INŻYNIERIA BIOMEDYCZNA. Wykład X

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "INŻYNIERIA BIOMEDYCZNA. Wykład X"

Transkrypt

1 INŻYNIERIA BIOMEDYCZNA Wykład X

2 Mechanika kwantowa opiera się na dwóch prawach Dualizm korpuskularno-falowy (de Broglie a) λ h p Zasada nieoznaczoności Heisenberga p x h/(4 ) Gęstość prawdopodobieństwa znalezienia elektronu: Kwadrat amplitudy fali de Broglie a l l

3 Liczby kwantowe Funkcję falową elektronu,, opisującą rozkład prawdopodobieństwa napotkania elektronu w jakimkolwiek atomie nazywamy: Zaczynamy od atomu wodoru: ORBITALEM ATOMOWYM Funkcja falowa (r,,f) zależy od trzech parametrów liczbowych n, l, m, co zanotujemy jako nlm (r,,f) Parametry te zwane liczbami kwantowymi muszą spełniać pewne warunki aby funkcja falowa miała sens: n= 1,2,3 l=0,1,2 (n-1) -l, -(l-1),...,l-1,l Główna liczba kantowa Orbitalna liczba kwantowa Magnetyczna liczba kwantowa

4 O liczbach kwantowych cd Warunki jakie muszą być spełnione aby rozwiązania równania Schrödingera (w części radialnej i kątowej) były funkcjami porządnymi: 1. Energia całkowita elektronu może przyjmować tylko wartości: h h 2π E πm e 2ε h n o 4 e 2 2 const 2 n 2. Moment pędu elektronu może przyjmować tylko wartości: M l(l 1)h 3. Moment pędu może mieć tylko określone orientacje w przestrzeni; składowa zetowa M z (w kierunku osi z) przyjmować może tylko wartości M z m h Kiedy funkcja jest porządna? n=1,2,3 Główna liczba kwantowa l=0,1,2 (n-1) Poboczna liczba kwantowa m: -l, -(l-1) 0 (l-1), l Magnetyczna liczba kwantowa ciągła, jednoznaczna, znikająca w nieskończoności

5 Energia całkowita E c w równaniu Schrödingera to H Ψ E Ψ E c = E kin + E pot c Energia kinetyczna związana z ruchem elektronu Energia potencjalna związana z energią oddziaływań elektrostatycznych i magnetycznych Spinowa liczba kwantowa m s przyjmuje dwie wartości: +1/2, -1/2 Spinorbital - funkcja falowa która zależy od czterech parametrów n, l, m, m s

6 ORBITALE i SPINOORBITALE nlms (r,,f) = nlm (r,,f) (s) SPINOORBITAL ORBITAL FUNKCJA SPINOWA Jednemu ORBITALOWI odpowiadają dwa SPINOORBITALE (m s = 1/2) Funkcja spinowa nie zawiera współrzędnych r,,f zatem nie ma wpływu na symetrię rozkładu prawdopodobieństwa napotkania elektronu w przestrzeni wokół jądra atomu Funkcja spinowa (s) wnosi tylko ok. 1% poprawkę do wartości liczbowych prawdopodobieństwa napotkania elektronu O rozkładzie prawdopodobieństwa napotkania elektronu w przestrzeni wokół jądra atomu decyduje postać orbitalu atomowego

7 Orbitale w atomie wieloelektronowym W tym przypadku układ, dla którego ma być rozwiązane równanie falowe jest skomplikowany: Energia potencjalna elektronu - oddziaływanie elektronu z jądrem atomowym oraz oddziaływanie z wszystkimi innymi elektronami Energia kinetyczna wynika wyłącznie z ruchu elektronów (jadro jest nieruchome) Liczba oddziaływań rośnie wraz ze wzrostem liczby elektronów: Z=1 1 Z-liczba atomowa Z=3 6 Z=10 55 Z= Można napisać równanie Schrödingera dla atomu wieloelektronowego ale nie można go rozwiązać

8 Przybliżenie jednoelektronowe Każdemu elektronowi w rozpatrywanym układzie wieloelektronowym przyporządkowuje się funkcję falową, tzw. jednoelektronową zwaną spinorbitalem. Funkcja ta zależy tylko od współrzędnych przestrzennych i od spinu jednego elektronu poruszającego się w polu elektrostatycznym wywołanym przez dodatni ładunek jądra i uśredniony ujemny ładunek pochodzący od pozostałych elektronów

9 Przybliżenie jednoelektronowe cd Energia atomu jest sumą energii elektronów Funkcja falowa całego atomu jest iloczynem wszystkich "jednoelektronowych" funkcji falowych Dla atomu wodoru o energii elektronu decyduje tylko główna liczba kwantowa n, natomiast w przypadku atomu wieloelektronowego energia elektronu zależy również od pobocznej liczby kwantowej l

