Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane"

Transkrypt

1 Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane - Oprocentowanie proste procent oblicza się od kapitału początkowego, proporcjonalnie do długości czasu oprocentowania (w praktyce: w transakcjach bankowych na ogół nie dłuższych od roku) K n przyszła wartość kapitału r - roczna stopa procentowa n długość czasu oprocentowania P początkowa wartość kapitału 1 - Podokres oprocentowania dowolny okres będący ustaloną częścią roku - Podokresowa stopa procentowa stopa procentowa ustalona dla podokresu k liczba podokresów, których łączna długość jest równa długości roku i k stopa podokresowi m k czas oprocentowania wyrażony w podokresach półrocze: k=2 kwartał: k = 4 miesiąc: k = 12 tydzień: k = 52 dzień: k = 365 lub k = 360 rok: k = Równoważne stopy procentowe - stopy procentowe, przy których kapitał początkowy P generuje w czasie n odsetki I o identycznej wartości - Proporcjonalne stopy procentowe stopy, których stosunek jest identyczny ze stosunkiem odpowiadających im podokresów

2 : 1 : 1 - Przeciętna roczna stopa oprocentowania kapitału P w czasie n roczna stopa, przy której kapitał P generuje w czasie n odsetki o takiej samej wartości, jak przy zróżnicowanych stopach w tym czasie. - Dyskontowanie proste (rzeczywiste) działanie odwrotne do oprocentowania prostego; obliczanie kapitału początkowego na podstawie znanej wartości kapitału przyszłego. 1 - Dyskonto rzeczywiste kwota, o którą należy zmniejszyć kapitał końcowy, aby otrzymać kapitał początkowy - Dyskonto handlowe opłata za pożyczkę obliczona na podstawie kwoty, którą dłużnik zwróci po ustalonym czasie i zapłaconą w chwili otrzymania pożyczki; inaczej: procent płatny z góry d stopa dyskontowa - Stopa dyskontowa roczna stopa, przy użyciu której oblicza się wartość dyskonta - Zasada równoważności stopy dyskontowej i procentowej roczna stopa dyskontowa oraz roczna stopa procentowa są równoważne w danym czasie n, jeśli dyskonto oraz odsetki obliczone przy tych stopach dla tej samej pożyczki są równe. ZADANIA Zadanie 1 W dniu 30 czerwca pan X miał na swoim koncie 2500 zł. W okresie od 1 lipca do 30 września tego roku dokonano dwóch wpłat na rachunek: 3250 zł 20 lipca i 1600 zł 17 sierpnia oraz trzech wypłat: 4200 zł 23 lipca, 1900 zł 5 sierpnia i 300 zł 18 września. Bank dopisuje odsetki do rachunku na koniec każdego kwartału przy dodatnim saldzie nalicza odsetki według rocznej stopy 12%, a w przypadku salda ujemnego: odsetki karne przy stopie zwiększonej o 50%. Czas oprocentowania obliczany jest jako dokładna liczba dni przy długości roku 365 dni. Proszę obliczyć odsetki należne panu X za III kwartał tego roku. Zadanie 2 Odsetki od 2-letniej lokaty o stałym oprocentowaniu są naliczane po terminie pani Y, która wpłaciła na lokatę 2300 zł, a odebrała przy jej likwidacji 3047,50 zł. Proszę obliczyć roczną stopę oprocentowania lokaty.

3 Zadanie 3 Ile trzeba wpłacić na lokatę a) roczną b) półroczną, aby w każdym przypadku odebrać kwotę 1000 zł, jeśli okresowa stopa procentowa każdej lokaty jest proporcjonalna do miesięcznej stopy 1%? Zadanie 4 Niech I oznacza wartość odsetek w modelu oprocentowania prostego, a D- wartość dyskonta w tym modelu. Proszę wykazać, że I = D. Zadanie 5 Spłata 45-dniowej pożyczki 3000 wyniosła Proszę obliczyć stopę oprocentowania prostego tej pożyczki oraz równoważną jej stopę roczną. Zadanie 6 Podokresowe stopy oprocentowania prostego: a) 72%, b)13,5% są równoważne rocznej stopie 18%. Jakich podokresów dotyczą te stopy? Zadanie 7 Kwartalna stopa oprocentowania prostego wynosi 6,66% Proszę obliczyć równoważną stopę oprocentowania prostego a) Roczną b) Miesięczną c) 3-letnią Przy użyciu każdej ze stóp proszę obliczyć 2,5 letnie odsetki od kwoty 700 zł Zadanie 8 Przy jakiej rocznej stopie oprocentowania prostego wartość 2-letniej lokaty z odsetkami naliczanymi po terminie zwiększy się a) O 15% b) Przynajmniej dwukrotnie? Zadanie 9 Za 8 miesięcy otrzymamy nagrodę wysokości 1000 zł. Kwota ta zdyskontowana na 2 miesiące według modelu kapitalizacji prostej daje wartość 900 zł. Jaka jest teraźniejsza wartość nagrody? Zadanie 10 Hurtownia udziela nabywcom towarów kredytu kupieckiego w postaci odroczonego o miesiąc terminu płatności faktury. Jeśli zapłata zostanie dokonana natychmiast, to nabywcy towaru przysługuje prawo skorzystania ze skonta 10% (skonto to premia za przyspieszoną zapłatę faktury). Wartość zakupionego towaru wynosi Czy opłaca się zaciągnąć kredyt bankowy i skorzystać ze skonta, jeśli miesięczna stopa kredytu bankowego wynosi 4%?

4 Zadanie 11 Pan Z potrzebuje pożyczki i wie, że za rok będzie mógł oddać 120 zł. Proszę obliczyć wysokość odsetek oraz dyskonto, a także początkową wartość pożyczki w obu przypadkach, jeśli stopa procentowa i dyskontowa wynoszą 20%i. Zadanie 12 Ile wynosi wartość dyskonta, jeśli aby dziś dostać pożyczkę, zobowiązujemy się oddać po 3 miesiącach 1500 zł, a stopa dyskontowa wynosi 14%. Ile trzeba by oddać po 3 miesiącach, aby obecnie dostać 1500 zł? Zadanie 13 Pod koniec roku 2001 dużą popularnością cieszyły się w naszym kraju tzw. lokaty antypodatkowe z odsetkami płatnymi z góry, oferowane przez banki w związku z wprowadzonym 20% podatkiem od odsetek. Proszę rozpatrzyć sytuację klienta, który chciał wówczas ulokować na pół roku a) W banku X oferującym półroczną lokatę z odsetkami płatnymi z góry przy stopie d= 12% b) W banku Y proponującym tradycyjną lokatę z oprocentowaniem 15% Przy jakim oprocentowaniu w banku Y lokaty byłyby jednakowo korzystne dla klienta? Zadanie 14 Najniższa cena, przy której kupiono na przetargu bony skarbowe 26-tygodniowe wyniosła 9521,06 zł za bon o wartości nominalnej zł. Obliczyć stopę rentowności (zysku), jaką zrealizowali nabywcy tych bonów w skali 26 tygodni oraz w skali roku. Ile wynosi roczna stopa dyskonta, jaką otrzymał nabywca tych bonów? Zadanie 15 Bank A proponuje 15-miesięczną lokatę z odsetkami płatnymi z dołu naliczanymi przy stopie r = 7%, bank B 15-miesięczną lokatę z odsetkami płatnymi z góry naliczanymi przy stopie d = 5%. Od odsetek płatnych z dołu pobierany jest podatek 19%, odsetki płatne z góry nie są opodatkowane. Który wariant jest korzystniejszy dla klienta dysponującego kwotą a) 2000 zł b) P > 0 Zadanie 16 Opłata za 6-miesięczny kredyt w wysokości K n = zł ma postać dyskonta obliczonego przy stopie dyskontowej równoważnej rocznej stopie procentowej wysokości 12,75% w okresie 6 miesięcy. Ile wynosi ta opłata? Ile wyniosłaby ta opłata przy kredycie większym o 5000 zł? Zadanie 17 Niech D rz oznacza dyskonto rzeczywiste, a D h handlowe proste obliczone od tej samej wartości W za czas t. Stopa dyskontowa i procentowa są równoważne w okresie T. Proszę wykazać, że jeśli t > T, to D rz < D h.

