Nadprzewodniki wysokotemperatu rowe. I nie tylko.
|
|
- Adrian Piasecki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Nadprzewodniki wysokotemperatu rowe. I nie tylko.
2 Odkrycie nadprzewodnictwa: H. Kamerlingh Onnes (1911)
3 Table from Burns Pierwiastki
4 Li: pierwiastek o najwyższej T c K. Shimizu et al., Nature 419, 597 (2002). News and Views by Ashcroft, Nature 419, 571 (2002). the behaviour of dynamical ele-ele interaction and in particular of the Coulomb pseudopotential
5 Żelazo Shimizu et al., Nature 412, 316 (2001).
6 Materiały nadprzewodzące Classification Materials T c (K) Remarks Związki międzymetaliczne i stopy związki zawierające tzw. ciężkie fermiony Nb 1-x Ti x alloy Nb 3 Sn ErRh 4 B 4 HoMo 6 S 8 RNi 2 B 2 C CeCu 2 Si 2 UPt 3 CeCoIn 5 UGe < used for sc magnets up to 11 T A-15, used for magnets up to 22 T Chevrel-phase borocarbides d-wave p- or f-wave coexistence of FM and SC
7 Związki typu A15: b c a Nb3Ge, A15 Ge-4 Nb+1.33
8 Fazy Chevrela: b c a Np. ErRh 4 B 4 HoMo 6 S 8 Sn+4 Mo+2 S-2
9 Słynny MgB2
10 Materiały nadprzewodzące Classificati on Materials T c (K) Remarks Tlenki SrTiO 3-δ Ba(Pb, Bi)O 3 LiTi 2 O 4 Sr 2 RuO perovskite, low carrier density perovskite spinel layered perovskite, p-wave HTC Cuprates (La,Ba) 2 CuO 4 YBa 2 Cu 3 O 7 HgBaCuO d-wave
11 Nadprzewodniki wysokotemperaturowe
12 Tlenki o niskiej i wysokiej temperaturze krytycznej: c c a a b b La2CuO4 Sr2RuO4 La+3 Sr+2 Cu+2 O-2 O-2 Ru+4
13 Główne nadprzewodniki wysokotemperaturowe i ich T c Compound T b liquid nitrogen 0 50 T c (K) Hg-1223 Tl-2223 Tl-1223 Bi-2223 Y-123 Bi-2212 YBa 2 Cu 3 O 7-x Bi 2 Sr 2 CaCu 2 O 8+x (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x TlBa 2 Ca 2 Cu 3 O 9+x Tl 2 Ba 2 Ca 2 Cu 3 O 10+x HgBa 2 Ca 2 Cu 3 O 8+x (Y-123) (Bi-2212) (Bi-2223) (Tl-1223) (Tl-2223) (Hg-1223) Courtesy of S. Zannella, Edison - Milano
14 Główne nadprzewodniki wysokotemperaturowe i ich struktura krystaliczna YBa 2 Cu 3 O 7 La 2-x Sr x CuO 4 HgBa 2 Ca 2 Cu 3 O 8
15 Pierwszy naprawdę wysokotemperaturowy nadprzewodnik. Najlepiej zbadany i znany Maw-Kuen Wu, Paul Chu Houston i Alabama, USA YBa 2 Cu 3 O 7 (YBCO) T K =92K
16 Tlenek kobaltu dołącza do grona nadprzewodników: Na 0.35 CoO 2.1.3H 2 O*, T c ~5k 2D warstwy CoO 2 oddielone od siebie grubymi, izolującymi warstwami jonów Na+ i molekuł H 2 O. *Nature 422,53-55 (2003)
17 Materiały nadprzewodzące Classificati on Materials T c (K) Remarks Organics and others (TMTSF) 2 ClO 4 (BEDT- TTF) 2 Cu(NCS) Q1D Q2D, d-wave Rb 3 C 60 (Na 2 Ba 6 )Si 46 Fullerane, s-wave Si-clathrates, s-wave
