192 (2012).

31 Spektroskopia tunelowa STM I. Zeljkovic et al., Nat. Mat. 14, 318 (2015)

32 STM interferencje kwazi-cząstek quasi-particle interference (QPI) A. Gyenis et al., Phys. Rev. B 88, (2013) Princeton group

33 Spektroskopia tunelowa STM - Pb 1-x Sn x Se Y. Okada et al., Science 341, 1496 (2013)

34 Dystorsja sieci krystalicznej a stany topologiczne

35 Dystorsja sieci krystalicznej a stany topologicznego izolatora krystalicznego B.M. Wojek et al., Nat. Commun. 6, 8463 (2015)

36 Kontrola właściwości elektrycznych objętości kryształów TCI Domieszki o właściwościach głębokich centrów: grupa III: In lub metale przejściowe (V, Mo) R. Zhong et al., Phys. Rev. B 91, (2015)

37 Transport elektronowy Pomiary magnetooporowe: Efekt słabej antylokalizacji (WAL) efekty interferencyjne i s-o Efekt Subnikowa de Haasa (kwantowe oscylacje magnetooporu) Efekt Nernsta-Ettingshausena - K. Dybko et al., arxiv: Punkt inwersji pasm (x,t)

38 Tranzystor topologiczny 2D TCI

39 Dwuwymiarowy izolator topologiczny (2D TI) w ultra cienkich warstwach SnTe i SnSe (111) S. Safaei, M. Galicka, P. Kacman, R. Buczko, New J. Phys. 17, (2015)

40 Podsumowanie Topologiczne izolatory krystaliczne (TCI) nowa klasa materiałów półprzewodnikowych, dla których na powierzchniach wysokiej symetrii obserwuje się metaliczne stany elektronowe chronione topologicznie. Pb 1-x Sn x Se i Pb 1-x Sn x Te półprzewodniki rodziny IV-VI modelowe materiały TCI, w których obserwuje się indukowane temperaturą przejście od stanu izolatora pasmowego (trywialnego) do stanu topologicznego izolatora krystalicznego (3D). Weryfikacja doświadczalna koncepcji teoretycznych pomiary fotoemisyjne (ARPES, SRPES) i STM. Analiza teoretyczna struktury elektronowej w obszarze inwersji symetrii pasm. Topologiczny diagram fazowy (x, T, dystorsja sieci): 3D TCI potwierdzone doświadczalnie 2D TCI, 2D TI - przewidywania teoretyczne

41 Materiały topologiczne - nowość w fizyce ciała stałego czy materiały nowej elektroniki? Długa lista pomysłów teoretycznych wykorzystujących polaryzację spinową stanów topologicznych, możliwość otwierania i zamykani przerwy energetycznej i reżim transportu elektronowego bez rozpraszania nośników. Spintronika: źródła prądu spinowo spolaryzowanego (spinowego). Termoelektryczność: nowa realizacja idei kryształu elektronowego/szkła fononowego. Optoelektronika : materiały magnetooptyczne o kontrolowanej przerwie energetycznej. Elektronika: nowe tranzystory polowe; nanopołączenia elektryczne. Ważna zaleta izolatorów topologicznych: skalę temperatur ogranicza energia przerwy energetycznej (0.1 ev to ok K) temperatura pokojowa. Poważny (ale usuwalny) kłopot technologiczny: to raczej półprzewodniki niż izolatory przewodzenie objętości kryształu zwykle dominuje

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

Podstawy Fizyki Półprzewodników

Podstawy Fizyki Półprzewodników Podstawy Fizyki Półprzewodników Kazimierz Sierański www. If.pwr.wroc.pl/~sieranski konsultacje: poniedziałek godz. 15:00-17:00, pok. 310 A-1 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Leonard Sosnowski

Leonard Sosnowski Admiralty Research Laboratory w Teddington, Anglia (1945-1947). Leonard Sosnowski J. Starkiewicz, L. Sosnowski, O. Simpson, Nature 158, 28 (1946). L. Sosnowski, J. Starkiewicz, O. Simpson, Nature 159,

Bardziej szczegółowo

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN Co to jest powierzchnia? o GaN (0001) A Co to jest powierzchnia? 8 4 0 0 0.4 0.8 mm GaAs (110) Jak opisać powierzchnie:

Bardziej szczegółowo

Trójwymiarowe izolatory topologiczne - chalkogenki bizmutu.

Trójwymiarowe izolatory topologiczne - chalkogenki bizmutu. Trójwymiarowe izolatory topologiczne - chalkogenki bizmutu. Agnieszka Wołoś Instytut Fizyki Polskiej Akademii Nauk Uniwersytet Warszawski Instytut Technologii Materiałów Elektronicznych A. Hruban, G. Strzelecka,

Bardziej szczegółowo

Spintronika fotonika: analogie

Spintronika fotonika: analogie : analogie Paweł Wójcik, Maciej Wołoszyn, Bartłomiej Spisak W oparciu o wykład wygłoszony podczas konferencji 2nd World Congress of Smart Materials, Singapur, March 2-6, 2016 Wprowadzenie dla niespecjalistów

Bardziej szczegółowo

Rozszczepienie poziomów atomowych

Rozszczepienie poziomów atomowych Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej

Bardziej szczegółowo

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH

Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Nadprzewodnictwo w nanostrukturach metalicznych Paweł Wójcik Wydział Fizyki i Informatyki Stosowanej, AGH Współpraca: Akademickie Centrum Materiałów i Nanotechnologii dr Michał Zegrodnik, prof. Józef Spałek

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: NIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2016/2017 Kod: NIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Fizyka ciała stałego Rok akademicki: 2016/2017 Kod: NIM-1-306-s Punkty ECTS: 5 Wydział: Metali Nieżelaznych Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Materiały używane w elektronice

Materiały używane w elektronice Materiały używane w elektronice Typ Rezystywność [Wm] Izolatory (dielektryki) Over 10 5 półprzewodniki 10-5 10 5 przewodniki poniżej 10-5 nadprzewodniki (poniżej 20K) poniżej 10-15 Model pasm energetycznych

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Projekt FPP "O" Kosma Jędrzejewski 13-12-2013

Projekt FPP O Kosma Jędrzejewski 13-12-2013 Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Modele kp Studnia kwantowa

Modele kp Studnia kwantowa Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

3.4 Badanie charakterystyk tranzystora(e17)

3.4 Badanie charakterystyk tranzystora(e17) 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne Pasma energetyczne Niedostatki modelu gazu Fermiego elektronów swobodnych Pomimo wielu sukcesów model nie jest w stanie wyjaśnić następujących zagadnień: 1. różnica między metalami, półmetalami, półprzewodnikami

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.018 Wydział Informatyki, Elektroniki i 1 Struktura

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato

Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato Struktura energetyczna ciał stałych Fizyka II dla EiT oraz E, lato 016 1 Struktura kryształu Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Poznań, 11 sierpnia 2014 r.

Poznań, 11 sierpnia 2014 r. Kierownik Zakładu: prof. dr hab. Ryszard Czajka e-mail: ryszard.czajka@put.poznan.pl tel.: 61-665 3234, 61-665 3162 Wydział Fizyki Technicznej Instytut Fizyki, ul. Nieszawska 13 A, 60-965 POZNAŃ Zakład

Bardziej szczegółowo

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o

Bardziej szczegółowo

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. Funkcja rozkładu Fermiego-Diraca T=0K T>0K 1 f ( E ) = 0 dla dla E E F E > EF f ( E, T ) 1 = E E F kt e + 1 1 T>0K Funkcja rozkładu Fermiego-Diraca

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład : Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.017 Wydział Informatyki, Elektroniki i 1 Struktura

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

!!!DEL są źródłami światła niespójnego.

!!!DEL są źródłami światła niespójnego. Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji

Bardziej szczegółowo

2013 02 27 2 1. Jakie warstwy zostały wyhodowane w celu uzyskania 2DEG? (szkic?) 2. Gdzie było domieszkowanie? Dlaczego jako domieszek użyto w próbce atomy krzemu? 3. Jaki kształt miała próbka? 4. W jaki

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych

S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Struktura energetyczna ciał stałych. Fizyka II, lato

Struktura energetyczna ciał stałych. Fizyka II, lato Struktura energetyczna ciał stałych Fizyka II, lato 016 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona studnia, w której energia

Bardziej szczegółowo

30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie

30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie Wykład XI: Właściwości elektryczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wprowadzenie 2. a) wiadomości podstawowe b) przewodniki

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru

Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN Co to jest powierzchnia? A o Co to jest powierzchnia? GaN(0001) 8 4 0 0 0.4 0.8 mm GaAs (110) Przykład: powierzchnia GaAs

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr Małgorzaty Bukały

Recenzja rozprawy doktorskiej mgr Małgorzaty Bukały Warszawa, 25. kwietnia 2012 r. Prof. dr hab. Grzegorz Karczewski Instytut Fizyki Polska Akademia Nauk Al. Lotników 32/46 02-668 Warszawa Recenzja rozprawy doktorskiej mgr Małgorzaty Bukały zatytułowanej:

Bardziej szczegółowo

Proste struktury krystaliczne

Proste struktury krystaliczne Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne

Bardziej szczegółowo

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik

Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.2017 1 2 Własności elektryczne

Bardziej szczegółowo

Recenzja osiągnięć naukowych dr. Łukasza Plucińskiego w związku z postępowaniem habilitacyjnym.

Recenzja osiągnięć naukowych dr. Łukasza Plucińskiego w związku z postępowaniem habilitacyjnym. Prof. dr hab. Józef Korecki Katedra Fizyki Ciała Stałego Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza w Krakowie oraz Instytut Katalizy i Fizykochemii Powierzchni im. Jerzego Habera

Bardziej szczegółowo

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska

WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska 1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Fizyka 3.3. prof.dr hab. Ewa Popko p.231a

Fizyka 3.3. prof.dr hab. Ewa Popko   p.231a Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2. B. Ziętek, Optoelektronika,

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak

Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Fizyka i inżynieria materiałów Prowadzący: Ryszard Pawlak, Ewa Korzeniewska, Jacek Rymaszewski, Marcin Lebioda, Mariusz Tomczyk, Maria Walczak Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka

Bardziej szczegółowo

Zagadnienie do ćwiczeń na 2 Pracowni Fizycznej Dr Urszula Majewska

Zagadnienie do ćwiczeń na 2 Pracowni Fizycznej Dr Urszula Majewska Ćwiczenie nr 1-4pkt Wyznaczanie współczynników załamania ośrodków ciekłych i gazowych za pomocą interferometru 1. Interferencja światła Drgania harmoniczne Faza drgań Faza fali Kiedy stosujemy prawa fizyki

Bardziej szczegółowo

Wprowadzenie do struktur niskowymiarowych

Wprowadzenie do struktur niskowymiarowych Wprowadzenie do struktur niskowymiarowych W litym krysztale ruch elektronów i dziur nie jest ograniczony przestrzennie. Struktury niskowymiarowe pozwalają na ograniczenie (częściowe lub całkowite) ruchu

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 22: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej.

W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. W drugiej części przedstawiono podstawowe wiadomości z fizyki atomowej, fizyki ciała stałego oraz fizyki jądrowej. Na całość pracy składają się dwie części (cz. I Fizyka klasyczna J. Massalski, M. Massalska).

Bardziej szczegółowo

Wykład FIZYKA II. 14. Fizyka ciała stałego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 14. Fizyka ciała stałego.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 14. Fizyka ciała stałego Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MATERIA SKONDENSOWANA Każdy pierwiastek bądź

Bardziej szczegółowo

W5. Rozkład Boltzmanna

W5. Rozkład Boltzmanna W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został

Bardziej szczegółowo

Struktura energetyczna ciał stałych

Struktura energetyczna ciał stałych 011-05-0 Struktura energetyczna ciał stałych Fizyka II dla Elektroniki, lato 011 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K

KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K Bogdan J. Kowalski Instytut Fizyki Polskiej Akademii Nauk, Aleja Lotników 32/46, PL-02 668 Warszawa Streszczenie:

Bardziej szczegółowo

Badanie pól elektrycznych w azotkach metodami optycznymi

Badanie pól elektrycznych w azotkach metodami optycznymi Badanie pól elektrycznych w azotkach metodami optycznymi Krzysztof Zieleniewski Pod opieką dr. Anety Drabińskiej Proseminarium Fizyki Ciała Stałego, 8 kwietnia 2010 O czym będzie? Dlaczego azotki? Dlaczego

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 6 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003 Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 003 1. Wiązania atomów w krysztale Siły wiążące atomy w kryształ mają charakter

Bardziej szczegółowo

FIZYKA WSPÓŁCZESNA. Janusz Adamowski

FIZYKA WSPÓŁCZESNA. Janusz Adamowski FIZYKA WSPÓŁCZESNA Janusz Adamowski 1 Wykłady dla studentów 2. stopnia studiów inżynierskich AGH Motto wykładów: FIZYKA (WSPÓŁCZESNA) stanowi podstawę działania przyrządów obecnej i przyszłej techniki

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo