5. Strumienie płatności: renty
|
|
- Nina Leśniak
- 4 miesięcy temu
- Przeglądów:
Transkrypt
1 5. Strumienie płatności: renty Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 1 / 47
2 1 Motywacja, oznaczenia, założenia 2 Renta czasowa - wzory 3 Renta wieczysta 4 Renta geometryczna 5 Zakończenie renty czasowej 6 Stopa zwrotu rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 2 / 47
3 Definicja Rentą często nazywa się dowolny strumień płatności. Jednak dla nas rentą będzie strumień płatności polegający na wypłacaniu pewnych sum (rat) z wcześniej uzbieranych środków lub na podstawie umowy. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 3 / 47
4 Definicja Rentą często nazywa się dowolny strumień płatności. Jednak dla nas rentą będzie strumień płatności polegający na wypłacaniu pewnych sum (rat) z wcześniej uzbieranych środków lub na podstawie umowy. Prostymi przykładami rent są comiesięczne wypłaty wynagrodzenia, czy emerytury, typowa renta z posiadanego kapitału, dywidendy z posiadania akcji, kupony z tytułu posiadania obligacji. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 3 / 47
5 Podstawowe oznaczenia W zadaniach związanych z rentami istotne będą następujące wielkości i oznaczenia: Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 4 / 47
6 Podstawowe oznaczenia W zadaniach związanych z rentami istotne będą następujące wielkości i oznaczenia: Stopa procentowa r z podanym okresem kapitalizacji OK i okresem stopy OS. Jak zwykle, zakładamy przy dalszych wzorach, że OS = OK. Jeśli tak nie jest, zaczynamy zadanie od uzgodnienia stopy za pomocą stopy względnej. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 4 / 47
7 Podstawowe oznaczenia W zadaniach związanych z rentami istotne będą następujące wielkości i oznaczenia: Stopa procentowa r z podanym okresem kapitalizacji OK i okresem stopy OS. Jak zwykle, zakładamy przy dalszych wzorach, że OS = OK. Jeśli tak nie jest, zaczynamy zadanie od uzgodnienia stopy za pomocą stopy względnej. Okres płatności OP jest to odstęp czasowy pomiędzy kolejnymi wpłatami. Jest to domyślna jednostka czasu w takim zadaniu (przyjmujemy OP = 1). N - liczba płatności. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 4 / 47
8 Podstawowe oznaczenia W zadaniach związanych z rentami istotne będą następujące wielkości i oznaczenia: Stopa procentowa r z podanym okresem kapitalizacji OK i okresem stopy OS. Jak zwykle, zakładamy przy dalszych wzorach, że OS = OK. Jeśli tak nie jest, zaczynamy zadanie od uzgodnienia stopy za pomocą stopy względnej. Okres płatności OP jest to odstęp czasowy pomiędzy kolejnymi wpłatami. Jest to domyślna jednostka czasu w takim zadaniu (przyjmujemy OP = 1). N - liczba płatności. Przez R i oznaczamy wysokość i-tej raty renty. Jeśli wszystkie raty są równe, oznaczamy ich wysokość przez R. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 4 / 47
9 Podstawowe oznaczenia W zadaniach związanych z rentami istotne będą następujące wielkości i oznaczenia: Stopa procentowa r z podanym okresem kapitalizacji OK i okresem stopy OS. Jak zwykle, zakładamy przy dalszych wzorach, że OS = OK. Jeśli tak nie jest, zaczynamy zadanie od uzgodnienia stopy za pomocą stopy względnej. Okres płatności OP jest to odstęp czasowy pomiędzy kolejnymi wpłatami. Jest to domyślna jednostka czasu w takim zadaniu (przyjmujemy OP = 1). N - liczba płatności. Przez R i oznaczamy wysokość i-tej raty renty. Jeśli wszystkie raty są równe, oznaczamy ich wysokość przez R. Przez S i oznaczamy wartość renty po zakończeniu i-tego okresu płatności, zaktualizowaną na moment i. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 4 / 47
10 Podstawowe oznaczenia rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 5 / 47
11 Podstawowe oznaczenia Doprecyzujmy ostatni punkt: S i to wartość kapitału zawartego we wszystkich płatnościach do końca i-tego okresu płatności, zaktualizowana na koniec i-tego okresu płatności. Jest równa ona sumie zaktualizowanych na ten moment wartości wszystkich rat renty wpłaconych do tego momentu. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 5 / 47
12 Podstawowe założenia - z góry, czy z dołu Jak przy wpłatach, musimy ustalić dodatkowe założenia dotyczące sposobu dokonywania wypłat rent. Mogą być one dokonywane: rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 6 / 47
13 Podstawowe założenia - z góry, czy z dołu Jak przy wpłatach, musimy ustalić dodatkowe założenia dotyczące sposobu dokonywania wypłat rent. Mogą być one dokonywane: z dołu, czyli na końcu każdego okresu płatności, czyli w momentach 1, 2,..., N 1, N. Taką sytuację oznaczają podkreślenia danych zmiennych i oznaczeń np. S k. Jest to domyślny sposób dokonywania płatności w strumieniu finansowym tj. jeśli w zadaniu nie jest nic innego napisane, to zakładamy, że płatności są z dołu. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 6 / 47
14 Podstawowe założenia - z góry, czy z dołu Jak przy wpłatach, musimy ustalić dodatkowe założenia dotyczące sposobu dokonywania wypłat rent. Mogą być one dokonywane: z dołu, czyli na końcu każdego okresu płatności, czyli w momentach 1, 2,..., N 1, N. Taką sytuację oznaczają podkreślenia danych zmiennych i oznaczeń np. S k. Jest to domyślny sposób dokonywania płatności w strumieniu finansowym tj. jeśli w zadaniu nie jest nic innego napisane, to zakładamy, że płatności są z dołu. z góry, czyli na początku każdego okresu płatności, czyli w momentach 0, 1, 2,..., N 1. Taką sytuację oznaczają kreski nad danymi zmiennymi i oznaczeniami np. S k. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 6 / 47