18 Istnieje mnóstwo nadprzewodników organicznych. (BEDT-TTF) 2 I 3
19 Domieszkowane fullereny b ca C+0
20 Si-clathrate y
21 Skąd się bierze nadprzewodnictwo?
22 Twórcami teorii nadprzewodnictwa (konwencjonalnego) są: John Bardeen Leon N. Cooper John Robert Schrieffer
23 Skąd się bierze nadprzewodnictwo? Przyczyną powstania nadprzewodnictwa jest jakieś oddziaływanie pomiędzy elektronami, które prowadzi do tego, że ELEKTRONY SIĘ PRZYCIĄGAJĄ.
24 Skąd się bierze nadprzewodnictwo? W metalach jest to oddziaływanie z siecią krystaliczną (oddziaływanie elektron-fonon).
25 Skąd się bierze nadprzewodnictwo? W nadprzewodnikach wysokotemperaturowych: oddziaływanie magnetyczne? spiny? mimo wszystko oddziaływanie z siecią? jeszcze coś innego?
26 Skąd się bierze nadprzewodnictwo? W rezultacie, dzięki przyciąganiu, elektrony tworzą pary: pary Coopera. Wszystkie pary Coopera w nadprzewodzącym materiale mają taką samą energię. Para jako całość nie może ani zyskać ani stracić energii. Parę można tylko rozerwać, a wtedy nie będzie już nadprzewodnictwa.
27 Skąd wynika zerowy opór? Wiemy,że opór metali wynika z oddziaływania elektronów z drganiami sieci krystalicznej (następuje zmiana kierunku ruchu elektronu, czyli ograniczenie prądu elektrycznego). W nadprzewodniku oddziaływanie elektronu z drganiami sieci prowadzi do powstania pary Coopera. Teraz: elektron zmienia kierunek prędkości, ale para Coopera nie!!!
28 R=0 Opór (dla prądu stałego) jest naprawdę równy zeru. Jeżeli w pierścieniu nadprzewodzącym wzbudzimy prąd to będzie on płynął na pewno dłużej niż będziemy w stanie mierzyć. Stała czasowa zaniku prądu: I t = τ I0e, τ 10 5 lat
29 Poniżej temperatury krytycznej materiał nadprzewodzi. To znaczy, że: Jego opór elektryczny jest równy zeru, ale... Dotyczy to tylko prądu stałego i zmiennego o małej częstotliwości, mniejszego niż prąd krytyczny i najlepiej bez pola magnetycznego.
30 Dlaczego prąd może zniszczyć nadprzewodnictwo? Elektrony w parze są ze sobą związane. Żeby je od siebie oddzielić potrzebna jest energia: gdy dostarczymy wystarczającą energię nadprzewodnikowi (ogrzejemy go, przepuścimy za duży prąd, naświetlimy promieniowaniem, itd.), wówczas rozerwiemy pary Coopera i materiał zacznie zachowywać się zwyczajnie.
31 Jak nadprzewodnik oddziałuje z polem magnetycznym? Zwykły metal Nadprzewodnik
32 Jak nadprzewodnik oddziałuje z polem magnetycznym? Nadprzewodnik jest idealnym diamagnetykiem: wypycha pole magnetyczne ze swojego wnętrza. Efekt Meissnera Ochsenfelda (Walther Meissner i Robert Ochsenfeld, 1933)
33 Nadprzewodnik to nie jest tylko idealny przewodnik!
34 Jak nadprzewodnik oddziałuje z polem magnetycznym? Dwa typy zachowań nadprzewodnika w polu magnetycznym:
35 Na czym polega częściowe wnikanie pola magnetycznego: Widok z góry Superconductor Kwant strumienia pola magnetycznego (wir, worteks) Superconductor
36 Zdjęcie worteksów:
37 Pole krytyczne Jak nadprzewodnik oddziałuje z polem magnetycznym? Istnieje pole magnetyczne, które niszczy stan nadprzewodzący: pole krytyczne