5 Zadanie 18 Obliczyć brakujące elementy następującej tabeli, tak aby w każdym wierszu znajdowała się stopa dyskontowa, procentowa oraz okres ich równoważności: d r n 1 2,5% 5% 2 12% 20/12 3 2,5% 1,5% 4 9% 4 5 8% 13

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1 i 2

Zadania do wykładu Matematyka bankowa 1 i 2 Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

I = F P. P = F t a(t) 1

I = F P. P = F t a(t) 1 6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 143 Dyskonto-przypomnienie Obliczanie kapitaªu pocz tkowego P v na podstawie znanej warto±ci kapitaªu ko«cowego F v nazywa si dyskontowaniem kapitaªu F v.

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Instytut Matematyki i Informatyki, Państwowej Wyższej Szkoły Zawodowej w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto Osobiste Oprocentowanie konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Obowiązuje od 01.02.2016 r.

Obowiązuje od 01.02.2016 r. KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe oraz odsetki za przekroczenie limitu

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów konta Konto osobiste konta 0,50% Brak kwoty minimalnej. zmienne obowiązuje od 12.08.2013 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste konta 0,25% Brak kwoty minimalnej. zmienne obowiązuje od 16.12.2014 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe - 4-krotność stopy kredytu lombardowego

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Tabela oprocentowania dla konsumentów

Tabela oprocentowania dla konsumentów KONTA Konto osobiste Tabela oprocentowania dla konsumentów konta 0,10% Brak kwoty minimalnej. zmienne obowiązuje od 18.05.2015 r. Miesięczna kapitalizacja odsetek. Odsetki za niedozwolone saldo debetowe

Bardziej szczegółowo

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

KARTA PRACY Z PROCENTÓW - nowa

KARTA PRACY Z PROCENTÓW - nowa KARTA PRACY Z PROCENTÓW - nowa ZADANIE 1. Zamień procenty na ułamki ( : 100 ) 25%= 50%= % % 62%= 16 % 138%= 11 % 2%= 33 % 2340%= 3 % 0,4%= 66 % 0,35%= % 1,05%= 1%= 2,3%= 4%= 27,4%= 16%= 0,004%= 28%= %

Bardziej szczegółowo

Darmowa publikacja dostarczona przez ebooki24.org

Darmowa publikacja dostarczona przez ebooki24.org Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez ebooki24.org Copyright by Złote Myśli &, rok 2008 Autor: Tytuł:

Bardziej szczegółowo

Darmowa publikacja dostarczona przez PatBank.pl - bank banków

Darmowa publikacja dostarczona przez PatBank.pl - bank banków Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po

Bardziej szczegółowo

Komunikat Zarządu Banku Spółdzielczego Bank Rolników w Opolu z dnia

Komunikat Zarządu Banku Spółdzielczego Bank Rolników w Opolu z dnia I Komunikat Zarządu Banku Spółdzielczego Bank Rolników w Opolu z dnia 27 września 2012r. Zarząd Banku Spółdzielczego "Bank Rolników" w Opolu ustala następujące obowiązujące od 27 września 2012r. oprocentowanie

Bardziej szczegółowo

5,00 % 0,00 % 0,00 % 2,58 % 3,28 % 3,27 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 205,12 zł 152,99 zł 259,65 zł. 0,00 zł 0,00 zł 0,00 zł

5,00 % 0,00 % 0,00 % 2,58 % 3,28 % 3,27 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 205,12 zł 152,99 zł 259,65 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia: 06122015 (23:03) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruchomości:

Bardziej szczegółowo

Analiza opłacalności inwestycji v.

Analiza opłacalności inwestycji v. Analiza opłacalności inwestycji v. 2.0 Michał Strzeszewski, 1997 1998 Spis treści 1. Cel artykułu...1 2. Wstęp...1 3. Prosty okres zwrotu...2 4. Inflacja...2 5. Wartość pieniądza w czasie...2 6. Dyskontowanie...3

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

b) PLN/szt. Jednostkowa marża na pokrycie kosztów stałych wynosi 6PLN na każdą sprzedają sztukę.

b) PLN/szt. Jednostkowa marża na pokrycie kosztów stałych wynosi 6PLN na każdą sprzedają sztukę. Poniżej znajdują się przykłady rozwiązań tylko niektórych, spośród prezentowanych na zajęciach, zadań. Wszystkie pochodzą z podręcznika autorstwa Kotowskiej, Sitko i Uziębło. Kolokwium swoim zakresem obejmuje

Bardziej szczegółowo

2,00 % 5,00 % 0,00 % 2,99 % 2,57 % 3,20 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 150,09 zł 204,98 zł 152,19 zł. 0,00 zł 0,00 zł 0,00 zł

2,00 % 5,00 % 0,00 % 2,99 % 2,57 % 3,20 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 150,09 zł 204,98 zł 152,19 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02092015 (23:33) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r.

Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r. Informacja prasowa Warszawa, 13 lutego 2014 r. Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r. W styczniu 2014 roku inwestorzy kupili obligacje skarbowe o łącznej wartości 256,2 mln zł to trzeci

Bardziej szczegółowo

OPŁACALNOŚĆ INWESTYCJI

OPŁACALNOŚĆ INWESTYCJI 3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub

Bardziej szczegółowo

ZASADY I TERMINY KAPITALIZACJI ODSETEK

ZASADY I TERMINY KAPITALIZACJI ODSETEK OPROCENTOWANIE ŚRODKÓW PIENIĘŻNYCH W WALUTACH WYMIENIALNYCH GROMADZONYCH NA RACHUNKACH BANKOWYCH I KREDYTÓW W WALUTACH WYMIENIALNYCH UDZIELANYCH PRZEZ PKO BANK POLSKI S.A. KLIENTOM RYNKU DETALICZNEGO:

Bardziej szczegółowo

TABELA OPROCENTOWANIA KREDYTÓW I DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W TYCHACH

TABELA OPROCENTOWANIA KREDYTÓW I DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W TYCHACH Załącznik do Uchwały nr 51/2014 Zarządu Banku Spółdzielczego w Tychach z dnia 22.08.2014 r. TABELA OPROCENTOWANIA KREDYTÓW I DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W TYCHACH Rozdział I. Oprocentowanie produktów

Bardziej szczegółowo

0,00% 5,00% 1,59% 3,13% 2,53% 3,26% ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 150,13 zł 119,24 zł 99,35 zł. 0,00 zł 0,00 zł 0,00 zł

0,00% 5,00% 1,59% 3,13% 2,53% 3,26% ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 150,13 zł 119,24 zł 99,35 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:11062015 (23:53) ZAKUP podsumowanie najlepszych ofert Parametry: waluta: PLN, kwota: 175 000, wartość nieruchomości:

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Zarządzanie Finansami

Zarządzanie Finansami Studium Podyplomowe Zarządzanie w przemyśle naftowym i gazowniczym Rok Akademicki 2009/2010 Zarządzanie Finansami dr inż. Piotr Kosowski Materiały dla uczestników studium WARTOŚD PIENIĄDZA W CZASIE Wartośd

Bardziej szczegółowo

5,00 % 0,00 % 0,00 % 2,57 % 3,33 % 3,09 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 204,98 zł 153,48 zł 151,10 zł.

5,00 % 0,00 % 0,00 % 2,57 % 3,33 % 3,09 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 204,98 zł 153,48 zł 151,10 zł. Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02092015 (23:28) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

TABELA OPROCENTOWANIA KREDYTÓW I DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W TYCHACH OBOWIĄZUJĄCA OD DNIA 23.06.2015 ROKU

TABELA OPROCENTOWANIA KREDYTÓW I DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W TYCHACH OBOWIĄZUJĄCA OD DNIA 23.06.2015 ROKU Załącznik do Uchwały nr 27/2015 Zarządu Banku Spółdzielczego w Tychach z dnia 19.06.2015 r. TABELA OPROCENTOWANIA KREDYTÓW I DEPOZYTÓW W BANKU SPÓŁDZIELCZYM W TYCHACH OBOWIĄZUJĄCA OD DNIA 23.06.2015 ROKU

Bardziej szczegółowo

Podział rynku finansowego. Podział rynku finansowego. Rynek pienięŝny. Rynek lokat międzybankowych

Podział rynku finansowego. Podział rynku finansowego. Rynek pienięŝny. Rynek lokat międzybankowych Podział rynku finansowego Podział rynku finansowego 1. Ze względu na rodzaj instrumentów będących przedmiotem obrotu: rynek pienięŝny rynek kapitałowy rynek walutowy rynek instrumentów pochodnych 2. Ze

Bardziej szczegółowo

OFERTA. Oświadczamy, że przyjmujemy czas realizacji zamówienia od dnia zawarcia umowy do 31.12.2026 r.

OFERTA. Oświadczamy, że przyjmujemy czas realizacji zamówienia od dnia zawarcia umowy do 31.12.2026 r. Załącznik nr 1 do Nr NIP. Tel./fax.. OFERTA Odpowiadając na ogłoszenie o przetargu nieograniczonym na udzielenie i obsługę kredytu długoterminowego w wysokości 3 893 000,00 PLN (słownie: trzy miliony osiemset

Bardziej szczegółowo

Projekt. U S T A W A z dnia

Projekt. U S T A W A z dnia Projekt U S T A W A z dnia o zmianie ustawy o kredycie konsumenckim oraz ustawy o odpowiedzialności podmiotów zbiorowych za czyny zabronione pod groźbą kary 1) Art. 1. W ustawie z dnia 12 maja 2011 r.

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

Informacja prasowa Warszawa, 4 grudnia 2015 r.

Informacja prasowa Warszawa, 4 grudnia 2015 r. Informacja prasowa Warszawa, 4 grudnia 2015 r. Wyniki sprzedaży obligacji oszczędnościowych w listopadzie 2015 r. Polacy po raz kolejny docenili emisję specjalną Listopadową 11 W listopadzie sprzedano

Bardziej szczegółowo

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 Jak oszczędzać pieniądze? Przykładowe sposoby na zaoszczędzenie pieniędzy Zmień przekonania, zostań freeganem Za każdym razem gaś światło w pokoju Co

Bardziej szczegółowo

Tabela oprocentowania produktów bankowych w ABS Banku Spółdzielczym

Tabela oprocentowania produktów bankowych w ABS Banku Spółdzielczym Tabela oprocentowania produktów bankowych w ABS Banku Spółdzielczym Spis treści: WSTĘP... 3 KLIENCI INDYWIDUALNI... 4 KONTA OSOBISTE... 4 Tabela 1 RACHUNKI OSZCZĘDNOŚCIOWO-ROZLICZENIOWE...4 Tabela 2 RACHUNEK

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starym Sączu

Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starym Sączu Załącznik do Uchwały nr 01/06/O/2015 Zarządu Banku Spółdzielczego w Starym Sączu z dnia 19.06.2015 r. Tabela oprocentowania produktów bankowych Banku Spółdzielczego w Starym Sączu obowiązuje od dnia 25

Bardziej szczegółowo

TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW

TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW Załącznik Nr 1 do Uchwały Nr 01/III/2015 Zarządu Banku Spółdzielczego w Mszanie Dolnej z dnia 04 marca 2015r. Bank Spółdzielczy w Mszanie Dolnej TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW W BANKU SPÓŁDZIELCZYM

Bardziej szczegółowo

1 Wstęp. arytmetykę finansową (problemy związane z oprocentowaniem i dyskontowaniem, w szczególności plany spłaty kredytów);

1 Wstęp. arytmetykę finansową (problemy związane z oprocentowaniem i dyskontowaniem, w szczególności plany spłaty kredytów); Wstęp Zastosowania matematyki w ekonomii obejmują cały szereg zagadnień, poczynając od prostych operacji arytmetycznych. Dzięki matematyce ekonomiści są w stanie opisywać złożone zjawiska i formułować

Bardziej szczegółowo

5,00 % 0,00 % 0,00 % 3,07 % 3,45 % 3,39 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 211,97 zł 50,57 zł 154,07 zł.

5,00 % 0,00 % 0,00 % 3,07 % 3,45 % 3,39 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 211,97 zł 50,57 zł 154,07 zł. Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia: 07012016 (12:48) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruchomości:

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Matematyka finansowa DSFRiU

Matematyka finansowa DSFRiU Matematyka finansowa DSFRiU notatki do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania Podręczniki 1. M. Podgórska, J. Klimkowska, Matematyka finansowa, Wydawnictwo Naukowe

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekonomiczny Uniwersytet Dziecięcy Bank zaufanie na całe życie Czy warto powierzać pieniądze bankom? nna Chmielewska Miasto Bełchatów 24 listopada 2010 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY Uniwersytet Dziecięcy,

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 Warianty W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się

Bardziej szczegółowo

2. Funkcja akumulacji i wartość przyszła

2. Funkcja akumulacji i wartość przyszła 2. Funkcja akumulacji i wartość przyszła Zadanie 1 An investment of $10000 is made into a fund at time t=0. The fund develops the following balances over the next 4 years: F (0) = 10000, F (1) = 10600,

Bardziej szczegółowo

5,00 % 0,00 % 1,64 % 2,57 % 3,27 % 3,34 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 204,98 zł 152,89 zł 171,19 zł. 0,00 zł 0,00 zł 0,00 zł

5,00 % 0,00 % 1,64 % 2,57 % 3,27 % 3,34 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 204,98 zł 152,89 zł 171,19 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02092015 (23:35) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

5,00 % 0,00 % 1,59 % 2,53 % 3,27 % 3,26 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 204,41 zł 205,80 zł 170,31 zł. 0 zł 33,20 zł 0 zł

5,00 % 0,00 % 1,59 % 2,53 % 3,27 % 3,26 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 204,41 zł 205,80 zł 170,31 zł. 0 zł 33,20 zł 0 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02072015 (23:31) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się A co by

Bardziej szczegółowo

0,00 % 2,00 % 1,64 % 3,42 % 3,41 % 3,34 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 262,06 zł 171,95 zł 171,19 zł. 0 zł 0 zł 1 259,98 zł

0,00 % 2,00 % 1,64 % 3,42 % 3,41 % 3,34 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 262,06 zł 171,95 zł 171,19 zł. 0 zł 0 zł 1 259,98 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02092015 (23:25) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Wartość pieniądza w czasie (time value of money)

Wartość pieniądza w czasie (time value of money) Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej

Bardziej szczegółowo

Matematyka finansowa DSFRiU (niestacjonarne)

Matematyka finansowa DSFRiU (niestacjonarne) Matematyka finansowa DSFRiU (niestacjonarne) notatki do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania Podręczniki 1. M. Podgórska, J. Klimkowska, Matematyka finansowa,

Bardziej szczegółowo

TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW

TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW Załącznik Nr 1 do Uchwały Nr 02/III/2014 Zarządu Banku Spółdzielczego w Mszanie Dolnej z dnia 05-03-2014r. Bank Spółdzielczy w Mszanie Dolnej TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW W BANKU SPÓŁDZIELCZYM

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

% w skali roku. Bezpieczna inwestycja i szybki zysk mogą iść w parze. KOS. Wysokie oprocentowanie. Tylko w listopadzie

% w skali roku. Bezpieczna inwestycja i szybki zysk mogą iść w parze. KOS. Wysokie oprocentowanie. Tylko w listopadzie Bezpieczna inwestycja i szybki zysk mogą iść w parze. 1% w pierwszych 5 miesiącach 3% od 6. do 12. miesiąca 13% w 13. miesiącu 3 ACJE LIG Wysokie oprocentowanie RESOWE OB OK W AR A KOS O SK nowa 13-miesięczna

Bardziej szczegółowo

BANK SPÓŁDZIELCZY W NOWYM SĄCZU TABELA. OPROCENTOWANIA PRODUKTÓW BANKOWYCH dla klientów indywidualnych w Banku Spółdzielczym w Nowym Sączu

BANK SPÓŁDZIELCZY W NOWYM SĄCZU TABELA. OPROCENTOWANIA PRODUKTÓW BANKOWYCH dla klientów indywidualnych w Banku Spółdzielczym w Nowym Sączu Załącznik do Uchwały Nr 13 z dnia 05.03.2015 r. Zarządu Banku Spółdzielczego w Nowym Sączu BANK SPÓŁDZIELCZY W NOWYM SĄCZU TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH dla klientów indywidualnych w Banku

Bardziej szczegółowo

2,00% 5,00% 0,00% 3,13% 2,53% 3,07% ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 141,40 zł 190,78 zł 189,62 zł. 0,00 zł 0,00 zł 30,56 zł

2,00% 5,00% 0,00% 3,13% 2,53% 3,07% ZAKUP podsumowanie najlepszych ofert. Strona 1 z 6. 141,40 zł 190,78 zł 189,62 zł. 0,00 zł 0,00 zł 30,56 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:11062015 (23:51) ZAKUP podsumowanie najlepszych ofert Parametry: waluta: PLN, kwota: 280 000, wartość nieruchomości:

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo