Rotacje i drgania czasteczek

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rotacje i drgania czasteczek"

Transkrypt

1 Rotacje i drgania czasteczek wieloatomowych Gdy znamy powierzchnie energii potencjalnej V( R 1, R 2,..., R N ) to możemy obliczyć poziomy energetyczne czasteczki. Poziomy te sa w ogólności efektem: rotacji moleku ly jako ca lości drgań o ma lej amplitudzie rotacji wewn etrznej - swobodnej lub hamowanej tunelowania drgań o dużej amplitudzie (drgań van der Waalsa) Przejścia pomiedzy tymi poziomami obserwujemy w spektroskopii: podczerwień wibracje terahertz (submillimeter) rotacje, drgania o dużej amplitudzie) mikrofalowa rotacje, tunelowanie Przejścia te zachodza pomiedzy wartościami w lasnymi Hamiltonianu dla ruchu jader: Ĥ = 1 N 1 R 2 m i + V( R 1, R 2,..., R N ) i gdzie m i to masa jadra i. Zak ladamy tu przybliżenie Borna-Oppenheimera.

2 Rotacje i drgania czasteczek dwieloatomowych, c.d. Dla czasteczek wieloatomowych nie da sie ściśle odseparować rotacji i wibracji Jest to możliwe tylko w przybliżeniu (czesto bardzo dobrym) dla tzw. czasteczek sztywnych takich jak: woda ditlenek w egla metan etylen benzen Rotacje opisujemy wtedy jako rotacje cia la sztywnego (baka odpowiedniego typu). Wibracje opisujemy jako drgania a ma lej amplitudzie wokól rotujacych po lożeń równowagi. Energie ca lkowita przybliżamy wtedy przez sume energii rotacji i wibracji Dla czasteczek niesztywnych (floppy molecules), takich jak: dwumetyloacetylen propan amoniak etanol dimer wody przybliżenie takie nie dzia la i każdy przypadek trzeba rozważać oddzielnie. Teoria ruchu jader takich moleku l jeszcze sie rozwija i nie bedziemy sie nia tu zajmować ponieważ: Brak jest komercjyjnych programów umożliwjaj acych obliczenie widma rowibracyjnego takich moleku l.

3 Rotacje czasteczek wieloatomowych Klasycznie rotacje bry ly sztywnej opisujemy przez podanie wektora predkości katowej ω takiego, że predkość v i i-tej czastki (jadra atomowego) dana jest wzorem: v i = ω R i Moment pedu bry ly dany jest wówczas wzorem N N L = R i (m i v i ) = m i R i ( ω R i ) = II ω, gdzie II jest macierza (tensora) momentu bezw ladności: i m i (Yi 2 + Zi 2) i m i X i Y i i m i X i, Z i II = i m i Y i X i i m i (Xi 2 + Z2 i ) i m i Y i Z i i m i Z i X i i m i Z i Y i i m i (Xi 2 + Y i 2) Macierz II jest symetryczna, np. II XY =II Y X. W uk ldzie wspó lrzednych zwiazanych z rotujac a moleku ly II nie zależy od czasu. II można w tym uk ladzie wspó lrzednych zdiagonalizować.

4 Rotacje czasteczek wieloatomowych, c.d. Jak każda macierz symetryczna macierz II można zdiagonalizować. W nowym uk ladzie wspó lrzednych, też na sta le zwiazanym z moleku l a, macierz ta ma postać: I A 0 0 II = 0 I B I C gdzie I A, I B, i I C sa to tzw. g lówne momenty bezw ladności czasteczki. Wektory w lasne A, B, i C, odpowiadajace wartościom w lasnym I A, I B, i I C wyznaczaja nam tzw. osie g lowne baka (czasteczki). Jeśli moleku la ma symetrie to A, B, i C sa osiami symetrii moleku ly. G lówne momenty bezw ladności dane sa wzorami: I A = i m i (B 2 i + C2 i ) I B = i m i (A 2 i + C2 i ) I C = i m i (A 2 i + B2 i ) gdzie A i, B i i C i to sa odleg lości i-tego jadra od odpowiedniej osi g lównej. Jeśli moleku la ma symetrie to wektory A, B, C leża na osiach symetrii.

5 Rotacje czasteczek wieloatomowych, c.d. Jeśli w uk ladzie osig lównych macierz II jest diagonalna to wektor momentu p edu L = II ω ma w tej bazie postać: L A = I A ω A, L B = I B ω B, L C = I C ω C, Można też latwo pokazać, że energia kinetyczna rotacji ma postać E rot = 1 N m i v i v i = 1 N m i v i ( ω R i ) = 1 N m i ω ( R i v i ) = ω L W uk ladzie osi g lównych ω L = ω A L A + ω B L B + ω C L C, stad E rot = 1 2 I A ω 2 A I B ω 2 B I C ω 2 C lub E rot = 1 L 2 A + 1 2I B L 2 B + 1 2I C L 2 C Aby otrzymać Hamiltonian uk ladu wsz edzie dopisujemy daszki Ĥ rot = 1 ˆL 2 A + 1 2I B ˆL 2 B + 1 2I C ˆL 2 C

6 Rotacje czasteczek wieloatomowych, c.d. Wartości w lasne i funkcje w lasne Ĥ rot zależa istotnie od wartości g lównych momentów bezw ladności. Mamy 4 typy baków: baki sferyczne, I A = I B = I C (metan, sześciofluorek uranu) baki symetryczne wyd lużone (prolate), I A < I B = I C (amoniak, CH 3 Cl) baki symetryczne sp laszczone (oblate), I A = I B < I C (benzen, SO 3, CHCl 3 ) baki asymetryczne I A I B I C (woda, etylen, naftalen) Dla baka symetrycznego sp laszczonego mamy I A = I B wiec można napisać: Ĥ rot = 1 ˆL 2 A + 1 2I B ˆL 2 B + 1 2I C ˆL 2 C = 1 ˆL 2 A + 1 ˆL 2 B + 1 ˆL 2 C + 1 2I C ˆL 2 C 1 czyli Ĥ rot = 1 ˆL 2 + ( 1 1 ) 2I C ˆL 2 C ˆL 2 C Ponieważ wartości w lasne ˆL 2 i ˆL C to J(J + 1) 2 i M wiec wartości w lasne Ĥ rot sa nastepuj ace (w jednostkach atomowych = 1) E JK = 1 ( 1 J(J + 1) + 1 ) K 2 2I C

7 Rotacje czasteczek wieloatomowych, c.d. Dla baka wyd lużonego otrzymujemy taki sam wzór tylko najmniejszy i najwieklszy moment bezw ladności I A i I C sa zamienione: E JK = 1 ( 1 J(J + 1) + 1 ) K 2 2I C 2I C Dla baka symetrycznego degeneracja poziomu E JK wynosi 2(2J + 1), 2 ze wzgledu na K i 2J + 1 ze wzgledu na M. Dla baka sferycznego I A =I B =I C wiec: E J = 1 J(J + 1) Degeneracja w tym przypadku wynosi (2J + 1) 2. Dla baka asymetrycznego (woda, etylen) nie znamy analitycznego wzoru na poziomy rotacyjne. Degeneracja ze wzgl du na K jest tu zniesiona. K przestaje być dobra liczba kwantowa. Czasteczki liniowe w stanach Π,, etc. tez sa bakami symetrycznymi wyd lużonymi z K = Λ gdzie Λ = 1 dla stanów Π, Λ = 2 dla stanów, etc. Ich energia rotacji dana jest zatem wzorem E JΛ = 1 [J(J + 1) Λ 2 ] + 1 Λ 2 2I C gdzie I C =µre 2 a Λ2 /( ) jest sta la wliczana do enerii elektronowej.

8 Schemat poziomów rotacyjnych baka symetrycznego

9 Schemat poziomów rotacyjnych baka asymetrycznego

10 Wibracje czasteczek wieloatomowych Rozważmy N jader atomowych. Po lożenie każdego z nich bedziemy mierzyc przez wspó lrzedne kartezjańskie x i, y i i z i określajace wychylenie i-tego jadra z jego ustalonego w przestrzni po lożenia równowagi. Hamiltonian wibracyjny uk ladu ma postać: Ĥ vib = 1 2m i 2 u 2 i + V (u 1, u 2,..., u 3N ) gdzie u i,,...,3n oznaczaja kolektywnie wszystkie wspó lrzedne kartezjańskie x 1, y 1, z 1, x 2, y 2, z 2,... a masy sa tak dobrane, że m 1 =m 2 =m 3, m 4 = m 5 =m 6,... Potencja l V (u 1, u 2,..., u 3N ) rozwijamy w szereg Taylora wokó l u 1 =u 2 =u 3 = 0 ( ) V V (u 1, u 2,..., u 3N ) = V 0 + u i + 1 ( 2 ) V u i u j + u i 2 u i u j Pierwsze pochodne znikaja w minimum, trzecie zaniedbujemy (przybliżenie harmoniczne). Sta l a V 0 wliczamy do energii elektronowej, stad: Ĥ vib = 1 2m i 2 u 2 i j=1 j=1 V ij u i u j gdzie V ij to macierz drugich pochodnych w minimum, czyli macierz Hessjanu.

11 Wibracje czasteczek wieloatomowych, c.d. Aby znaleźć wartości w lasne tego Hamiltonianu trzeba wprowadzić tzw. wspó lrz edne masowe: w i = m i u i W tych wspó lrz ednych Hamiltonian ma postać: Ĥ vib = w 2 i j=1 V ij mi m j w i w j Macierz V ij / m i m j jest symetryczna wiec można ja zdiagonalizować przy pomocy macierzy U ij i wprowadzić wspó lrzedne normalne q k : q k = U ik w i w i = k=1 U ik q k We wspó lrzednych normalnych Hamiltonian ma postać ( Ĥ vib = ) 2 2 λ k q 2 k k=1 gdzie λ k to wartości w lasne macierzy V ij / m i m j. Energie w lasne Ĥ vib to: ( E v1,v 2,... = ω k v k + 1 ) gdzie ω k = λ k 2 k=1 q 2 k

12 Translacje, rotacje i drgania czasteczki trójatomowej

13 Drgania czasteczki wody

14 Tunelowanie rezonansowe w widmie wibracyjnym amoniaku

15 Rezonans Fermiego wzbudzeń wibracyjnch ω 1 = 1333 cm 1 i 2 ω 2 = 1338 cm 1 w czasteczce CO 2

16 Wp lyw si ly Coriolisa na drgania czasteczki CO 2

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Algorytm określania symetrii czasteczek

Algorytm określania symetrii czasteczek O czym to b Podzi 21 września 2007 O czym to b O czym to b Podzi 1 2 3 O czym to b Podzi W lasności symetrii hamiltonianu: zmniejszenie z lożoności obliczeń i wymagań pami eciowych, utrzymanie tożsamościowych

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium

Zastosowanie Robotów. Ćwiczenie 6. Mariusz Janusz-Bielecki. laboratorium Zastosowanie Robotów laboratorium Ćwiczenie 6 Mariusz Janusz-Bielecki Zak lad Informatyki i Robotyki Wersja 0.002.01, 7 Listopada, 2005 Wst ep Do zadań inżynierów robotyków należa wszelkie dzia lania

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Po lożenie punktu w przestrzenie w chwili czasowej t może być opisane jako wektor x(t), reprezentujacy

Po lożenie punktu w przestrzenie w chwili czasowej t może być opisane jako wektor x(t), reprezentujacy 1. Bry la sztywna Symulacja komputerowa ruchu bry ly sztywnej jest ważnym zagadnieniem podczas modelowania i weryfikacji różnych systemów fizycznych. Mówiac bry la sztywna, mamy na myśli bry l e, która

Bardziej szczegółowo

Projekt pracy magisterskiej

Projekt pracy magisterskiej Symulacja widma dichroizmu ko lowego (1R,2R)-1,2-bis(1,8 -naftalimido)cykloheksanu przy użyciu rozszerzonego modelu dimerowego Promotor prof. dr hab. Marek Pawlikowski 2 grudnia 2009 Plan prezentacji 1

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1).

Zadania. kwiecień 2009. Ćwiczenia IV. w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly. Rozwiazanie E JM = 2 J(J + 1). kwiecień 9 Ćwiczenia IV Zadania Zadanie Obliczyć kanoniczna sum e statystyczna funkcj e podzia lu, energi e swobodna i ciep lo w laściwe dla rotatora sztywnego hetoronuklearnej moleku ly Rozwiazanie :

Bardziej szczegółowo

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych

WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium

Bardziej szczegółowo

Transformacja Lorentza - Wyprowadzenie

Transformacja Lorentza - Wyprowadzenie Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie

Bardziej szczegółowo

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O).

Bąk wirujący wokół pionowej osi jest w równowadze. Momenty działających sił są równe zero (zarówno względem środka masy S jak i punktu podparcia O). Bryła sztywna (2) Bąk Równowaga Rozważmy bąk podparty wirujący do okoła pionowej osi. Z zasady zachowania mementu pędu wynika, że jeśli zapewnimy znikanie momentów sił to kierunek momentu pędu pozostanie

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 19 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Mechanika. Wykład 7. Paweł Staszel

Mechanika. Wykład 7. Paweł Staszel Mechanika Wykład 7 Paweł Staszel 1 Dynamika bryły sztywnej Bryłą (ciałem) sztywnym nazywamy zbiór cząstek zachowujących stałe odległości między sobą. Pomijamy więc zjawiska związane z powstawaniem odkształceń

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Kondensacja Bosego-Einsteina

Kondensacja Bosego-Einsteina Kondensacja Bosego-Einsteina W opisie kwantowo-mechanicznym stan konkretnego uk ladu fizycznego jest określony poprzez funkcje falowa ψ r, r 2,...), gdzie r i oznaczaja po lożenia poszczególnych cza stek.

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii

Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Wyk lad 11 Przekszta lcenia liniowe a macierze

Wyk lad 11 Przekszta lcenia liniowe a macierze Wyk lad 11 Przekszta lcenia liniowe a macierze 1 Izomorfizm przestrzeni L(V ; W ) i M m n (R) Twierdzenie 111 Niech V i W bed a przestrzeniami liniowymi o bazach uporzadkowanych (α 1,, α n ) i (β 1,, β

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm

CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA. Ćwiczenia. http://zcht.mfc.us.edu.pl/ mm CHEMIA KWANTOWA MONIKA MUSIA L METODA HÜCKLA Ćwiczenia Zwi azki organiczne zawieraj ace uk lady π-elektronowe Sprzȩżony uk lad wi azań podwójnych: -C=C-C=C-C=C-C=C- Skumulowany uk lad wi azań podwójnych:

Bardziej szczegółowo

Podstawy robotyki wykład VI. Dynamika manipulatora

Podstawy robotyki wykład VI. Dynamika manipulatora Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B.

Zadania. kwiecień 2009. Ćwiczenia III. Zadanie 1. Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B. kwiecień 009 Ćwiczenia III Zadania Zadanie 1 Uk lad A o energii E A skontaktowano termicznie z uk ladem B o energii E B Udowodnić że jeżeli ln Ω A (E A < ln Ω B(E B E A E B to energia przep lynie z uk

Bardziej szczegółowo

Wyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych

Wyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych Wyznaczanie temperatury gazu z wykorzystaniem widm emisyjnych molekuł dwuatomowych Opracował: Hubert Lange Aby przygotować się do ćwiczenia należy przeczytać i zrozumieć materiał w książce:. adlej, pektroskopia

Bardziej szczegółowo

Symetria w obliczeniach molekularnych

Symetria w obliczeniach molekularnych Zak lad Metod Obliczeniowych Chemii UJ 15 marca 2005 1 2 Możliwości przyspieszenia obliczeń 3 GAMESS 2004 4 Zastosowania symetrii Zmniejszenie zapotrzebowania na zasoby (procesor, pami eć, dysk) Utrzymanie

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy

POCHODNA KIERUNKOWA. DEFINICJA Jeśli istnieje granica lim. to granica ta nazywa siȩ pochodn a kierunkow a funkcji f(m) w kierunku osi l i oznaczamy POCHODNA KIERUNKOWA Pochodne cz astkowe funkcji f(m) = f(x, y, z) wzglȩdem x, wzglȩdem y i wzglȩdem z wyrażaj a prȩdkość zmiany funkcji w kierunku osi wspó lrzȩdnych; np. f x jest prȩdkości a zmiany funkcji

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego

Bardziej szczegółowo

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych.

Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek wieloatomowych. Hybrydyzacja orbitali atomowych. Geometria cząsteczek Geometria cząsteczek decyduje zarówno o ich właściwościach fizycznych jak i chemicznych, np. temperaturze wrzenia,

Bardziej szczegółowo

Termodynamika statystyczna. Cele teorii

Termodynamika statystyczna. Cele teorii Termodynamika statystyczna. Cele teorii Stworzenie pomostu pomiedzy teoria mikroświata (teoria moleku l i ich oddzia lywań) a teoria zjawisk makroskopowych Wyjaśnienie (ilościowe) w lasności uk ladów makroskopowych

Bardziej szczegółowo

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie

Metoda Hückla. edzy elektronami π. Ĥ ef (i) (1) i=1. kinetyczna tego elektronu oraz energie Notatki do wyk ladu X (z 08.12.2014) Metoda Hückla Uproszczona wersja metody orbitali molekularnych (MO) w przybliżeniu liniowej kombinacji orbitali atomowych (LCAO) stosowana do opisu struktury elektronowej

Bardziej szczegółowo

Zagadnienie Keplera F 12 F 21

Zagadnienie Keplera F 12 F 21 Zagadnienie Keplera To zagadnienie bedzie potraktowane bardzo skrótowo i planuje podanie w tym miejscu jedynie podstawowych informacji. Zagadnienie Keplera jest dyskutowane w każdym podreczniku mechaniki.

Bardziej szczegółowo

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Bryła sztywna Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka Moment bezwładności Prawa ruchu Energia ruchu obrotowego Porównanie ruchu obrotowego z ruchem postępowym Przypomnienie Równowaga bryły

Bardziej szczegółowo

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera Określenie podpierścienia Definicja 9.. Podpierścieniem pierścienia (P, +,, 0, ) nazywamy taki podzbiór A P, który jest pierścieniem ze wzgledu

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n

celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n 123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki

Bardziej szczegółowo

Rozdział 7 Molekuły. 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły

Rozdział 7 Molekuły. 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły Rozdział 7 Molekuły 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły Johannes Diderik van der Waals (1837 1923) Nie, ta sztuczka

Bardziej szczegółowo

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r

{E n ( k 0 ) + h2 2m (k2 k 2 0 )}δ nn + h m ( k k 0 ) p nn. c nn = E n ( k)c nn (1) gdzie ( r)d 3 r to w pobliżu dna (lub szczytu) pasma (k k 0 ) zależność E(k) jest paraboliczna ale z mas a m m 0 Jeśli pasma nie s a energetycznie dobrze separowalne lub energetycznie zdegenerowane (kwazizdegenerowane)

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie 1 Dzielenie wielomianów Wyk lad 12 Ważne pierścienie Definicja 12.1. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 3 Tablice trwania życia 2 1 Przypomnienie Jesteśmy już w stanie wyznaczyć tp x = l x+t l x, gdzie l x, l x+t, to liczebności kohorty odpowiednio

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?

ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej? ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 9

Fizyka 1 (mechanika) AF14. Wykład 9 Fizyka 1 (mechanika) 1100-1AF14 Wykład 9 Jerzy Łusakowski 05.12.2016 Plan wykładu Żyroskopy, bąki, etc. Toczenie się koła Ruch w polu sił centralnych Żyroskopy, bąki, etc. Niezrównoważony żyroskop L m

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

Ćwiczenie: "Ruch harmoniczny i fale"

Ćwiczenie: Ruch harmoniczny i fale Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Marek Ruszczak. Spektroskopia laserowa cząsteczek kadm-gaz szlachetny i kadm-kadm produkowanych w wiązce naddźwiękowej

Marek Ruszczak. Spektroskopia laserowa cząsteczek kadm-gaz szlachetny i kadm-kadm produkowanych w wiązce naddźwiękowej Marek Ruszczak Spektroskopia laserowa cząsteczek kadm-gaz szlachetny i kadm-kadm produkowanych w wiązce naddźwiękowej praca doktorska wykonana w Instytucie Fizyki im. Mariana Smoluchowskiego Uniwersytetu

Bardziej szczegółowo

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia. Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Inżynieria Biomedyczna. Wykład XII

Inżynieria Biomedyczna. Wykład XII Inżynieria Biomedyczna Wykład XII Plan Wiązania chemiczne Teoria Lewisa Teoria orbitali molekularnych Homojądrowe cząsteczki dwuatomowe Heterojądrowe cząsteczki dwuatomowe Elektroujemność Hybrydyzacja

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Stacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Zarządzanie i inżynieria

Bardziej szczegółowo

Zamiast ogólnych wzorów w przestrzeni euklidesowej o dwolnym wymiarze, rozważmy przestrzeń trójwymiarow a. Przypuśćmy, że ktoś podaje nam równanie

Zamiast ogólnych wzorów w przestrzeni euklidesowej o dwolnym wymiarze, rozważmy przestrzeń trójwymiarow a. Przypuśćmy, że ktoś podaje nam równanie S. D. G lazek, www.fuw.edu.pl/ stglazek, 4.IV.005 I. ROZMAITOŚCI STOPNIA W PRZESTRZENI EUKLIDESOWEJ Rozmaitość drugiego stopnia w przestrzeni euklidesowej to hiperpowierzchnia opisana warunkiem, który

Bardziej szczegółowo

1.3. Optymalizacja geometrii czasteczki

1.3. Optymalizacja geometrii czasteczki 0 1 Część teoretyczna 13 Optymalizacja geometrii czasteczki Poszukiwanie punktów stacjonarnych (krytycznych) funkcji stanowi niezwykle istotny problem w obliczeniowej chemii kwantowej Sprowadza się on

Bardziej szczegółowo

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia

Zastosowanie metod matematycznych w fizyce i technice - zagadnienia Zastosowanie metod matematycznych w fizyce i technice - zagadnienia 1 Metoda ι Grama Schmidta zortogonalizować uk lad funkcji {x n } n= a) na odcinku 1; 1 z waga ι ρx) = 1, b) na prostej ; ) z waga ι ρx)

Bardziej szczegółowo

ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺady nr. 12 i 13; 25 stycznia 2006) 8 Konstrukcja drzew filogenetycznych

ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺady nr. 12 i 13; 25 stycznia 2006) 8 Konstrukcja drzew filogenetycznych Wst ep do obliczeniowej biologii molekularnej (J. Tiuryn, wykĺady nr. 2 i 3; 25 stycznia 2006) Spis treści 8 Konstrukcja drzew filogenetycznych 82 8. Metoda UPGMA......................... 82 8.2 Metoda

Bardziej szczegółowo

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka

Zagadnienie Dualne Zadania Programowania Liniowego. Seminarium Szkoleniowe Edyta Mrówka Zagadnienie Dualne Zadania Programowania Liniowego Seminarium Szkoleniowe Edyta Mrówka Ogólne zagadnienie PL Znajdź taki wektor X = (x 1, x 2,..., x n ), który minimalizuje kombinacje liniow a przy ograniczeniach

Bardziej szczegółowo

Dynamika molekularna - gaz van der Waalsa

Dynamika molekularna - gaz van der Waalsa Hamiltonian uk ladu Dynamika molekularna - gaz van der Waalsa Sk lada siȩ z N atomów u, oddzia luj acych parami miȩdzy sob a oraz ze ściankami sferycznego naczynia. Oddzia lywania opisuje potencja l Lennarda-

Bardziej szczegółowo

elektronów w polu magnetycznym

elektronów w polu magnetycznym Odchylenie wiazki elektronów w polu magnetycznym Wiazka elektronów używana do ciecia lub frezowania może być precyzyjnie sterowana za pomoca odpowiednio dobranego pola magnetycznego. Do tego celu można

Bardziej szczegółowo

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F

Geometria odwzorowań inżynierskich. 1. Perspektywa odbić w zwierciad lach p laskich 06F Scriptiones Geometrica Volumen I (2014), No. 6F, 1 10. Geometria odwzorowań inżynierskich Perspektywa odbić w zwierciad lach p laskich 06F Edwin Koźniewski Zak lad Informacji Przestrzennej 1. Perspektywa

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych 13 Zbiory w przestrzeni Definicja Przestrzeni a trójwymiarow a (przestrzeni a) nazywamy zbiór wszystkich trójek uporz adkowanych (x y z) gdzie x y z R. Przestrzeń tȩ oznaczamy symbolem

Bardziej szczegółowo

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2

Reakcje jądrowe. X 1 + X 2 Y 1 + Y b 1 + b 2 Reakcje jądrowe X 1 + X 2 Y 1 + Y 2 +...+ b 1 + b 2 kanał wejściowy kanał wyjściowy Reakcje wywołane przez nukleony - mechanizm reakcji Wielkości mierzone Reakcje wywołane przez ciężkie jony a) niskie

Bardziej szczegółowo

A. Strojnowski - Twierdzenie Jordana 1

A. Strojnowski - Twierdzenie Jordana 1 A Strojnowski - Twierdzenie Jordana 1 Zadanie 1 Niech f b edzie endomorfizmem skończenie wymiarowej przestrzeni V nad cia lem charakterystyki różnej od 2 takim, że M(f) nie jest diagonalizowalna ale M(f

Bardziej szczegółowo

Jeden przyk lad... czyli dlaczego warto wybrać MIESI.

Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Jeden przyk lad... czyli dlaczego warto wybrać MIESI. Micha l Ramsza Szko la G lówna Handlowa Micha l Ramsza (Szko la G lówna Handlowa) Jeden przyk lad... czyli dlaczego warto wybrać MIESI. 1 / 13 Dlaczego

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek?

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? ząsteczki wieloatomowe - hybrydyzacja zy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? Koncepcja OA OA O zdelokalizowane OA hyb OA O zlokalizowane OA hyb OA hyb OA orbitale

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej

mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1

Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

1.1 Wahadło anharmoniczne(m5)

1.1 Wahadło anharmoniczne(m5) 10 Mechanika 1.1 Wahadło anharmoniczne(m5) Celem ćwiczenia jest zbadanie drgań anharmonicznych wahadła fizycznego(zależność okresu drgań wahadła od amplitudy jego drgań, bilans energetyczny wahadła). Zagadnienia

Bardziej szczegółowo

Matematyczne Metody Chemii I Zadania

Matematyczne Metody Chemii I Zadania Matematyczne Metody Chemii I Zadania Mariusz Radoń, Marcin Makowski, Grzegorz Mazur Zestaw Zadanie. Pokazać, że wyznacznik dowolnej macierzy unitarnej jest liczbą o module. Zadanie. Pokazać, że elementy

Bardziej szczegółowo

Informacje uzyskiwane dzięki spektrometrii mas

Informacje uzyskiwane dzięki spektrometrii mas Slajd 1 Spektrometria mas i sektroskopia w podczerwieni Slajd 2 Informacje uzyskiwane dzięki spektrometrii mas Masa cząsteczkowa Wzór związku Niektóre informacje dotyczące wzoru strukturalnego związku

Bardziej szczegółowo

wstrzykiwanie "dodatkowych" nośników w przyłożonym polu elektrycznym => wzrost gęstości nośników (n)

wstrzykiwanie dodatkowych nośników w przyłożonym polu elektrycznym => wzrost gęstości nośników (n) UKŁADY STUDNI KWANTOWYCH I BARIER W POLU LEKTRYCZNYM transport podłużny efekt podpasm energia kinetyczna ruchu do złącz ~ h 2 k 2 /2m, na dnie podpasma k =0 => v =0 wstrzykiwanie "dodatkowych" nośników

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Podstawy chemii obliczeniowej

Podstawy chemii obliczeniowej Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin

Bardziej szczegółowo

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE Definicja 1 Algebra abstrakcyjna nazywamy teorie, której przedmiotem sa dzia lania na

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

Zaliczenie egzaminu w formie projektu doświadczalnego. elektroniczna. Projekt doświadczalny

Zaliczenie egzaminu w formie projektu doświadczalnego. elektroniczna. Projekt doświadczalny Tomasz Kostyrko Poznań, 22 kwietnia 2012 tkos@amu.edu.pl Zaliczenie egzaminu w formie projektu doświadczalnego Wykonanie projektu doświadczalnego to alternatywna forma zaliczania egzaminu z przedmiotu:

Bardziej szczegółowo