38 Podsumowanie: główne cechy nadprzewodników i stanu nadprzewodzącego.
39 Temperatura krytyczna: temperatura poniżej której materiał nadprzewodzi ρ[ωcm] T [K]
40 0K Ciekły hel 4K Ciekły azot 77K Temperatura pokojowa 300 K Konwencjonalne nadprzewodniki 0 40 K Wysokotemperaturowe nadprzewodniki K
41 Temperatura krytyczna: temperatura poniżej której materiał nadprzewodzi.
42 Gęstość prądu krytycznego (j c ): prąd, który niszczy nadprzewodnictwo. Uwaga: gęstość prądu jest to natężenie prądu podzielone przez pole przekroju poprzecznego przewodnika. Prąd krytyczny zależy od temperatury. Jest to bardzo ważna, z praktycznego punktu widzenia, cecha nadprzewodnika. j c Nadprzewodnik Normalny metal T c T
43 Pola krytyczne niektórych nadprzewodników wysokotemperaturowych:
44 Prąd krytyczny. Prąd krytyczny bardzo zależy od mikrostruktury. Mikrostruktura z kolei zależy od technologii wytwarzania materiału. Zaczniemy, zatem, od technologii.
45 Prąd krytyczny BSCCO Duża anizotropia - problem Jc of Bi-2223 tapes from magnetisation technique. Data from L. Martini, CESI, Milano
46 Prąd krytyczny BSCCO: 2223 J c (77 K, 0 T) di nastri multifilamentari di Bi-2223 J c (ka/cm 2 ) < 10 cm > 10 m > 100 m > 1 km lunghezza Courtesy of S. Zannella, Edison - Milano ASC IGC Sumitomo Siemens
47 ZASTOSOWANIA
48 Najbardziej już rozpowszechnione zastosowanie nadprzewodników (niekoniecznie wysokotemperaturowych) to wytwarzanie i pomiar pola magnetycznego.
49 Elektromagnesy. Aby wytworzyć pole magnetyczne o indukcji 9T potrzebny jest prąd 13000A! W normalnym drucie wydzieli się przy tym olbrzymia ilość ciepła: Chłodzenie; Wielkie straty energii; Wielkie problemy konstrukcyjne. JEDYNE ROZWIĄZANIE TO NADPRZEWODNIKI
50 Elektromagnesy. Stare nadprzewodniki stosuje się już w tym celu od kilkudziesięciu lat SC Nb-Ti Nb 3 Sn Indukcja 8 [T] 17 [T]
51 Elektromagnesy. Nowe nadprzewodniki zbyt szybko nie wyprą z rynku starych, ale.. Cryocooled magnet capable of 8 T at 8 K (left) and a series of them, with different size and fields (max 15 T), ready to be shipped. Courtesy of Cryogenic Ltd, London
52 Precyzyjny pomiar indukcji pola magnetycznego: SQUID Superconducting Quantum Interference Device
53 SQUID SQUID jest to pierścień złożony z dwóch nadprzewodników przedzielonych warstwami izolatora. Złącza (warstwy izolatora) są bardzo cienkie i prąd nadprzewodzący może przez nie tunelować. Do wnętrza pierścienia może wnikać pole magnetyczne (tylko kwanty strumienia=fluksony).
54 SQUID Zmiana pola magnetycznego wewnątrz pierścienia powoduje zmianę płynącego prądu. Fluksony są baaardzo małe, w związku z tym SQUID jest bardzo czułym miernikiem pola magnetycznego.
55 Kable przesyłowe Korzyść z zerowego oporu jest oczywista, ale problemem jest chłodzenie kabla nadprzewodzącego: jest to kosztowne i technicznie trudne. Mimo to, istnieją już próbne instalacje: od 2001 Carrollton, Georgia - 3 instalacje; Kopenhaga klientów 2002 Tokio trzeci projekt Detroit, Michigan klientów; Paryż, Francja
56 Zastosowania w elektronice. Tranzystor polowy; Pamięci; Rozmaite szybkie przełączniki;
57 Zastosowania elektrotechniczne 1,E+07 Jc (A/ cm 2 ) 1,E+06 1,E+05 1,E+04 1,E Bi-2223 a 77 K YBCO a 77 K NbTi a 4,2 K Bi-2223 a 4,2 K Nb 3 Sn a 4,2 K B (T) 1 cavi, limitatori trasformatori 2 motori,generatori, RM 3 SMES Courtesy of S. Zannella, Edison, Milan.
58 Silniki
59 MAGLEV.
Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć?
Nadprzewodniki wysokotemperaturowe. Zastosowania nadprzewodników starych i nowych. Koniec odkryć? 1 Główne nadprzewodniki Compound wysokotemperaturowe:t c T b liquid nitrogen Hg-1223 Tl-2223 Tl-1223 Bi-2223
Duży, mały i zerowy opór. Od czego zależy, czy materiał przewodzi prąd?
Duży, mały i zerowy opór Od czego zależy, czy materiał przewodzi prąd? 2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license. Page 1 Przewodnictwo
Nadprzewodniki. W takich materiałach kiedy nastąpi przepływ prądu może on płynąć nawet bez przyłożonego napięcia przez długi czas! )Ba 2. Tl 0.2.
Nadprzewodniki Pewna klasa materiałów wykazuje prawie zerową oporność (R=0) poniżej pewnej temperatury zwanej temperaturą krytyczną T c Większość przewodników wykazuje nadprzewodnictwo dopiero w temperaturze
Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych
LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach konwencjonalnych i topologicznych Tadeusz Domański Uniwersytet M. Curie-Skłodowskiej LTN - Lublin 29 XI 2018 r. Nadprzewodnictwo w materiałach
POLITECHNIKA GDAŃSKA NADPRZEWODNICTWO I EFEKT MEISSNERA
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA ENERGETYKI I APARATURY PRZEMYSŁOWEJ NADPRZEWODNICTWO I EFEKT MEISSNERA Katarzyna Mazur Inżynieria Mechaniczno-Medyczna Sem. 9 1. Przypomnienie istotnych
Pierwiastki nadprzewodzące
Pierwiastki nadprzewodzące http://www.magnet.fsu.edu/education/tutorials/magnetacademy/superconductivity101/fullarticle.html Materiały nadprzewodzące Rodzaj Materiał c (K) Uwagi Związki międzymetaliczne
Zamiast przewodnika z miedzi o bardzo dużych rozmiarach możemy zastosowad niewielki nadprzewodnik niobowo-tytanowy
Nadprzewodniki Nadprzewodnictwo Nadprzewodnictwo stan materiału polegający na zerowej rezystancji, jest osiągany w niektórych materiałach w niskiej temperaturze. Nadprzewodnictwo zostało wykryte w 1911
S. Baran - Podstawy fizyki materii skondensowanej Nadprzewodnictwo. Nadprzewodnictwo
Nadprzewodnictwo Definicja, odkrycie nadprzewodnictwo spadek oporu elektrycznego do zera poniżej charakterystycznej temperatury zwanej temperaturą krytyczną. Po raz pierwszy zaobserwował nadprzewodnictwo
NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli. miedziowo-lantanowym, w którym niektóre atomy lantanu były
FIZYKA I TECHNIKA NISKICH TEMPERATUR NADPRZEWODNICTWO NADPRZEWODNIKI WYSOKOTEMPERATUROWE (NWT) W roku 1986 Alex Muller i Georg Bednorz odkryli nadprzewodnictwo w złożonym tlenku La 2 CuO 4 (tlenku miedziowo-lantanowym,
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Anna Rutkowska IMM sem. 2 mgr
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie Anna Rutkowska IMM sem. 2 mgr Gdańsk, 2012 Spis treści: 1. Nadprzewodnictwo...3 2. Efekt Meissnera...5 2.1 Lewitacja...5 3. Zastosowanie...6 3.1
Nadprzewodniki wysokotemperaturowe. Joanna Mieczkowska
Nadprzewodniki wysokotemperaturowe Joanna Mieczkowska Zastosowanie nadprzewodnictwa na szeroką skalę, szczególnie do przesyłania energii na duże odległości, było dotychczas ograniczone z powodu konieczności
) (*#)$+$$ poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00
poniedziałki 13:30-15:00 wtorki 12:00-14:00 pitek 8:30-10:00 8 wykładów, 3 wiczenia: w, w, w, w, c, w, w, c, w, w, c(kolo) kolokwium na ostatnich cw. historia zerowy opór efekt Meissnera temperatura, pole
Nadprzewodnikowe zasobniki energii (SMES)
Nadprzewodnikowe zasobniki energii (SMES) Superconducting Magnetic Energy Storage dr hab. inŝ. Antoni Cieśla, prof. n. Wydział EAIiE Katedra Elektrotechniki i Elektroenergetyki Agenda wystąpienia: 1. Gromadzenie
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie.