15 Podstawowe założenia - model kapitalizacji Przy okazji wpłat analizowaliśmy różne modele kapitalizacji wkładów: złożony, prosty i polski. Dokładnie tak samo można analizować te modele w sytuacji rent. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 7 / 47
16 Podstawowe założenia - model kapitalizacji Przy okazji wpłat analizowaliśmy różne modele kapitalizacji wkładów: złożony, prosty i polski. Dokładnie tak samo można analizować te modele w sytuacji rent. Jednakże, z powodów wyjaśnionych wcześniej, model złożony jest najbardziej sensownym modelem wyceny w przygniatającej większości sytuacji, więc od tej pory tylko ten model będziemy analizować - zarówno w tej części wykładu, jak i w kolejnych. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 7 / 47
17 Założenia dla rent Tak jak przy wkładach, zakładamy, że wypłaty rat dokonywane są okresowo co okres OP, z dołu, przy złożonym modelu kapitalizacji w podokresach, stopie procentowej r o OK = OS (jeśli by tak nie było, zadanie zaczniemy od uzgodnienia okresu stopy za pomocą stopy względnej). rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 8 / 47
18 Założenia dla rent Tak jak przy wkładach, zakładamy, że wypłaty rat dokonywane są okresowo co okres OP, z dołu, przy złożonym modelu kapitalizacji w podokresach, stopie procentowej r o OK = OS (jeśli by tak nie było, zadanie zaczniemy od uzgodnienia okresu stopy za pomocą stopy względnej). W tym modelu, pierwszym krokiem jest uzgodnienie OK i OP przez zmianę długości okresu kapitalizacji stopy r. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 8 / 47
19 Założenia dla rent Tak jak przy wkładach, zakładamy, że wypłaty rat dokonywane są okresowo co okres OP, z dołu, przy złożonym modelu kapitalizacji w podokresach, stopie procentowej r o OK = OS (jeśli by tak nie było, zadanie zaczniemy od uzgodnienia okresu stopy za pomocą stopy względnej). W tym modelu, pierwszym krokiem jest uzgodnienie OK i OP przez zmianę długości okresu kapitalizacji stopy r. By móc to uczynić zmieniamy stopę r na stopę r ef, taką, że OS ef = OK ef = OP, takim samym wzorem jak zwykle. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 8 / 47
20 Założenia dla rent Tak jak przy wkładach, zakładamy, że wypłaty rat dokonywane są okresowo co okres OP, z dołu, przy złożonym modelu kapitalizacji w podokresach, stopie procentowej r o OK = OS (jeśli by tak nie było, zadanie zaczniemy od uzgodnienia okresu stopy za pomocą stopy względnej). W tym modelu, pierwszym krokiem jest uzgodnienie OK i OP przez zmianę długości okresu kapitalizacji stopy r. By móc to uczynić zmieniamy stopę r na stopę r ef, taką, że OS ef = OK ef = OP, takim samym wzorem jak zwykle. We wzorach będziemy częściej używać czynnika akumulacji q = 1 + r ef. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 8 / 47
21 Raty różnej wysokości Zauważmy, że wszystkie założenia są dokładnie takie jak w modelu wkładów okresowych: jedyną różnicą jest notacja R i zamiast W i oraz kierunek przepływu kapitału. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 9 / 47
22 Raty różnej wysokości Zauważmy, że wszystkie założenia są dokładnie takie jak w modelu wkładów okresowych: jedyną różnicą jest notacja R i zamiast W i oraz kierunek przepływu kapitału. Zatem otrzymane wzory muszą być takie same, jak wzory otrzymane w wypadku wkładów. W szczególności, jeśli założymy, że wysokości rat są dowolne (R 1, W 2,..., W N ), w momentach 1, 2,..., N, to: S k = R 1 q k 1 + R 2 q k R k 1 q + R k. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 9 / 47
23 Raty różnej wysokości Zauważmy, że wszystkie założenia są dokładnie takie jak w modelu wkładów okresowych: jedyną różnicą jest notacja R i zamiast W i oraz kierunek przepływu kapitału. Zatem otrzymane wzory muszą być takie same, jak wzory otrzymane w wypadku wkładów. W szczególności, jeśli założymy, że wysokości rat są dowolne (R 1, W 2,..., W N ), w momentach 1, 2,..., N, to: S k = R 1 q k 1 + R 2 q k R k 1 q + R k. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 9 / 47
24 Renta - wzory Przy najczęstszym założeniu, że wszystkie raty są równe (R 1 = R 2 =... = R N = R), mamy: Renta, raty z dołu S k = R qk 1 q 1. Renta, raty z góry S k = Rq qk 1 q 1. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 10 / 47
25 Wartość aktualna renty Tak jak dla długów, możemy obliczać wartość aktualną renty, zgodnie ze wzorem: Wartość aktualna renty PV = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 11 / 47
26 Wartość aktualna renty Tak jak dla długów, możemy obliczać wartość aktualną renty, zgodnie ze wzorem: Wartość aktualna renty PV = S N q N. S N oczywiście oznacza S N lub S N, w zależności od kontekstu. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 11 / 47
27 Wartość aktualna renty Tak jak dla długów, możemy obliczać wartość aktualną renty, zgodnie ze wzorem: Wartość aktualna renty PV = S N q N. S N oczywiście oznacza S N lub S N, w zależności od kontekstu. Będzie to kluczowy wzór w wielu zagadnieniach związanych z rentą. PV może być ceną, jaką inwestor jest gotów zapłacić za pozyskanie danej renty, jeśli szuka stopy zwrotu r ef na okres płatności lub też kapitałem początkowym, z którego jest wypłacana renta i który ma wystarczyć na cały czas jej trwania, jeśli jest inwestowany według warunków oprocentowania. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 11 / 47
28 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
29 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,20 4 = 0, 05 na kwartał. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
30 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,20 = 0, 05 na kwartał. Następnie musimy dopasować OK do 4 OP, czyli do miesiąca. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
31 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,20 = 0, 05 na kwartał. Następnie musimy dopasować OK do 4 OP, czyli do miesiąca. Zatem q = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
32 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,20 = 0, 05 na kwartał. Następnie musimy dopasować OK do 4 OP, czyli do miesiąca. Zatem q = (1 + r) 1 3 = 1, rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
33 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,20 = 0, 05 na kwartał. Następnie musimy dopasować OK do 4 OP, czyli do miesiąca. Zatem q = (1 + r) 1 3 = 1, Wreszcie 3 lata to 36 miesięcy, więc będziemy mieć do czynienia z N = 36 okresami płatności. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
34 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,20 = 0, 05 na kwartał. Następnie musimy dopasować OK do 4 OP, czyli do miesiąca. Zatem q = (1 + r) 1 3 = 1, Wreszcie 3 lata to 36 miesięcy, więc będziemy mieć do czynienia z N = 36 okresami płatności. Jako, że pieniądze są wypłacane na początku miesiąca, używamy wzoru na S 36. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 12 / 47
35 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? q = 1, 0164, N = 36 S 36 = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 13 / 47
36 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? q = 1, 0164, N = 36 S 36 = 1500q q36 1 q 1 = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 13 / 47
37 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? q = 1, 0164, N = 36 S 36 = 1500q q36 1 q 1 = 74007, Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 13 / 47
38 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? To jeszcze nie koniec zadania, bo S 36 to wartość całej renty zaktualizowanej na koniec jej wypłacania (czyli na za 3 lata). K = PV = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 14 / 47
39 Przykład Zadanie Pewien hojny sponsor ufundował stypendium dla zdolnego studenta w postaci renty o ratach w wysokości 1500 PLN wypłacanych na początku każdego miesiąca przez okres studiów licencjackich, czyli 3 lata. Renta ta była wypłacana z pewnego kapitału zdeponowanego na funduszu oszczędnościowym z nominalną roczną stopą procentową 20% i kapitalizacją kwartalną. Ile co najmniej wynosił ten kapitał? To jeszcze nie koniec zadania, bo S 36 to wartość całej renty zaktualizowanej na koniec jej wypłacania (czyli na za 3 lata). K = PV = S 36 q 36 = 41204, Odp: Kapitał początkowy konieczny do wypłacenia tej renty wynosił co najmniej 41204,5862 PLN. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 14 / 47
40 Renta wieczysta - motywacja Rentę o skończonej liczbie rat nazywamy rentą czasową. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 15 / 47
41 Renta wieczysta - motywacja Rentę o skończonej liczbie rat nazywamy rentą czasową. Możliwa też jest próba zaplanowania tzw. renty wieczystej, czyli renty o nieskończonej liczbie rat. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 15 / 47
42 Renta wieczysta - motywacja Rentę o skończonej liczbie rat nazywamy rentą czasową. Możliwa też jest próba zaplanowania tzw. renty wieczystej, czyli renty o nieskończonej liczbie rat. Na przykład w ten sposób można zaplanować sobie wypłaty emerytury, bez zakładania długości życia na tej emeryturze. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 15 / 47
43 Renta wieczysta - motywacja Rentę o skończonej liczbie rat nazywamy rentą czasową. Możliwa też jest próba zaplanowania tzw. renty wieczystej, czyli renty o nieskończonej liczbie rat. Na przykład w ten sposób można zaplanować sobie wypłaty emerytury, bez zakładania długości życia na tej emeryturze. Taki format mogą też przybrać wypłaty z niektórych inwestycji (np. obligacji wieczystych, zwanych konsolami), a także przydaje się on przy fundamentalnej wycenie akcji. Dla ustalenia uwagi, bez utraty ogólności, zakładamy, że mamy zawsze do czynienia z tzw. rentą pewną - czyli wypłacaną niezależnie od tego, czy odbiorca żyje i od jakichkolwiek innych okoliczności. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 15 / 47
44 Renta wieczysta z dołu - wyprowadzenie wzoru Spróbujmy wycenić wartość teraźniejszą renty wieczystej PV lub, w innej interpretacji, wielkość kapitału K z której można ją wypłacać. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 16 / 47
45 Renta wieczysta z dołu - wyprowadzenie wzoru Spróbujmy wycenić wartość teraźniejszą renty wieczystej PV lub, w innej interpretacji, wielkość kapitału K z której można ją wypłacać. Załóżmy, że rata takiej renty wynosi R w, renta jest wypłacana z dołu i obowiązuje stopa procentowa r, taka, że OS = OK = OP (w innym wypadku używamy stopy względnej i efektywnej tak, by dopasować te okresy), a q = 1 + r. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 16 / 47
46 Renta wieczysta z dołu - wyprowadzenie wzoru Spróbujmy wycenić wartość teraźniejszą renty wieczystej PV lub, w innej interpretacji, wielkość kapitału K z której można ją wypłacać. Załóżmy, że rata takiej renty wynosi R w, renta jest wypłacana z dołu i obowiązuje stopa procentowa r, taka, że OS = OK = OP (w innym wypadku używamy stopy względnej i efektywnej tak, by dopasować te okresy), a q = 1 + r. Wtedy PV = K musi być równe sumie zaktualizowanych na moment 0 rat takiej renty: PV = K = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 16 / 47
47 Renta wieczysta z dołu - wyprowadzenie wzoru Spróbujmy wycenić wartość teraźniejszą renty wieczystej PV lub, w innej interpretacji, wielkość kapitału K z której można ją wypłacać. Załóżmy, że rata takiej renty wynosi R w, renta jest wypłacana z dołu i obowiązuje stopa procentowa r, taka, że OS = OK = OP (w innym wypadku używamy stopy względnej i efektywnej tak, by dopasować te okresy), a q = 1 + r. Wtedy PV = K musi być równe sumie zaktualizowanych na moment 0 rat takiej renty: PV = K = R w q 1 + R w q = R w q i. i=1 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 16 / 47
48 Renta wieczysta z dołu - wzór PV = K = i=1 R w q i. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 17 / 47
49 Renta wieczysta z dołu - wzór PV = K = i=1 R w q i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z szeregiem geometrycznym o pierwszym wyrazie R w q 1 i ilorazie 0 < q 1 < 1. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 17 / 47
50 Renta wieczysta z dołu - wzór PV = K = i=1 R w q i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z szeregiem geometrycznym o pierwszym wyrazie R w q 1 i ilorazie 0 < q 1 < 1. Ze wzoru na sumę tego szeregu otrzymujemy zależność: PV = K = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 17 / 47
51 Renta wieczysta z dołu - wzór PV = K = i=1 R w q i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z szeregiem geometrycznym o pierwszym wyrazie R w q 1 i ilorazie 0 < q 1 < 1. Ze wzoru na sumę tego szeregu otrzymujemy zależność: PV = K = R wq 1 1 q 1 = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 17 / 47
52 Renta wieczysta z dołu - wzór PV = K = i=1 R w q i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z szeregiem geometrycznym o pierwszym wyrazie R w q 1 i ilorazie 0 < q 1 < 1. Ze wzoru na sumę tego szeregu otrzymujemy zależność: PV = K = R wq 1 1 q 1 = R w q 1 = R w r. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 17 / 47
53 Renta wieczysta z góry - wyprowadzenie wzoru Oczywiście, analogicznie możemy obliczyć ten sam wzór przy założeniu, że renta jest wypłacana z góry: PV = K = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 18 / 47
54 Renta wieczysta z góry - wyprowadzenie wzoru Oczywiście, analogicznie możemy obliczyć ten sam wzór przy założeniu, że renta jest wypłacana z góry: PV = K = R w + R w q = R w q i = i=0 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 18 / 47
55 Renta wieczysta z góry - wyprowadzenie wzoru Oczywiście, analogicznie możemy obliczyć ten sam wzór przy założeniu, że renta jest wypłacana z góry: PV = K = R w + R w q = R w q i = i=0 = R w 1 q = R wq. 1 r rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 18 / 47
56 Renta wieczysta - wzory Podsumowując, otrzymujemy następujące wzory na wartość kapitału K potrzebnego do wypłaty renty wieczystej w wysokości R w : Renta wieczysta, raty z dołu Renta wieczysta, raty z góry K = R w r. K = R wq. r rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 19 / 47
57 Maksymalna renta wieczysta Te wzory łatwo przekształcić tak, by otrzymać wzory na maksymalną możliwą rentę wieczystą wypłacaną z kapitału K: Maksymalna renta wieczysta z dołu R w = Kr. Maksymalna renta wieczysta z góry R w = Kr q. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 20 / 47
58 Maksymalna renta wieczysta - interpretacja Co ciekawe, do wzoru na maksymalną rentę wieczystą z dołu można dojść bez przekształceń matematycznych, a czysto logicznie: rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 21 / 47
59 Maksymalna renta wieczysta - interpretacja Co ciekawe, do wzoru na maksymalną rentę wieczystą z dołu można dojść bez przekształceń matematycznych, a czysto logicznie: otóż, Kr są to odsetki, które gromadzą się na naszej inwestycji w trakcie pierwszego okresu płatności. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 21 / 47
60 Maksymalna renta wieczysta - interpretacja Co ciekawe, do wzoru na maksymalną rentę wieczystą z dołu można dojść bez przekształceń matematycznych, a czysto logicznie: otóż, Kr są to odsetki, które gromadzą się na naszej inwestycji w trakcie pierwszego okresu płatności. Jeśli wypłacamy kwotę nie większą niż Kr, to kapitału wyjściowego nie ubywa, więc możemy takie kwoty wypłacać w nieskończoność. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 21 / 47
61 Maksymalna renta wieczysta - interpretacja Co ciekawe, do wzoru na maksymalną rentę wieczystą z dołu można dojść bez przekształceń matematycznych, a czysto logicznie: otóż, Kr są to odsetki, które gromadzą się na naszej inwestycji w trakcie pierwszego okresu płatności. Jeśli wypłacamy kwotę nie większą niż Kr, to kapitału wyjściowego nie ubywa, więc możemy takie kwoty wypłacać w nieskończoność. Jeśli zaś wypłacamy więcej, to kapitał startowy się zmniejsza, więc coraz mniejsze są od niego odsetki i coraz większy jest z każdą ratą ubytek kapitału, który stopniowo maleje do zera. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 21 / 47
62 Maksymalna renta wieczysta - interpretacja Co ciekawe, do wzoru na maksymalną rentę wieczystą z dołu można dojść bez przekształceń matematycznych, a czysto logicznie: otóż, Kr są to odsetki, które gromadzą się na naszej inwestycji w trakcie pierwszego okresu płatności. Jeśli wypłacamy kwotę nie większą niż Kr, to kapitału wyjściowego nie ubywa, więc możemy takie kwoty wypłacać w nieskończoność. Jeśli zaś wypłacamy więcej, to kapitał startowy się zmniejsza, więc coraz mniejsze są od niego odsetki i coraz większy jest z każdą ratą ubytek kapitału, który stopniowo maleje do zera. Dlatego Kr jest to maksymalna wysokość renty wieczystej z dołu. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 21 / 47
63 Maksymalna renta wieczysta - interpretacja Co ciekawe, do wzoru na maksymalną rentę wieczystą z dołu można dojść bez przekształceń matematycznych, a czysto logicznie: otóż, Kr są to odsetki, które gromadzą się na naszej inwestycji w trakcie pierwszego okresu płatności. Jeśli wypłacamy kwotę nie większą niż Kr, to kapitału wyjściowego nie ubywa, więc możemy takie kwoty wypłacać w nieskończoność. Jeśli zaś wypłacamy więcej, to kapitał startowy się zmniejsza, więc coraz mniejsze są od niego odsetki i coraz większy jest z każdą ratą ubytek kapitału, który stopniowo maleje do zera. Dlatego Kr jest to maksymalna wysokość renty wieczystej z dołu. Analogiczną analizę można przeprowadzić dla renty wieczystej z góry. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 21 / 47
64 Renty czasowe i wieczyste - nazewnictwo Wspomnę jeszcze, że w niektórych źródłach rentę czasową nazywa się annuitetem, a wieczystą perpetuitetem. Nie wymagam znajomości tego nazewnictwa. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 22 / 47
65 Renta geometryczna - motywacja Wyobraźmy sobie, że ktoś oblicza kapitał potrzebny mu do przejścia na emeryturę. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 23 / 47
66 Renta geometryczna - motywacja Wyobraźmy sobie, że ktoś oblicza kapitał potrzebny mu do przejścia na emeryturę. Kapitał potrzebny mu na emeryturze w jednostce czasu OP szacuje na R. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 23 / 47
67 Renta geometryczna - motywacja Wyobraźmy sobie, że ktoś oblicza kapitał potrzebny mu do przejścia na emeryturę. Kapitał potrzebny mu na emeryturze w jednostce czasu OP szacuje na R. Jednakże, nie chce wypłacać kolejnych rat emerytury w stałej wysokości: potrzebuje uwzględnić inflację, wynoszącą i w czasie OP. Dlatego każda kolejna rata musi być 1 + i = a razy większa. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 23 / 47
68 Renta geometryczna - motywacja Wyobraźmy sobie, że ktoś oblicza kapitał potrzebny mu do przejścia na emeryturę. Kapitał potrzebny mu na emeryturze w jednostce czasu OP szacuje na R. Jednakże, nie chce wypłacać kolejnych rat emerytury w stałej wysokości: potrzebuje uwzględnić inflację, wynoszącą i w czasie OP. Dlatego każda kolejna rata musi być 1 + i = a razy większa. W ten sposób kolejne raty emerytury układają się w ciąg geometryczny: R, Ra, Ra 2,... Jakiego wzoru można użyć do oszacowania wielkości potrzebnego kapitału? rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 23 / 47
69 Renta geometryczna z dołu - wyprowadzenie wzoru Załóżmy, że renta jest wypłacana z dołu, pierwsza rata wynosi R i przewidziane jest N rat. Wtedy, dla każdego k N: S k = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 24 / 47
70 Renta geometryczna z dołu - wyprowadzenie wzoru Załóżmy, że renta jest wypłacana z dołu, pierwsza rata wynosi R i przewidziane jest N rat. Wtedy, dla każdego k N: k S k = Rq k 1 + Raq k 2 + Ra 2 q k Ra k 1 = Ra i 1 q k i. i=1 Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 24 / 47
71 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 25 / 47
72 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z sumą n wyrazów ciągu geometrycznego o pierwszym wyrazie Rq k 1 i ilorazie aq 1. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 25 / 47
73 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z sumą n wyrazów ciągu geometrycznego o pierwszym wyrazie Rq k 1 i ilorazie aq 1. Zatem, jeśli a q: S k = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 25 / 47
74 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z sumą n wyrazów ciągu geometrycznego o pierwszym wyrazie Rq k 1 i ilorazie aq 1. Zatem, jeśli a q: S k = Rq k 1 (aq 1 ) k 1 aq 1 1 = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 25 / 47
75 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Zauważmy, że po prawej stronie tego wzoru mamy do czynienia z sumą n wyrazów ciągu geometrycznego o pierwszym wyrazie Rq k 1 i ilorazie aq 1. Zatem, jeśli a q: S k = Rq k 1 (aq 1 ) k 1 aq 1 1 = R qk a k q a. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 25 / 47
76 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 26 / 47
77 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Jeśli a = q, to po prostu każdy element sumy tego ciągu jest równy Rq k 1, więc: S k = Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 26 / 47
78 Renta geometryczna z dołu - wyprowadzenie wzoru S k = k i=1 Ra i 1 q k i. Jeśli a = q, to po prostu każdy element sumy tego ciągu jest równy Rq k 1, więc: S k = nrq k 1. Analogicznie można wyprowadzić wzory na wartość renty geometrycznej z góry. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 26 / 47
79 Renta geometryczna - wzory Renta geometryczna z dołu Renta geometryczna z góry R qk a k S k =, q a; q a nrq k 1, q = a. Rq qk a k S k =, q a; q a nrq k, q = a. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 27 / 47
80 Renta geometryczna - komentarz Wszelkie inne obliczenia (np. obliczanie wartości aktualnej) prowadzimy dokładnie tak samo jak dla renty stałej. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 28 / 47
81 Renta geometryczna - komentarz Wszelkie inne obliczenia (np. obliczanie wartości aktualnej) prowadzimy dokładnie tak samo jak dla renty stałej. Zauważmy, że renta stała też jest rentą geometryczną, ale dla ilorazu a = 1. Wzory po podstawieniu a = 1 się zgadzają, więc tak naprawdę wystarczy pamiętać wzory na rentę geometryczną i wzory na rentę stałą wynikają z nich natychmiast. Grzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 28 / 47
82 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 29 / 47
83 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? Po pierwsze OK OS, więc musimy zastosować stopę względną r = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 29 / 47
84 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,08 2 = 0, 04 na pół roku. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 29 / 47
85 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,08 2 = 0, 04 na pół roku. Wtedy OS=OK=OP, więc q = 1, 04. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 29 / 47
86 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? Po pierwsze OK OS, więc musimy zastosować stopę względną r = 0,08 = 0, 04 na pół roku. Wtedy OS=OK=OP, więc q = 1, Obliczmy najpierw kapitał początkowy: 40 = R w = 0, 04K 1, 04 K = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 29 / 47
87 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą półroczną z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? K = 1040, q = 1, 04. Zajmijmy się teraz rentą geometryczną. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 30 / 47
88 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą półroczną z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? K = 1040, q = 1, 04. Zajmijmy się teraz rentą geometryczną. Z treści zadania a = 1, 025 i OS=OK=OP. Liczba płatności w ramach tej renty to N = rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 30 / 47
89 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą półroczną z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? K = 1040, q = 1, 04. Zajmijmy się teraz rentą geometryczną. Z treści zadania a = 1, 025 i OS=OK=OP. Liczba płatności w ramach tej renty to N = 20 (10 lat, 2 płatności w roku). rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 30 / 47
90 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą półroczną z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? K = 1040, q = 1, 04. Zajmijmy się teraz rentą geometryczną. Z treści zadania a = 1, 025 i OS=OK=OP. Liczba płatności w ramach tej renty to N = 20 (10 lat, 2 płatności w roku). Zatem, korzystając z zależności pomiędzy K, a S 20 : 1040 = K = S 20 (1, 04) 20 S 20 = 2278, rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 30 / 47
91 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą półroczną z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? N = 20, S 20 = 2278, 7681, q = 1, 04, a = 1, 025, q a. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 31 / 47
92 Przykład Zadanie Rozważamy kapitalizację półroczną z nominalną roczną stopą procentową 8%. Z pewnego kapitału można wypłacać rentę wieczystą półroczną z góry w wysokości 40jp. Jeśli z tego samego kapitału chcemy wypłacać rentę geometryczną półroczną z dołu, której każda kolejna rata jest o 2, 5% większa od poprzedniej, przez 10 lat, to jakiej maksymalnej wysokości może być pierwsza rata takiej renty? N = 20, S 20 = 2278, 7681, q = 1, 04, a = 1, 025, q a. Wystarczy te dane podstawić do wzoru na rentę geometryczną z dołu: 2278, 7681 = S 20 = R q20 a 20 q a R = 28, Odp: Pierwsza rata takiej renty może wynosić maksymalnie 28,6969. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 31 / 47
93 Zakończenie renty czasowej W porównaniu z zadaniami z wkładów oszczędnościowych, w zadaniach z rent czasowych może pojawić się nowy problem - czas i sposób wymuszonego zakończenia wypłat. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 32 / 47
94 Zakończenie renty czasowej W porównaniu z zadaniami z wkładów oszczędnościowych, w zadaniach z rent czasowych może pojawić się nowy problem - czas i sposób wymuszonego zakończenia wypłat. O ile wpłacać kapitał na jakiś program oszczędnościowy można potencjalnie w nieskończoność, to wypłacać można tylko wtedy, gdy jakiś kapitał do wypłacania nam zostaje... rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 32 / 47
95 Zakończenie renty czasowej W porównaniu z zadaniami z wkładów oszczędnościowych, w zadaniach z rent czasowych może pojawić się nowy problem - czas i sposób wymuszonego zakończenia wypłat. O ile wpłacać kapitał na jakiś program oszczędnościowy można potencjalnie w nieskończoność, to wypłacać można tylko wtedy, gdy jakiś kapitał do wypłacania nam zostaje... Rozważamy zatem zadanie typu: przy danym modelu oprocentowania, na ile wypłat rent w wysokości R wystarczy kapitał K? Dodatkowo, mało prawdopodobne, by wypłaty tej samej wysokości DOKŁADNIE wyczerpały dany kapitał, więc powstaje dodatkowe pytanie - jakiej wysokości będzie ostatnia wypłata? rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 32 / 47
96 Równanie końca renty Wyznaczenie liczby możliwych wypłat renty o danej wysokości jest dość proste. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 33 / 47
97 Równanie końca renty Wyznaczenie liczby możliwych wypłat renty o danej wysokości jest dość proste. Wystarczy zastosować wynikające z zależności K = S N q N : Równanie końca renty Kq N = S N. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 33 / 47
98 Równanie końca renty Wyznaczenie liczby możliwych wypłat renty o danej wysokości jest dość proste. Wystarczy zastosować wynikające z zależności K = S N q N : Równanie końca renty Kq N = S N. Pechowo, to równanie jest dość podobne do równania na kapitał uzbierany po N wpłatach: K = S N (ale od niego się różni). rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 33 / 47
99 Równanie końca renty Wyznaczenie liczby możliwych wypłat renty o danej wysokości jest dość proste. Wystarczy zastosować wynikające z zależności K = S N q N : Równanie końca renty Kq N = S N. Pechowo, to równanie jest dość podobne do równania na kapitał uzbierany po N wpłatach: K = S N (ale od niego się różni). Prawdopodobnie dlatego studenci często je mylą na sprawdzianach. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 33 / 47
100 Równanie końca renty Wyznaczenie liczby możliwych wypłat renty o danej wysokości jest dość proste. Wystarczy zastosować wynikające z zależności K = S N q N : Równanie końca renty Kq N = S N. Pechowo, to równanie jest dość podobne do równania na kapitał uzbierany po N wpłatach: K = S N (ale od niego się różni). Prawdopodobnie dlatego studenci często je mylą na sprawdzianach. Wystarczy jednak pamiętać, że równania końca renty używamy tylko w wypadku wypłaty rent i wszystko będzie dobrze... rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 33 / 47
101 Rozwiązanie równania - problem No dobrze, użyliśmy równania końca renty do obliczenia liczby rat i otrzymaliśmy wynik, który niemal na pewno nie jest całkowity, np. 11, 7. Co on oznacza? rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 34 / 47
102 Rozwiązanie równania - problem No dobrze, użyliśmy równania końca renty do obliczenia liczby rat i otrzymaliśmy wynik, który niemal na pewno nie jest całkowity, np. 11, 7. Co on oznacza? Otóż w tym przypadku wynik zaokrąglamy w dół, gdyż okazuje się, że możemy np. wypłacić 11 rent danej wysokości i jeszcze coś nam zostanie z kapitału, ale nie tyle, by wypłacić dwunastą rentę tej samej wysokości. Czyli N w praktyce będzie największą liczbą całkowitą nie większą niż rozwiązanie równania końca renty. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 34 / 47
103 Rozwiązanie równania - problem No dobrze, użyliśmy równania końca renty do obliczenia liczby rat i otrzymaliśmy wynik, który niemal na pewno nie jest całkowity, np. 11, 7. Co on oznacza? Otóż w tym przypadku wynik zaokrąglamy w dół, gdyż okazuje się, że możemy np. wypłacić 11 rent danej wysokości i jeszcze coś nam zostanie z kapitału, ale nie tyle, by wypłacić dwunastą rentę tej samej wysokości. Czyli N w praktyce będzie największą liczbą całkowitą nie większą niż rozwiązanie równania końca renty. Dygresja: w trakcie rozwiązywania równania końca renty trzeba rozwiązać równanie wykładnicze. Może to być niemożliwe, gdyż wymagałoby obliczenia logarytmu liczby ujemnej. Taka sytuacja oznacza, że równanie to nie ma rozwiązania, więc renta o danej wielkości jest wieczysta, nie czasowa! rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 34 / 47
104 Pozostały kapitał Zanim zastanowimy się, gdzie wliczyć kapitał pozostały po N okresach płatności (oznaczmy go przez K N ), policzymy, ile go zostało. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 35 / 47
105 Pozostały kapitał Zanim zastanowimy się, gdzie wliczyć kapitał pozostały po N okresach płatności (oznaczmy go przez K N ), policzymy, ile go zostało. Oczywiście, będzie to kapitał startowy zaktualizowany na moment N pomniejszony o zaktualizowaną na moment N wartość renty: K N = Kq N S N. rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka finansowa 35 / 47
2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa
2b. Inflacja Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2b. Inflacja Matematyka finansowa 1 / 22 1 Motywacje i
2a. Przeciętna stopa zwrotu
2a. Przeciętna stopa zwrotu Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2a. Przeciętna stopa zwrotu Matematyka
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku
1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa
Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.
Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN
1940, 17 = K 4 = K 2 (1, 05)(1 + x 200 )3. Stąd, po wstawieniu K 2 dostaję:
Poniższe rozwiązania są jedynie przykładowe. Każde z tych zadań da się rozwiązać na wiele sposobów, ale te na pewno są dobre (i prawdopodobnie najprostsze). Komentarze (poza odpowiedziami) są zbędne -
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.
zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7
System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy
Elementy matematyki finansowej w programie Maxima
Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,
Wartość przyszła pieniądza: Future Value FV
Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie
Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k
2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa
System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa
System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana
Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Matematyka bankowa 2
1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2
Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Zadania do wykładu Matematyka bankowa 2
Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady
Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty
2.1 Wartość Aktualna Renty Stałej
2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza
I = F P. P = F t a(t) 1
6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE
Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują
Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.
Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014
Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu
Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski
Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej
Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II
Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział
[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN
LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Matematyka I dla DSM zbiór zadań
I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i
Wartość przyszła pieniądza
O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków
mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3
Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności
Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
Zadania do wykładu Matematyka bankowa 1 i 2
Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:
Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.
Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut
Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.
Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Papiery wartościowe o stałym dochodzie
Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,
MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171)
Przedmiot: MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Prowadzący wykład: dr Krzysztof Samotij, e-mail: krzysztof.samotij@pwr.edu.pl Czas i miejsce wykładu: poniedziałki (wg definicji J.M. Rektora) g. 9:15-11:00,
STOPA PROCENTOWA I STOPA ZWROTU
Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera
www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty
Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1
Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy
PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH
Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą
Matematyka Ekonomiczna
Matematyka Ekonomiczna Dr. hab. David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Wtorek 11-13, Czwartek 11-13 28 września
Matematyka podstawowa V. Ciągi
Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2
Matematyka Ekonomiczna
Matematyka Ekonomiczna David Ramsey, Prof. PWr e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Poniedziałek 14-16, Wtorek 16-18
Matematyka bankowa 1 1 wykład
Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl
Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.
Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik
Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia
Egzamin dla Aktuariuszy z 16 listopada 1996 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 16 listopada 1996 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:.... Czas egzaminu: l OO minut Ośrodek Doskonalenia
Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane
Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o
Temat 1: Wartość pieniądza w czasie
Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych
Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.
System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje
System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem
OPŁACALNOŚĆ INWESTYCJI
3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub
Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino
Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,
Matematyka finansowa 17.05.2003
1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja
Licz i zarabiaj matematyka na usługach rynku finansowego
Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej
5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych
Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile
Zajęcia 8 - Równoważność warunków oprocentowania
Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas
Procenty zadania maturalne z rozwiązaniami
Każde zadanie 1 punkt. 1. Cena towaru bez podatku VAT jest równa 60 zł. Towar ten wraz z podatkiem VAT w wysokości 22% kosztuje 0,22 60 = 13,20 kwota VAT 60 + 13,20 = 73,20 Odp. A 2. Wskaż liczbę, której
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Wstęp do matematyki finansowej Introduction to financial mathematics Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa
Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl
Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami
Matematyka finansowa w pakiecie Matlab
Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka
Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania
Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności
dr hab. Marcin Jędrzejczyk
dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Darmowa publikacja dostarczona przez PatBank.pl - bank banków
Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:
Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:
Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie
Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math)
Ciągi Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Spis treści 1 Ciągi liczbowe 1 1.1 Podstawowe własności ciągów................... 2 1.2 Granica ciągu............................
3.1 Analiza zysków i strat
3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.
Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.
Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.
Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Wartość pieniądza w czasie (time value of money)
Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej
3.1 Analiza zysków i strat
3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty poniesione
Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.
Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,
STOPA DYSKONTOWA 1+ =
Piotr Cegielski, MAI, MRICS, CCIM STOPA DYSKONTOWA (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 10 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)
1 Pomiar dochodowości inwestycji istota,
1 Pomiar dochodowości inwestycji istota, odmiany i cechy stóp zwrotu Wprowadzenie Podstawową miarą wykorzystywaną do oceny opłacalności inwestycji jest stopa zwrotu. Drugim obok niej miernikiem efektywności
1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)
II Etap Maj 2013 Zadanie 1 II Etap Maj 2013 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/podaj definicję składnika
Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną
Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Piotr Szczepankowski Poziom studiów (I lub II stopnia): I stopnia
Projekt. U S T A W A z dnia
Projekt U S T A W A z dnia o zmianie ustawy o kredycie konsumenckim oraz ustawy o odpowiedzialności podmiotów zbiorowych za czyny zabronione pod groźbą kary 1) Art. 1. W ustawie z dnia 12 maja 2011 r.
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Zadanie 1. Zadanie 2. Zadanie 3
Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu
Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska:
Prawie wszyscy wiedzą, że pewna suma pieniędzy ma dziś większą wartość niż ta sama suma w przyszłości. Mówi się, że pieniądz traci na wartości. Używając bardziej precyzyjnej terminologii trzeba powiedzieć
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy
Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3
Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty
Egzamin dla Aktuariuszy z 6 grudnia 2003 r.
Komisja Egzaminacyjna dla Aktuariuszy Egzamin dla Aktuariuszy z 6 grudnia 2003 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia Kadr
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy
WACC Montaż finansowy Koszt kredytu
WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we
Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1
1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)
WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy
Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.
Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,