10 Atom wodoru a atom wieloelektronowy W atomie wodoru podpowłoki o takiej samej wartości głównej liczby kwantowej n mają taką samą energię W atomie wieloektronowym poziom elektronowy rozszczepia się na l (odpowiadających danej liczbie n) poziomów blisko położonych siebie

11 Kolejność zapełniania orbitali ENERGIA Powłoki Podpowłoki

12 Kolejność zapełniania orbitali

13 Orbitale w atomie wieloelektronowym Stan każdego elektronu w atomie określa się w oparciu o znajomość 4 liczb (bo spin jest stały) - n, l, m i m s. Liczby te określają energię elektronu i jego jednoelektronowy orbital W stanie podstawowym atomu jego energia jest minimalna, czyli wszystkie elektrony mają minimalne (najniższe z możliwych) energie, Wszystkie orbitale, o takiej samej głównej liczbie kwantowej n tworzą powłokę elektronową, a orbitale o takiej samej wartości liczb n i l - podpowłokę elektronową

14 Struktura elektronowa atomu-zapis Dwa sposoby zapisywania konfiguracji Dla atomu helu Z=2 1s 2 Liczba elektronów Wartość n Wartość l Dla atomu helu Z=2 1s 2 Pierwszy elektron opisany jest poprzez: n=1, l=0, m=0, m s =+1/2 Drugi elektron opisany jest poprzez: n=1, l=0, m=0, m s =-1/ s Strzałki wskazują na spin elektronu

15 Reguły zapełniania powłok elektronowych 1. W stanie podstawowym poziomy energetyczne są obsadzane według wzrastającej energii 2. W danym atomie nie mogą występować dwa elektrony opisywane przez identyczną czwórkę liczb n, l, m, m s (ZAKAZ PAULIEGO) 3. Wypadkowy spin elektronowy w atomie przyjmuje maksymalną wartość (REGUŁA HUNDA)- Atom w stanie podstawowym przyjmuje konfigurację o największej liczbie niesparownych elektronów

16 Konfiguracja elektronowa pierwiastków Lit, Li, Z=3 1s 2 2s 1 Beryl,Be, Z=4 1s 2 2s 2 Bor, B, Z=5 1s 2 2s 2 2p 1 3s 3p 3s 3p 2s 2p 2s 2p 1s 1s

17 Konfiguracja elektronowa pierwiastków 3s Węgiel, C, Z=6 1s 2 2s 2 2p 2 3p Konfiguracja węgla jest przykładem stosowania reguły Hunda 3s Azot, N, Z=7 1s 2 2s 2 2p 3 3p 2s 1s 2p A dlaczego nie tak? 2s 1s 2p

18 Konfiguracja elektronowa pierwiastków Tlen, O, Z=8 1s 2 2s 2 2p 4 Fluor, F, Z=9 1s 2 2s 2 2p 5 Neon, Ne, Z=10 1s 2 2s 2 2p 6 3s 3p 3s 3p 3s 3p 2s 2p 2s 2p 2s 2p 1s 1s 1s Uwaga:2-ga powłoka została zapełniona

19 Konfiguracja elektronowa pierwiastków Im wyższa jest energia elektronów, tym bardziej maksimum prawdopodobieństwa ich napotkania oddala się od jadra Elektrony w atomie dzielimy na dwie grupy: Rdzeń atomowy Elektrony walencyjne Ne: 1s 2 2s 2 2p

20 Konfiguracja elektronowa pierwiastków Dla neonu orbitale n=1 i n=2 są całkowicie zapełnione (10e ) Ne: 1s 2 2s 2 2p 6 elektrony rdzenia - elektrony wewnętrznych poziomów kwantowych w atomie elektrony walencyjne - elektrony powłoki zewnętrznej atomów pierwiastków grup głównych (W atomach pierwiastków bloków d i f są to również elektrony odpowiednich powłok d oraz d i f). Elektrony walencyjne podczas reakcji chemicznej biorą udział w tworzeniu wiązań chemicznych. Mają najwyższą energię i są słabo związane z atomem. Mają wpływ na właściwości chemiczne pierwiastków

21 Konfiguracja elektronowa pierwiastków Zapis skrócony Na: 1s 2 2s 2 2p 6 3s 1 Następny pierwiastek Na ma 11 elektronów: pierwszych 10 e zajmuje powłoki 1s, 2s i 2p odpowiednio, 11-ty e musi zająć miejsce na powłoce n=3, 3s Na: 1s 2 2s 2 2p 6 3s 1 ( Ile jest elektronów walencyjnych?) Konfiguracja dla Na: 1s 2 2s 2 2p 6 3s 1 czyli skrótowo [Ne]3s 1 Ne Elektrony rdzenia Jedynie konfigurację elektronową gazów szlachetnych można zastosować do skróconego zapisu (wybieramy bezpośrednio poprzedzający gaz szlachetny)

22 Konfiguracja elektronowa jonów Tworzenie kationu: usunięcie 1e (lub więcej e ) z podpowłoki o najwyższym n (lub najwyższym n+l) P [Ne] 3s 2 3p 3-3e- P 3+ [Ne] 3s 2 3p 0 3s 3p 3s 3p 2s 2p 2s 2p 1s 1s

23 Konfiguracja elektronowa jonów (2) Jony metali przejściowych: usuwamy elektrony z powłoki ns a następnie elektrony z powłoki (n-1)d Fe [Ar] 4s 2 3d 6 oddaje 2 e Fe 2+ [Ar] 4s 0 3d 6 Fe Fe 2+ 4s 3d 4s 3d E 4s ~ E 3d dokładna energia orbitali zależy od całej konfiguracji 4s Fe 3+ 3d

24 Układ okresowy pierwiastków Układ okresowy pierwiastków - zestawienie wszystkich pierwiastków chemicznych według ich rosnącej liczby atomowej, grupujące pierwiastki według ich cyklicznie powtarzających się podobieństw Liczba atomowa Z: liczba protonów w jądrze danego atomu. Liczba masowa A: liczbę nukleonów (czyli protonów i neutronów) w jądrze atomu ( nuklidzie) danego izotopu danego pierwiastka X. A X 16 Z 8O Z faktu, że liczba atomowa określa liczbę protonów występujących w jądrze atomu oraz liczbę elektronów atomu w stanie obojętnym (która ma decydujący wpływ na ich własności chemiczne) wynika prawo okresowości Mendelejewa- właściwości pierwiastków są periodycznie zależne od ich mas atomowych

25 Układ okresowy (2)

26 Konfiguracje elektronowe pierwiastków (cd) Numer okresu: Liczba całkowicie lub częściowo zapełnionych powłok elektronowych Numer grupy: Konfiguracja elektronowa ostatniej powłoki (powłoki walencyjnej) s 1 s 2 p 1 p 2 p 3 p 4 p 5 p 6 d 1 -d 10 Blok elektronów s Blok elektronów p Blok elektronów d Blok elektronów f f 1 -f

27 Anomalne konfiguracje elektronowe Wanad V: 1s 2 2s 2 p 6 3s 2 p 6 d 3 4s 2 Chrom Cr: powinno być 1s 2 2s 2 p 6 3s 2 p 6 d 4 4s 2 a jest 1s 2 2s 2 p 6 3s 2 p 6 d 5 4s 1 Okres Z Pierwia -stek konfiguracja 4 24 Cr [Ar]4s 1 3d Cu [Ar]4s 1 3d Nb [Kr]5s 1 3d Mo [Kr]5s 1 3d Ru [Kr]5s 1 3d Rh Kr]5s 1 3d Pd [Kr]4d Ag [Kr]5s 1 3d La [Xe]6s 2 5d Ce [Xe]6s 2 4f 1 5d Gd [Xe]6s 2 4f 7 5d Pt [Xe]6s 2 4f 14 5d

28 Trendy układu okresowego Wiele zmian w własnościach fizycznych i chemicznych można wyjaśnić w oparciu o konfigurację elektronową atomów: promień atomowy promień jonowy energia jonizacji powinowactwo elektronowe

29 Promień atomowy W poszczególnych okresach największy promień atomowy wykazują pierwiastki I grupy. Ze wzrostem liczby atomowej Z w danym okresie promień atomowy maleje a w ramach grupy rośnie Im większy ładunek jadra tym silniejsze przyciąganie elektronów wszystkich powłok przy tej samej ilości powłok Wzrost ilości powłok decyduje o wzroście promienia atomowego

30 Promienie jonowe Promień jonowy - to odległość najbardziej oddalonych elektronów od jadra atomu w przypadku jonów utworzonych z jednego atomu, lub też od geometrycznego centrum jonów złożonych z większej liczby atomów Kationy: Aniony: Li, 152 pm 3e, 3p F, 64 pm 9e, 9p + Li +, 60 pm 2e, 3p - F -, 136 pm 10e, 9p Promienie jonowe kationów są mniejsze od promieni atomu od którego pochodzą. Im większy ładunek dodatni ma kation, tym jego promień jest mniejszy Oddziaływanie elektron/proton rośnie to promień jonu maleje Promienie jonowe anionów są większe niż atom od którego pochodzą. Im większy ładunek ujemny posiada dany anion, tym jego promień jest większy. Oddziaływanie elektron/proton maleje to promień jonu rośnie

31 Promienie jonowe cd KATIONY ANIONY Promienie jonowe (59 pm) (207 pm) Takie same trendy w jak w promieniach atomowych

32 Energia jonizacji i elektroujemność Dlaczego metale oddają elektrony w reakcjach? Dlaczego magnez tworzy jony Mg 2+ a nie Mg 3+? Dlaczego niemetale pobierają elektrony?.związane z energią jonizacji i elektroujemnością

33 Energia jonizacji Energia jonizacji-energia potrzebna do usunięcia elektronu z atomu pierwiastka Mg (g) atom [Ne]2s 2 Mg (g) Mg + (g) + e kj [Ne]2s 1 Mg 3+ Mg + (g) Mg 2+ (g) + e kj [Ne]2s 0 Mg 2+ (g) Mg 3+ (g) + e kj [He]2s 2 2p 5 Koszt energetyczny jest bardzo wysoki w przypadku usuwania elektronów z wewnętrznych powłok Stopień utlenienia = numer grupy-10 Mg 2+ Mg + Mg

34 Energia jonizacji O energii jonizacji (przede wszystkim) decyduje: odległość tego elektronu od jadra: im mniejsza odległość elektronu od jadra tym większa energia potrzebna do jego usunięcia (przy innych czynnikach bez zmian) efektywny ładunek jądra - to efektywny ładunek elektronu, "odczuwany" przez jądro - wynikający z jego nominalnego ładunku e oraz całkowitego ładunku wszystkich elektronów w atomie, który ekranuje działanie jądra na elektrony walencyjne r - to odległość między elektronami walencyjnymi (tj. znajdującymi się na najbardziej zewnętrznej powłoce w atomie) a jądrem atomu F e r Z 2 ef e Z ef- efektywny ładunek jądra

35 Energia jonizacji cd. W poszczególnych okresach najniższe wartości pierwszej energii jonizacji występują dla pierwiastków o największym promieniu atomowym W obrębie poszczególnych grup układu okresowego następuje spadek energii jonizacji ze wzrostem liczby atomowej Ponieważ promień atomowy (jonowy) rośnie, zdolność redukcji generalnie rośnie w ramach grupy (np. Li, Na, K)

36 Elektroujemność, Elektroujemność jest to zdolność atomu do przyciągania elektronu. Elektroujemność wzrasta w okresach od metali do niemetali. Wzrost ten jest najsilniejszy wśród grup głównych. W grupach głównych elektroujemność obniża się przy przejściu od pierwiastków lżejszych do cięższych Różnice pomiędzy elektroujemnością pierwiastków mają wpływ na rodzaj wiązania pomiędzy nimi Ale o tym będziemy mówić przy okazji wiązań

37 Energia jonizacji Elektroujemność Układ okresowy a własności związków chemicznych W głównych grupach metale stają się bardziej reaktywne jeżeli idziemy w dół Reaktywność niemetali wzrasta jeżeli idziemy w górę Metale przejściowe stają się mniej reaktywne jeżeli idziemy w dół Energia jonizacji Promień atomowy Elektroujemność Promień atomowy

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Konwersatorium 1. Zagadnienia na konwersatorium

Konwersatorium 1. Zagadnienia na konwersatorium Konwersatorium 1 Zagadnienia na konwersatorium 1. Omów reguły zapełniania powłok elektronowych. 2. Podaj konfiguracje elektronowe dla atomów Cu, Ag, Au, Pd, Pt, Cr, Mo, W. 3. Wyjaśnij dlaczego występują

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Wykład 16: Atomy wieloelektronowe

Wykład 16: Atomy wieloelektronowe Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony

I. Budowa atomu i model atomu wg. Bohra. 1. Atom - najmniejsza część pierwiastka zachowująca jego właściwości. Jądro atomowe - protony i neutrony Materiał powtórzeniowy do sprawdzianów - konfiguracja elektronowa, elektrony walencyjne, współczesny układ pierwiastków chemicznych, przykładowe zadania z rozwiązaniami. I. Budowa atomu i model atomu wg.

Bardziej szczegółowo

Wykład 3: Atomy wieloelektronowe

Wykład 3: Atomy wieloelektronowe Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

CHEMIA WARTA POZNANIA

CHEMIA WARTA POZNANIA Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Wydział Chemii UAM Poznań 2011 Część I Atom jest najmniejszą częścią pierwiastka chemicznego, która zachowuje jego właściwości chemiczne

Bardziej szczegółowo

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych

b) Pierwiastek E tworzy tlenek o wzorze EO 2 i wodorek typu EH 4, a elektrony w jego atomie rozmieszczone są na dwóch powłokach elektronowych 1. Ustal jakich trzech różnych pierwiastków dotyczą podane informacje. Zapisz ich symbole a) W przestrzeni wokółjądrowej dwuujemnego jonu tego pierwiastka znajduje się 18 e. b) Pierwiastek E tworzy tlenek

Bardziej szczegółowo

26 Okresowy układ pierwiastków

26 Okresowy układ pierwiastków 26 Okresowy układ pierwiastków Przyjmując procedurę Hartree ego otrzymujemy poziomy numerowane, jak w atomie wodoru, liczbami kwantowymi (n, l, m) z tym, że degeneracja ze względu na l na ogół już nie

Bardziej szczegółowo

Chemia Ogólna wykład 1

Chemia Ogólna wykład 1 Chemia Ogólna wykład 1 Materia związki chemiczne cząsteczka http://scholaris.pl/ obojętne elektrycznie indywiduum chemiczne, złożone z więcej niż jednego atomu, które są ze sobą trwale połączone wiązaniami

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

Budowa atomu. Izotopy

Budowa atomu. Izotopy Budowa atomu. Izotopy Zadanie. atomu lub jonu Fe 3+ atomowa Z 9 masowa A Liczba protonów elektronów neutronów 64 35 35 36 Konfiguracja elektronowa Zadanie 2. Atom pewnego pierwiastka chemicznego o masie

Bardziej szczegółowo

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3

Liczby kwantowe n, l, m l = 0 l =1 l = 2 l = 3 Liczby kwantowe Rozwiązaniem równania Schrödingera są pewne funkcje własne, które można scharakteryzować przy pomocy zestawu trzech liczb kwantowych n, l, m. Liczby kwantowe nie mogą być dowolne, muszą

Bardziej szczegółowo

Układ okresowy. Przewidywania teorii kwantowej

Układ okresowy. Przewidywania teorii kwantowej Przewidywania teorii kwantowej 1 Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Anna Grych Test z budowy atomu i wiązań chemicznych

Anna Grych Test z budowy atomu i wiązań chemicznych Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają wątpliwości,

Bardziej szczegółowo

Wrocław dn. 23 listopada 2005 roku

Wrocław dn. 23 listopada 2005 roku Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 23 listopada 2005 roku Temat lekcji: Elektroujemność. + kartkówka z układu okresowego Cel ogólny lekcji:

Bardziej szczegółowo

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych

Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość

Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Budowa atomu, układ okresowy i promieniotwórczość Monika Gałkiewicz Zad. 1 () Przedstaw pełną konfigurację elektronową atomu pierwiastka

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u]

3. Jaka jest masa atomowa pierwiastka E w następujących związkach? Który to pierwiastek? EO o masie cząsteczkowej 28 [u] 1. Masa cząsteczkowa tlenku dwuwartościowego metalu wynosi 56 [u]. Masa atomowa tlenu wynosi 16 [u]. Ustal jaki to metal i podaj jego nazwę. Napisz wzór sumaryczny tego tlenku. 2. Ile razy masa atomowa

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:

Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń: Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A)

Opracowała: mgr Agata Wiśniewska PRZYKŁADOWE SPRAWDZIANY WIADOMOŚCI l UMIEJĘTNOŚCI Współczesny model budowy atomu (wersja A) PRZYKŁADOW SPRAWDZIANY WIADOMOŚCI l UMIJĘTNOŚCI Współczesny model budowy atomu (wersja A) 1. nuklid A. Zbiór atomów o tej samej wartości liczby atomowej. B. Nazwa elektrycznie obojętnej cząstki składowej

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

PIERWIASTKI W UKŁADZIE OKRESOWYM

PIERWIASTKI W UKŁADZIE OKRESOWYM PIERWIASTKI W UKŁADZIE OKRESOWYM 1 Układ okresowy Co można odczytać z układu okresowego? - konfigurację elektronową - podział na bloki - podział na grupy i okresy - podział na metale i niemetale - trendy

Bardziej szczegółowo

Sugerowana literatura: Podręczniki chemii ogólnej i/lub nieorganicznej Encyklopedie i leksykony

Sugerowana literatura: Podręczniki chemii ogólnej i/lub nieorganicznej Encyklopedie i leksykony 1. Przemiany materii i reguły rządzące zapisywaniem równań reakcji chemicznych. - przemian fizyczna a przemiana chemiczna - rodzaje reakcji chemicznych (reakcje syntezy, analizy, rozkładu ; reakcje egzoi

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Wartość n 1 2 3 4 5 6 Symbol literowy K L M N O P

Wartość n 1 2 3 4 5 6 Symbol literowy K L M N O P 3.4 Liczby kwantowe Funkcja falowa jest wyrażeniem matematycznym, które opisuje elektron jako cząstkę o właściwościach falowych a to oznacza, że każdemu z elektronów w atomie możemy przyporządkować jedną

Bardziej szczegółowo

Wewnętrzna budowa materii

Wewnętrzna budowa materii Atom i układ okresowy Wewnętrzna budowa materii Atom jest zbudowany z jądra atomowego oraz krążących wokół niego elektronów. Na jądro atomowe składają się protony oraz neutrony, zwane wspólnie nukleonami.

Bardziej szczegółowo

Układy wieloelektronowe

Układy wieloelektronowe Układy wieloelektronowe spin cząstki nierozróżnialność cząstek a symetria funkcji falowej fermiony i bozony przybliżenie jednoelektonowe wyznacznik Slatera konfiguracje elektronowe atomów ciało posiadające

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Modelowanie zjawisk fizycznych (struktury molekularnej, procesów chemicznych i układów biologicznych)

Modelowanie zjawisk fizycznych (struktury molekularnej, procesów chemicznych i układów biologicznych) Modelowanie zjawisk fizycznych (struktury molekularnej, procesów chemicznych i układów biologicznych) Dr inż. Marta Łabuda Politechnika Gdańska Katedra Fizyki Teoretycznej i Informatyki Kwantowej p. 409

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

PRAWO OKRESOWOŚCI. 1.131. Liczba co najmniej częściowo obsadzonych powłok elektronowych decyduje o przynależności pierwiastka

PRAWO OKRESOWOŚCI. 1.131. Liczba co najmniej częściowo obsadzonych powłok elektronowych decyduje o przynależności pierwiastka PRAWO OKRESOWOŚCI 1.125. D. Mendelejew sformułował swoje prawo w następujący sposób: Właściwości fizyczne i chemiczne pierwiastków zmieniają się okresowo w zależności od A) liczby protonów w jądrze atomowym.

Bardziej szczegółowo

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa

Widmo sodu, serie. p główna s- ostra d rozmyta f -podstawowa Widmo sodu, serie p główna s- ostra d rozmyta f -podstawowa Przejścia dozwolone w Na Reguły wyboru: l =± 1 Diagram Grotriana dla sodu, z lewej strony poziomy energetyczne wodoru; należy zwrócić uwagę,

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Atomy wieloelektronowe i cząsteczki

Atomy wieloelektronowe i cząsteczki Atomy wieloelektronowe i cząsteczki 1 Atomy wieloelektronowe Wodór ma liczbę atomową Z=1 i jest prostym atomem. Zawiera tylko jeden elektron i jeden proton stąd potencjał opisuje oddziaływanie kulombowskie

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

Okresowość właściwości chemicznych pierwiastków. Układ okresowy pierwiastków. 1. Konfiguracje elektronowe pierwiastków

Okresowość właściwości chemicznych pierwiastków. Układ okresowy pierwiastków. 1. Konfiguracje elektronowe pierwiastków Układ okresowy pierwiastków Okresowość właściwości chemicznych pierwiastków 1. Konfiguracje elektronowe pierwiastków. Konfiguracje a układ okresowy 3. Budowa układu okresowego 4. Historyczny rozwój układu

Bardziej szczegółowo

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra

CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna. Model atomu Bohra CHEMIA LEKCJA 1. Budowa atomu, Izotopy Promieniotwórczość naturalna i sztuczna Model atomu Bohra SPIS TREŚCI: 1. Modele budowy atomu Thomsona, Rutherforda i Bohra 2. Budowa atomu 3. Liczba atomowa a liczba

Bardziej szczegółowo

Dlaczego sacharoza (cukier trzcinowy) topi się w temperaturze 185 C, podczas

Dlaczego sacharoza (cukier trzcinowy) topi się w temperaturze 185 C, podczas 1 Wiązania chemiczne i zjawisko izomerii Dlaczego sacharoza (cukier trzcinowy) topi się w temperaturze 185 C, podczas gdy chlorek sodowy (sól kuchenna) topi się w znacznie wyższej temperaturze, bo w 801

Bardziej szczegółowo

Wykład przygotowany w oparciu o podręczniki:

Wykład przygotowany w oparciu o podręczniki: Slajd 1 Wykład przygotowany w oparciu o podręczniki: Organic Chemistry 4 th Edition Paula Yurkanis Bruice Slajd 2 Struktura elektronowa wiązanie chemiczne Kwasy i zasady Slajd 3 Chemia organiczna Związki

Bardziej szczegółowo

1. Budowa atomu. Układ okresowy pierwiastków chemicznych

1. Budowa atomu. Układ okresowy pierwiastków chemicznych Wymagania programowe z chemii na poszczególne oceny IV etap edukacyjny przygotowane na podstawie treści zawartych w podstawie programowej, programie nauczania oraz w części 1. podręcznika dla liceum ogólnokształcącego

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Zadanie 1. (1 pkt). Informacja do zada 2. i 3. Zadanie 2. (1 pkt) { Zadania 2., 3. i 4 s dla poziomu rozszerzonego} zania zania Zadanie 3.

Zadanie 1. (1 pkt). Informacja do zada 2. i 3. Zadanie 2. (1 pkt) { Zadania 2., 3. i 4 s dla poziomu rozszerzonego} zania zania Zadanie 3. 2. ELEKTRONY W ATOMACH I CZĄSTECZKACH. A1 - POZIOM PODSTAWOWY. Zadanie 1. (1 pkt). Konfigurację elektronową 1s 2 2s 2 2p 6 3s 2 3p 6 mają atomy i jony: A. Mg 2+, Cl -, K +, B. Ar, S 2-, K +, C. Ar, Na

Bardziej szczegółowo

Wewnętrzna budowa materii - zadania

Wewnętrzna budowa materii - zadania Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada

Bardziej szczegółowo

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u

E e l kt k r t o r n o ow o a w a s t s r t u r kt k u t ra r a at a o t m o u Elektronowa struktura atomu Anna Pietnoczka BUDOWA ATOMU CZĄSTKA SYMBOL WYSTĘPOWANIE MASA ŁADUNEK ELEKTRYCZNY PROTON p + jądroatomowe około 1 u + 1 NEUTRON n 0 jądroatomowe około 1u Brak ELEKTRON e - powłoki

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Test z chemii w zakresie programu szkoły średniej (2006/2007)

Test z chemii w zakresie programu szkoły średniej (2006/2007) Test z chemii w zakresie programu szkoły średniej (2006/2007) 1.Któremu z podanych zjawisk towarzyszy reakcja chemiczna: a) rozpuszczanie cukru w wodzie b) rozpuszczanie dwutlenku węgla w wodzie c) rozpuszczanie

Bardziej szczegółowo

Wykład FIZYKA II. 13. Fizyka atomowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 13. Fizyka atomowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 13. Fizyka atomowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ ZASADA PAULIEGO Układ okresowy pierwiastków lub jakiekolwiek

Bardziej szczegółowo

Wykład Atomy wieloelektronowe, układ okresowy pierwiastków.

Wykład Atomy wieloelektronowe, układ okresowy pierwiastków. Wykład 36 36. Atomy wieloelektronowe, układ okresowy pierwiastków. Fizycy badający strukturę atomów wieloelektronowych starali się odpowiedzieć na fundamentalne pytanie, dlaczego wszystkie elektrony w

Bardziej szczegółowo

RJC. Wiązania Chemiczne & Slides 1 to 39

RJC. Wiązania Chemiczne & Slides 1 to 39 Wiązania Chemiczne & Struktura Cząsteczki Teoria Orbitali & ybrydyzacja Slides 1 to 39 Układ okresowy pierwiastków Siły występujące w cząsteczce związku organicznego Atomy w cząsteczce związku organicznego

Bardziej szczegółowo

Jądrowy model atomu. 2. Budowa atomu. Model jądra atomowego Helu

Jądrowy model atomu. 2. Budowa atomu. Model jądra atomowego Helu 0--6. Budowa atomu.. Jądrowy model atomu.. Sfera elektronowa w atomach.. Liczby kwantowe i orbitale.. Konfiguracje elektronowe neutron proton Model jądra atomowego Helu nukleony... Jądrowy model atomu

Bardziej szczegółowo

BUDOWA ATOMU cd. MECHANIKA KWANTOWA

BUDOWA ATOMU cd. MECHANIKA KWANTOWA BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Układ okresowy pierwiastków

Układ okresowy pierwiastków strona 1/8 Układ okresowy pierwiastków Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Teoria atomistyczno-cząsteczkowa, nieciągłość budowy materii. Układ okresowy pierwiastków

Bardziej szczegółowo

Poziomy energetyczne powłok i podpowłok elektronowych pierwiastków

Poziomy energetyczne powłok i podpowłok elektronowych pierwiastków Jeżeli zostało dowiedzione, że własności pierwiastków zależą od wartości liczby atomowej Z, to w kolejnym pytaniu możemy zapytać się w jaki sposób konfiguracja elektronowa pierwiastków decyduje o położeniu

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Budowa atomu. Wiązania chemiczne

Budowa atomu. Wiązania chemiczne strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i

Bardziej szczegółowo

7. Współczesny obraz atomu

7. Współczesny obraz atomu Granice7 7. Współczesny obraz atomu 7.1. Kwantowo-mechaniczny obraz atomu wodoru [1] Podstawy falowego modelu atomu zgodnego z faktami obserwowanymi w przyrodzie stworzył Erwin Schrődinger. Sformułował

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych

1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 i 2. Struktura elektronowa atomów, tworzenie wiązań chemicznych 1 1.1. Struktura elektronowa atomów Rozkład elektronów na pierwszych czterech powłokach elektronowych 1. powłoka 2. powłoka 3. powłoka

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

Reakcje utleniania i redukcji

Reakcje utleniania i redukcji Reakcje utleniania i redukcji Reguły ustalania stopni utlenienia 1. Pierwiastki w stanie wolnym (nie związane z atomem (atomami) innego pierwiastka ma stopień utlenienia równy (zero) 0 ; 0 Cu; 0 H 2 ;

Bardziej szczegółowo

Na rysunku przedstawiono fragment układu okresowego pierwiastków.

Na rysunku przedstawiono fragment układu okresowego pierwiastków. Na rysunku przedstawiono fragment układu okresowego pierwiastków. Zadanie 1 (0 1) W poniższych zdaniach podano informacje o pierwiastkach i ich tlenkach. Które to tlenki? Wybierz je spośród podanych A

Bardziej szczegółowo

INŻYNIERIA BIOMEDYCZNA. Wykład IX

INŻYNIERIA BIOMEDYCZNA. Wykład IX INŻYNIERIA BIOMEDYCZNA Wykład IX 1 PLAN Fizyka około 1900 roku Promieniowanie elektromagnetyczne Natura materii Równanie Schrödingera Struktura elektronowa atomu Oryginalne dokumenty nie pozostawiają wątpliwości,

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

CHEMIA OGÓLNA (wykład)

CHEMIA OGÓLNA (wykład) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW I r. EiP (Technologia Chemiczna) CHEMIA OGÓLNA (wykład) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4 IV p., p. 424 Tel. 12 617 46 36 email: czepir@agh.edu.pl

Bardziej szczegółowo

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut

Szkolny konkurs chemiczny Grupa B. Czas pracy 80 minut Szkolny konkurs chemiczny Grupa B Czas pracy 80 minut Piła 1 czerwca 2017 1 Zadanie 1. (0 3) Z konfiguracji elektronowej atomu (w stanie podstawowym) pierwiastka X wynika, że w tym atomie: elektrony rozmieszczone

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Wiązania. w świetle teorii kwantów fenomenologicznie

Wiązania. w świetle teorii kwantów fenomenologicznie Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja

Bardziej szczegółowo

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj.

Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tematy i zakres treści z chemii - zakres rozszerzony, dla klas 2 LO2 i 3 TZA/archt. kraj. Tytuł i numer rozdziału w podręczniku Nr lekcji Temat lekcji Szkło i sprzęt laboratoryjny 1. Pracownia chemiczna.

Bardziej szczegółowo

Chemia Nieorganiczna I (3.3.PBN.CHE108), konwersatorium Chemia, I stopień, II r., semestr 4. Lista 1.

Chemia Nieorganiczna I (3.3.PBN.CHE108), konwersatorium Chemia, I stopień, II r., semestr 4. Lista 1. Lista 1. 1. Omów dualny charakter elektronów. Podaj i omów fakty za i przeciw falowej naturze.. Co to jest radialna funkcji rozkładu? Podaj wykres tej funkcji dla orbitali 1s, s, 3s, p, 3p i 3d w atomie

Bardziej szczegółowo

Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem

Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem Hospitacja diagnozująca Źródła informacji chemicznej Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem Opracowała: mgr Lilla Zmuda Matyja Arkusz Hospitacji Diagnozującej nr

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I ... ... czas trwania: 90 min Nazwa szkoły V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I...... Imię i nazwisko ucznia ilość pkt.... czas trwania: 90 min Nazwa szkoły... maksymalna ilość punk. 33 Imię

Bardziej szczegółowo

2

2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ZADANIA I PROBLEMY 1). Chlor naturalny jest mieszaniną dwóch izotopów o liczbach masowych 35 i 37, a eksperymentalnie wyznaczona masa atomowa chloru wynosi

Bardziej szczegółowo