Nadprzewodnictwo i efekt Meissnera oraz ich wykorzystanie. Aleksandra Galikowska IMM, sem.2, st.ii Spis treści 1. Wstęp, historia... 3 2. Nadprzewodnictwo... 4 3. Własności nadprzewodników... 5 3. Teoria
LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA
LEWITACJA MAGNETYCZNA Z WYKORZYSTANIEM ZJAWISKA NADPRZEWODNICTWA Prof. nz. dr hab. inż. Antoni Cieśla, AKADEMIA GÓRNICZO - HUTNICZA Wydział EAIiIB Katedra Elektrotechniki i Elektroenergetyki Agenda wykładu:
Wybrane zastosowania nadprzewodników wysokotemperaturowych
Wybrane zastosowania nadprzewodników wysokotemperaturowych Ryszard Pałka Department of Electrical Engineering West Pomeranian University of Technology Szczecin KETiI Zakres prezentacji 1. Wprowadzenie
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Lublin, 23 X 2012 r. Nadprzewodnictwo. - od badań podstawowych do zastosowań. Tadeusz Domański Instytut Fizyki UMCS
Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański Instytut Fizyki UMCS Lublin, 23 X 2012 r. Nadprzewodnictwo - od badań podstawowych do zastosowań Tadeusz Domański
Sprawozdanie z laboratorium inżynierii nowych materiałów
P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium inżynierii nowych materiałów Temat: Badanie podstawowych właściwości nadprzewodnika wysokotemperaturowego. Marcin Kowalski, Aleksandra
Instytutu Ceramiki i Materiałów Budowlanych
Instytutu Ceramiki i Materiałów Budowlanych Scientific Works of Institute of Ceramics and Building Materials Nr 27 (październik grudzień) Prace są indeksowane w BazTech i Index Copernicus ISSN 1899-3230
NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI PRZEWODNICTWO ELEKTRYCZNE METALI. rezystywność
rezystancja szczątkowa rezystywność NADPRZEWODNICTWO PRZEWODNICTWO ELEKTRYCZNE METALI Klasyczna Teoria Drudego (1900) nośnikami ładunku są elektrony swobodne podlegające rozkładowi oltzmanna, wszystkie
Nadprzewodniki: właściwości i zastosowania
Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania Tadeusz Domański Instytut Fizyki Uniwersytet M. Curie-Skłodowskiej Lublin, 21 września 2012 r. Nadprzewodniki: właściwości i zastosowania
Title: Otrzymywanie i właściwości skonsolidowanego nadprzewodnika MgB2
Title: Otrzymywanie i właściwości skonsolidowanego nadprzewodnika MgB2 Author: Natalia Orlińska Citation style: Orlińska Natalia. (2009). Otrzymywanie i właściwości skonsolidowanego nadprzewodnika MgB2.
Menu. Badające rozproszenie światła,
Menu Badające rozproszenie światła, Instrumenty badające pole magnetyczne Ziemi Pole magnetyczne Ziemi mierzy się za pomocą magnetometrów. Instrumenty badające pole magnetyczne Ziemi Rodzaje magnetometrów:»
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Różne dziwne przewodniki
Różne dziwne przewodniki czyli trzy po trzy o mechanizmach przewodzenia prądu elektrycznego Przewodniki elektronowe Metale Metale (zwane również przewodnikami) charakteryzują się tym, że elektrony ich
Pole magnetyczne Wykład LO Zgorzelec 13-01-2016
Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności
Karol Fijałkowski 1, Wojciech Grochala Wydział Chemii i ICM, Uniwersytet Warszawski Światowy kryzys energetyczny a nadprzewodniki absolutnie niezbędne absolutne zero oporności Wstęp W ostatnim czasie coraz
100 lat fizyki niskich temperatur i nadprzewodnictwa
100 lat fizyki niskich temperatur i nadprzewodnictwa Tadeusz Wasiutyński IFJ PAN 9 maja 2013 Wstęp teoria BCS teoria Ginzburga Landaua nowe nadprzewodniki wysokotemperaturowe co z tego mamy Heike Kamerlingh
ZASTOSOWANIE MONOLITYCZNYCH NADPRZEWODNIKÓW WYSOKOTEMPERATUROWYCH W MASZYNACH ELEKTRYCZNYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 62 Politechniki Wrocławskiej Nr 62 Studia i Materiały Nr 28 2008 monolityczne nadprzewodniki wysokotemperaturowe magnesy nadprzewodzące
30/01/2018. Wykład XII: Właściwości magnetyczne. Zachowanie materiału w polu magnetycznym znajduje zastosowanie w wielu materiałach funkcjonalnych
Wykład XII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Klasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp
Wykład XIII: Właściwości magnetyczne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład XIII: Właściwości magnetyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: Treść wykładu: 1. Wprowadzenie 2. Rodzaje magnetyzmu
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Techniki niskotemperaturowe w Inżynierii Mechaniczno Medycznej Zmiana własności ciał w temperaturach kriogenicznych Prowadzący: dr inż. Waldemar Targański Emilia
Podstawy fizyki wykład 4
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
PIERWIASTKI W UKŁADZIE OKRESOWYM
PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy
Wiązania. w świetle teorii kwantów fenomenologicznie
Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja
Natężenie prądu elektrycznego
Natężenie prądu elektrycznego Wymuszenie w przewodniku różnicy potencjałów powoduje przepływ ładunków elektrycznych. Powszechnie przyjmuje się, że przepływający prąd ma taki sam kierunek jak przepływ ładunków
BADANIA ELEKTROMAGNESÓW NADPRZEWODNIKOWYCH W PROCESIE ICH WYTWARZANIA I EKSPLOATACJI
INSTYTUT ELEKTROTECHNIKI Janusz KOZAK BADANIA ELEKTROMAGNESÓW NADPRZEWODNIKOWYCH W PROCESIE ICH WYTWARZANIA I EKSPLOATACJI Prace Instytutu Elektrotechniki zeszyt 265, 2014 SPIS TRE CI STRESZCZENIE... 9
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Nadpłynność i nadprzewodnictwo
Nadpłynność i nadprzewodnictwo Krzysztof Byczuk Instytut Fizyki Teoretycznej, Wydział Fizyki, Uniwersytet Warszawski 13 marzec 2019 www.fuw.edu.pl/ byczuk Tarcie, opór, dysypacja... pomaga... przeszkadza...
Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych
Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych Wstęp Podstawy modelu komórkowego Proces pobudzenia serca Wektor magnetyczny serca MoŜliwości diagnostyczne Wstęp Przepływający
Podstawy fizyki sezon 2 4. Pole magnetyczne 1
Podstawy fizyki sezon 2 4. Pole magnetyczne 1 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Pola magnetycznego
Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE
Wyznaczanie oporu elektrycznego właściwego przewodników
Wyznaczanie oporu elektrycznego właściwego przewodników Ćwiczenie nr 7 Wprowadzenie Natężenie prądu płynącego przez przewodnik zależy od przyłożonego napięcia U oraz jego oporu elektrycznego (rezystancji)
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Gazy kwantowe. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Cele Cele Wyznaczenie średniego obsadzenia średniej energii równania stanu dla nieodziałujących gazów kwantowych fermionowego (gaz elektronowy w ciele stałym) bozonowego (kondensaty)
ANALIZA ZAMROŻONEGO STRUMIENIA W NADPRZEWODNIKACH WYSOKOTEMPERATUROWYCH
Jacek SOSNOWSKI Daniel GAJDA ANALIZA ZAMROŻONEGO STRUMIENIA W NADPRZEWODNIKACH WYSOKOTEMPERATUROWYCH STRESZCZENIE Liczne zastosowania materiałów nadprzewodnikowych oparte są na wykorzystaniu ich podstawowej
cz. 1. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz. 1. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v F L Jeżeli na dodatni ładunek
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 27 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 2 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU
Podstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.
Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt
Zjawisko termoelektryczne
34 Zjawisko Peltiera polega na tym, że w obwodzie składającym się z różnych przewodników lub półprzewodników wytworzenie różnicy temperatur między złączami wywołuje przepływ prądu spowodowany różnicą potencjałów
Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych. Jacek Mostowicz
Materiały magnetycznie miękkie i ich zastosowanie w zmiennych polach magnetycznych Jacek Mostowicz Plan seminarium Wstęp Materiały magnetycznie miękkie Podstawowe pojęcia Prądy wirowe Lepkość magnetyczna
Spis treści. nadprzewodnictwo. Historia nadprzewodnictwa... Historia nadprzewodnictwa. Pierwsze osiagnięcia
Spis treści 1 Historia nadprzewodnictwa Pierwsze osiagnięcia dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 2 Wstęp Podstawowe własności Rodzaje nadprzewodnictwa
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.
Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,
ELEMENTY ELEKTRONICZNE
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Elektroniki ELEMENTY ELEKTRONICZNE dr inż. Piotr Dziurdzia paw. C-3,
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Coś niecoś o SQUID-ach
24 FOTON 78, Jesień 2002 Coś niecoś o SQUID-ach Michał Rams Instytut Fizyki UJ 1. Wstęp Wyraz SQUID jest skrótem od pełnej nazwy: Superconducting QUantum Interference Device. Superconducting oznacza, że
Nadprzewodnictwo. Eryk Buk. 29 października 2018 r.
29 października 2018 r. Plan seminarium Definicja i podstawowe właściwości nadprzewodników. Przykłady nadprzewodników.. Co to są nadprzewodniki? Pierwsza własność (Kamerlingh Onnes, 1911) Nadprzewodnik
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński
Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej
Techniki niskotemperaturowe w medycynie
Politechnika Gdańska Wydział Mechaniczny Katedra Energetyki i Aparatury Przemysłowej Zakład Termodynamiki, Chłodnictwa i Klimatyzacji Przedmiot: Techniki niskotemperaturowe w medycynie Temat: Zmiana własności
Konwersatorium 1. Zagadnienia na konwersatorium
Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują
dr inż. Zbigniew Szklarski
Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza v v L Jeżeli na dodatni ładunek q poruszający
Mikroskopia polowa. Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania. Bolesław AUGUSTYNIAK
Mikroskopia polowa Efekt tunelowy Historia odkryć Uwagi o tunelowaniu Zastosowane rozwiązania Bolesław AUGUSTYNIAK Efekt tunelowy Efekt kwantowy, którym tłumaczy się przenikanie elektronu w sposób niezgodny
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
3. Materiały stosowane do budowy maszyn elektrycznych
3. Materiały stosowane do budowy maszyn elektrycznych 3.1. Materiały na rdzenie magnetyczne Wymagania w stosunku do materiałów magnetycznych miękkich: - duża indukcja nasycenia, - łatwa magnasowalność
Ramka z prądem w jednorodnym polu magnetycznym
Ramka z prądem w jednorodnym polu magnetycznym Siła wypadkowa = 0 Wypadkowy moment siły: τ = w F + w ( ) F ( ) = 2 w F w τ = 2wF sinθ = IBl 2 sinθ = θ=90 o IBl 2 θ to kąt między wektorem w i wektorem F
Indukcja magnetyczna pola wokół przewodnika z prądem. dr inż. Romuald Kędzierski
Indukcja magnetyczna pola wokół przewodnika z prądem dr inż. Romuald Kędzierski Pole magnetyczne wokół pojedynczego przewodnika prostoliniowego Założenia wyjściowe: przez nieskończenie długi prostoliniowy
ANALIZA NUMERYCZNA POLA ELEKTROMAGNETYCZNEGO W TAŚMACH HTS Z UWZGLĘDNIENIEM ZJAWISKA HISTEREZY
ANALIZA NUMERYCZNA POLA ELEKTROMAGNETYCZNEGO W TAŚMACH HTS Z UWZGLĘDNIENIEM ZJAWISKA HISTEREZY Dariusz CZERWIŃSKI, Leszek JAROSZYŃSKI Politechnika Lubelska, Instytut Podstaw Elektrotechniki i Elektrotechnologii
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY
FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
MAGNETYZM. PRĄD PRZEMIENNY
Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Model przewodnictwa metali Elektrony przewodnictwa dla metalu tworzą tzw. gaz elektronowy Elektrony poruszają się chaotycznie (ruchy termiczne), ulegają zderzeniom z atomami sieci
UKŁAD OKRESOWY PIERWIASTKÓW
UKŁAD OKRESOWY PIERWIASTKÓW Michał Sędziwój (1566-1636) Alchemik Sędziwój - Jan Matejko Pierwiastki chemiczne p.n.e. Sb Sn Zn Pb Hg S Ag C Au Fe Cu (11)* do XVII w. As (1250 r.) P (1669 r.) (2) XVIII
Podstawy fizyki sezon 2 3. Prąd elektryczny
Podstawy fizyki sezon 2 3. Prąd elektryczny Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Prąd elektryczny
Badanie transformatora
Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.
Skonstruowanie litowo-deuterowego konwertera neutronów termicznych na neutrony prędkie o energii 14 MeV w reaktorze MARIA (Etap 14, 5.1.) Krzysztof Pytel, Rafał Prokopowicz Badanie wytrzymałości radiacyjnej
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
Teoria VSEPR. Jak przewidywac strukturę cząsteczki?
Teoria VSEPR Jak przewidywac strukturę cząsteczki? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie. Rozkład elektronów walencyjnych w cząsteczce (struktura Lewisa) stuktura
Prądy wirowe (ang. eddy currents)
Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko
Elektromagnetyzm. pole magnetyczne prądu elektrycznego
Elektromagnetyzm pole magnetyczne prądu elektrycznego Doświadczenie Oersteda (1820) 1.Jeśli przez przewodnik płynie prąd, to wokół tego przewodnika powstaje pole magnetyczne. 2.Obecność oraz kierunek linii
Siła magnetyczna działająca na przewodnik
Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach
ZADANIE 28. Wyznaczanie przewodnictwa cieplnego miedzi
ZADANIE 28 Wyznaczanie przewodnictwa cieplnego miedzi Wstęp Pomiędzy ciałami ogrzanymi do różnych temperatur zachodzi wymiana ciepła. Ciało o wyższej temperaturze traci ciepło, a ciało o niższej temperaturze
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład dwudziesty piąty 6 czerwca 2017 Z poprzedniego wykładu Prawo Curie i Curie-Weissa Model paramagnetyzmu
30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM PODSTAWOWY
30P4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV Magnetyzm POZIOM PODSTAWOWY Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod