OPŁACALNOŚĆ INWESTYCJI

Wielkość: px
Rozpocząć pokaz od strony:

Download "OPŁACALNOŚĆ INWESTYCJI"

Transkrypt

1 3/27/2011 Ewa Kusideł 1 OPŁACALNOŚĆ INWESTYCJI

2 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub tworzenie majątku trwałego Wydatki przedsiębiorstwa, które mogą być użyte do produkcji innych dóbr i usług Wyrzeczenie się obecnych, pewnych korzyści na rzecz niepewnych korzyści w przyszłości

3 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 3 Efektywność inwestycji Stosunek poniesionych nakładów do efektów uzyskanych dzięki tym nakładom Przykład. Efektywność projektów nakierowanych na wzrost liczby miejsc pracy Działanie Poziom wydatków określonych w umowach (decyzjach) Liczba miejsc pracy netto wg badania CAPI Koszt jednego miejsca pracy netto wg badania CAPI SPO WKP PLN SPO WKP PLN SPO WKP PLN

4 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 4 Stopa zwrotu z inwestycji Stopa zwrotu to zysk osiągany w trakcie eksploatacji projektu w porównaniu do wartości kapitału służącego sfinansowaniu początkowych nakładów inwestycyjnych Stopa zwrotu = zysk netto / zaangażowany kapitał W przypadku inwestycji kapitałowych stopę zwrotu z kapitału (zaangażowanego np. w zakup nieruchomości, akcji itp.) określimy jako: FV PV R t PV gdzie: PV bieżąca wartość inwestycji (present value) FV przyszła wartość inwestycji (future value) UWAGA! Powyższy wzór jest niczym więcej, jak wzorem na wyliczenie przyrostu procentowego (względnego)

5 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 5 Obliczanie przyrostów procentowych (stopy zwrotu) cen nieruchomości Przykład 1. Jaką stopę zwrotu uzyskał nabywca mieszkania, które zakupił za 1813 zł/ m 2, a sprzedał za 4025 zł za m 2. Odpowiedź: względna, czyli procentowa zmiana cen wynosiła: ( )/1813=1,22=122%. Cena nieruchomości wzrosła o 122%, czyli pomijając inne koszty taka jest stopa zwrotu inwestora. Przykład 2. Z arkusza dot. nieruchomości gruntowych odczytujemy, że działki w J. Górze były wyceniane na 82,1 zł, zaś we Wrocławiu na 472 zł (dane z czerwca 2009 r), to bezwzględna różnica tych cen wynosi 390 zł, czyli działki w J. Górze są o 390 zł tańsze niż we Wrocławiu. W kategoriach względnych (procentowych) powiemy, że działki w J. Górze są o 83% tańsze niż we Wrocławiu. Gdybyśmy oceniali względny wzrost cen działek we Wrocławiu w porównaniu do Jeleniej Góry, to stwierdzilibyśmy, że wynosi on 475%. Przykład 3 (do przykładu rozważanego w pliku Analiza cen nieruchomości w przestrzeni) Współczynnik zmienności cen nieruchomości w województwie dolnośląskim wynosi 72%, zaś w kujawsko-pomorskim 31%. Na tej podstawie możemy stwierdzić, że współczynnik zmienności w kujawsko-pomorskim jest niższy od dolnośląskiego o 41 pp. (72%-31%=41pp), lub w kategoriach procentowych jest niższy o (31-72)/72=0,58=58%. Pamiętajmy, że przy wyliczaniu zmian procentowych, czyli względnych na podstawie wzoru : (a-b)/b, należy uwzględnić właściwą podstawę porównań, czyli b. Wynika ona zarówno z logiki sformułowanego problemu (pytając o zmianę w stosunku do dolnośląskiego sugerujemy, że dolnośląskie stanowi podstawę porównań), jak i logiki wyliczeń, gdzie w liczniku należy tak ułożyć liczby, aby pokazywały właściwy kierunek zmiany (jeśli chcemy stwierdzić o ile ceny w kujawsko-pomorskim są niższe niż w dolnośląskim, należy tak ułożyć liczby w liczniku, aby dawały minus czyli 31-72, a nie 72-31).

6 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 6 Oczekiwana stopa zwrotu z inwestycji (oczekiwany zysk) : R n t 1 n R t Gdzie: R t stopa zwrotu w okresie t n- liczba okresów

7 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 7 Przykład obliczania stopy zwrotu z inwestycji Załóżmy, że Inwestor I zainwestował na giełdzie kwotę złotych kupując akcje firmy X i po 330 dniach sprzedał je za złotych. Oznacza to, że bezwzględna stopa zwrotu z inwestycji wyniosła złotych, zaś względna stopa zwrotu wyniosła 5% wartości zaangażowanego kapitału. Załóżmy teraz, że Inwestor II kupił akcje firmy Y za kwotę złotych i po 310 dniach sprzedał je za kwotę złotych. Jego zysk wyniósł zł., czyli 14,43% od zaangażowanego kapitału. Na podstawie:

8 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 8 Przykład obliczania stopy zwrotu -ćd Jak porównać wyniki obu inwestorów? Który z nich był efektywniejszy w zarządzaniu swoim kapitałem? Na pierwszy rzut oka wydaje się, że Inwestor I z nominalnym zyskiem wynoszącym 15% był lepszy od Inwestora II, który osiągnął "tylko" 14.43%. Po dokładniejszej analizie, zauważamy, że choć Inwestor II uzyskał tylko 14.43% od zaangażowanego kapitału, to jednak wartość tą osiągnął szybciej, bo tylko po 310 dniach trwania inwestycji, o 20 dni szybciej w porównaniu do Inwestora I.

9 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 9 Przykład obliczania stopy zwrotu -ćd Aby przytoczone wyżej inwestycje dało się poprawnie porównać należy sprowadzić zyski obu inwestorów do jednego mianownika, w tym wypadku przeliczyć na skalę jednego roku. Najłatwiej uczynić to rozwiązując następującą proporcję: 15%-330 x -365 X=16,59%, co oznacza, że roczna stopa zwrotu inwestora, który zarobił 15% w ciągu 330 dni wynosi 16,59%. Policz, ile wynosi roczna stopa zwrotu inwestora II

10 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 10 Opłacalność inwestycji Z czysto biznesowego punktu widzenia, aby inwestycja się opłacała powinna dać stopę zwrotu wyższą niż stopa zwrotu bez ryzyka.

11 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 11 Wartość przyszła pieniądza dla rocznej kapitalizacji odsetek (future value with annual interest compounding) FV n =PV(1+r) n FV future value after n years, PV present value, r- nominal interest rate, n number of years. Przykład 1: PV=1000 zł, r=10%, n=2 years FV=1000(1+0,1) 2 =1210 zł. Formuła w Excelu: =1000*(1+0,1)^2 Przykład 2. Obligacje skarbowe o terminie zapadalności powyżej roku. ession=76abbc9b3468d1b3cdf41457ca24e1c4

12 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 12 Efektywna stopa procentowa (effective rate of interest) r e =(1+r/m) m -1 Przykład. Bank A oferuje 10 % roczną stopę procentową z roczną kapitalizacją odsetek. Bank B oferuje 10 % roczną stopę procentową z kwartalną kapitalizacją odsetek. W przypadku banku A stopa nominalna jest równa efektywnej, czyli 10%. W przypadku banku B stopa efektywna wynosi r e =(1+0,1/4) 4-1= 0, =10,38%. Formuła w Excelu: =(1+0,1/4)^4-1 Przykład 2. Oprocentowanie obligacji trzyletnich z półroczną wypłatą odsetek (kiedyś co trzy miesiące) msession=76abbc9b3468d1b3cdf41457ca24e1c4

13 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 13 Wartość przyszła pieniądza dla kapitalizacji odsetek m razy w roku (future value with interest compounding m times per year) FV n =PV(1+r/m) nxm FV future value after n years, PV present value, m number of capitalization in one year. Przykład. PV=1000 zł, r=10%, n=2 years, m=4. FV=1000(1+0,1/4) 4*2 = 1218,4 zł. Formuła w Excelu: =1000*(1+0,025)^(4*2)= 1218,403

14 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 14 Finansowanie inwestycji z kredytu Obliczanie raty kredytu PMT, funkcja Excela - oblicza kwotę spłaty pożyczki przy założeniu stałych spłat okresowych i stałej stopy procentowej. Składnia PMT(stopa; liczba_rat; wa; [wp]; [typ]) Stopa Argument wymagany. Stopa procentowa pożyczki. Liczba_rat Argument wymagany. Całkowita liczba spłat w ramach pożyczki. Wa Argument wymagany. Wartość bieżąca, czyli całkowita kwota będąca wartością serii przyszłych płatności (nazywana także kapitałem). Wp Argument opcjonalny. Przyszła wartość, czyli saldo kasowe, które ma zostać osiągnięte po dokonaniu ostatniej płatności. Jeśli argument wp zostanie pominięty, zostanie przyjęta wartość 0 (zero), co będzie oznaczało, że przyszła wartość pożyczki wynosi 0. Typ Argument opcjonalny. Liczba 0 (zero) albo 1, która wskazuje, kiedy płatność jest należna. Wartość wynosi 0 (lub jest pominięty) gdy płatność przypada na koniec okresu, 1, gdy na początek. Inne funkcje, w szczególności IPMT znajdują się w pliku pomocy arkusza.

15 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 15 Przykład wyliczania kwoty raty kredytu Dane do zadania: kwota kredytu zł, liczba lat spłaty kredytu: 20, oprocentowanie roczne: 5%. Ile będzie wynosiła stała miesięczna rata kredytu? Po zapłaceniu ostatniej raty, ile będzie wynosiła ogólna kwota którą wpłaciłeś do banku? Jeżeli stać cię na płacenie raty rzędu 500 zł miesięcznie, jaką kwotę kredytu możesz wziąć przy innych warunkach nie zmienionych?\ Ile wynoszą odsetki od kapitału, które zwiększają wielkość nakładów na projekt w pierwszym roku jego realizacji?

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

MS Excel 2007 Kurs zaawansowany Funkcje finansowe. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 18

MS Excel 2007 Kurs zaawansowany Funkcje finansowe. prowadzi: Dr inż. Tomasz Bartuś. Kraków: 2008 04 18 MS Excel 2007 Kurs zaawansowany Funkcje finansowe prowadzi: Dr inż. Tomasz Bartuś Kraków: 2008 04 18 Funkcje finansowe Excel udostępnia cały szereg funkcji finansowych, które pozwalają na obliczanie min.

Bardziej szczegółowo

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Matematyka finansowa 17.05.2003

Matematyka finansowa 17.05.2003 1. Na początku roku (w chwili t = 0 ) portfel pewnego funduszu inwestycyjnego składa się z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, że: (i) obligacja

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

Praktyczne Seminarium Inwestowania w Nieruchomości

Praktyczne Seminarium Inwestowania w Nieruchomości Praktyczne Seminarium Inwestowania w Nieruchomości Kalkulator finansowy 10BII pierwsze kroki www.edukacjainwestowania.pl Kalkulator finansowy 10BII, oprócz typowych funkcji matematycznych i statystycznych,

Bardziej szczegółowo

Nazwa funkcji (parametry) Opis Parametry

Nazwa funkcji (parametry) Opis Parametry DB(koszt;odzysk;czas_życia;okres;miesiąc) DDB(koszt;odzysk;czas_życia;okres;współczynnik) Zwraca amortyzację środka trwałego w podanym okresie, obliczoną z wykorzystaniem metody równomiernie malejącego

Bardziej szczegółowo

Forward Rate Agreement

Forward Rate Agreement Forward Rate Agreement Nowoczesne rynki finansowe oferują wiele instrumentów pochodnych. Należą do nich: opcje i warranty, kontrakty futures i forward, kontrakty FRA (Forward Rate Agreement) oraz swapy.

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200

Bardziej szczegółowo

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności

Bardziej szczegółowo

KONTROLING FINANSOWY W EXCELU. Tom IV NPV WSP.KORELACJI ROZKŁ.EXP JEŻELI COS KOMÓRKA VBA DNI.ROBOCZE ILOCZYN LOG SUMA CZY.LICZBA

KONTROLING FINANSOWY W EXCELU. Tom IV NPV WSP.KORELACJI ROZKŁ.EXP JEŻELI COS KOMÓRKA VBA DNI.ROBOCZE ILOCZYN LOG SUMA CZY.LICZBA z a a w a n s o w a n y KONTROLING FINANSOWY W EXCELU VBA NPV WSP.KORELACJI ROZKŁ.EXP KOMÓRKA CZY.LICZBA JEŻELI COS DNI.ROBOCZE ILOCZYN LOG SUMA Tom IV Kontroling finansowy w Excelu Wojciech Próchnicki

Bardziej szczegółowo

Arkusz kalkulacyjny - Zadanie 6

Arkusz kalkulacyjny - Zadanie 6 Arkusz kalkulacyjny - Zadanie 6 Tabela przestawna to narzędzie, które oferuje szybkie tworzenie tzw. raportu tabeli przestawnej, czyli podsumowywania skomplikowanego zbioru danych. Wstawianie tabeli przestawnej

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

dr Tomasz Łukaszewski Budżetowanie projektów 1

dr Tomasz Łukaszewski Budżetowanie projektów 1 Firma rozważa sfinansowanie projektu kredytem. Kwota kredytu wynosi 100 000 zł, oprocentowanie 15%, spłacany będzie przez 7 lat. A. Ile wyniosą raty przy założeniu, że kredyt będzie spłacany ratą roczną

Bardziej szczegółowo

Darmowa publikacja dostarczona przez PatBank.pl - bank banków

Darmowa publikacja dostarczona przez PatBank.pl - bank banków Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:

Bardziej szczegółowo

Darmowa publikacja dostarczona przez ebooki24.org

Darmowa publikacja dostarczona przez ebooki24.org Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez ebooki24.org Copyright by Złote Myśli &, rok 2008 Autor: Tytuł:

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

STOPA DYSKONTOWA 1+ =

STOPA DYSKONTOWA 1+ = Piotr Cegielski, MAI, MRICS, CCIM STOPA DYSKONTOWA (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 10 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 Warianty W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się

Bardziej szczegółowo

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS

Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS Wyższa Szkoła Ekologii i Zarządzania Informatyka Arkusz kalkulacyjny Excel 2010 dla WINDOWS cz.5 Slajd 1/25 Slajd 2/25 W wielu wypadkach, przeprowadzając różne rozważania, chcemy zastanowić się A co by

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

Dynamiczne metody oceny opłacalności inwestycji tonażowych

Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne metody oceny opłacalności inwestycji tonażowych Dynamiczne formuły oceny opłacalności inwestycji tonażowych są oparte na założeniu zmiennej (malejącej z upływem czasu) wartości pieniądza. Im

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe Lokata inwestycyjna powiązana z rynkiem akcji ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer Serii Certyfikatów

Bardziej szczegółowo

Analiza finansowo-ekonomiczna projektów z odnawialnych źródeł energii. Daniela Kammer

Analiza finansowo-ekonomiczna projektów z odnawialnych źródeł energii. Daniela Kammer Analiza finansowo-ekonomiczna projektów z odnawialnych źródeł energii Daniela Kammer Celem analizy finansowo-ekonomicznej jest pokazanie, na ile opłacalna jest realizacje danego projekt, przy uwzględnieniu

Bardziej szczegółowo

Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r.

Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r. Informacja prasowa Warszawa, 13 lutego 2014 r. Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r. W styczniu 2014 roku inwestorzy kupili obligacje skarbowe o łącznej wartości 256,2 mln zł to trzeci

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne. Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik

Bardziej szczegółowo

Materiały uzupełniające do

Materiały uzupełniające do Dźwignia finansowa a ryzyko finansowe Przedsiębiorstwo korzystające z kapitału obcego jest narażone na ryzyko finansowe niepewność co do przyszłego poziomu zysku netto Materiały uzupełniające do wykładów

Bardziej szczegółowo

Technologia Informacyjna. Arkusz kalkulacyjny

Technologia Informacyjna. Arkusz kalkulacyjny Technologia Informacyjna Arkusz kalkulacyjny Arkusz kalkulacyjny Arkusz kalkulacyjny - program komputerowy służący do wykonywania obliczeń i wizualizacji otrzymanych wyników. Microsoft Excel Quattro Pro

Bardziej szczegółowo

Analiza opłacalności inwestycji v.

Analiza opłacalności inwestycji v. Analiza opłacalności inwestycji v. 2.0 Michał Strzeszewski, 1997 1998 Spis treści 1. Cel artykułu...1 2. Wstęp...1 3. Prosty okres zwrotu...2 4. Inflacja...2 5. Wartość pieniądza w czasie...2 6. Dyskontowanie...3

Bardziej szczegółowo

WSTĘP ZAŁOŻENIA DO PROJEKTU

WSTĘP ZAŁOŻENIA DO PROJEKTU UNIWERSYTET ZIELONOGÓRSKI WYDZIAŁ ZARZĄDZANIA Przykład analizy opłacalności przedsięwzięcia inwestycyjnego WSTĘP Teoria i praktyka wypracowały wiele metod oceny efektywności przedsięwzięć inwestycyjnych.

Bardziej szczegółowo

ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU. Sabina Rokita

ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU. Sabina Rokita ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU Sabina Rokita Podział metod oceny efektywności finansowej projektów 1.Metody statyczne: Okres

Bardziej szczegółowo

OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek

OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek OCENA EFEKTYWNOŚCI INWESTYCJI Jerzy T. Skrzypek 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

MSR 23 Koszty finansowania zewnętrznego

MSR 23 Koszty finansowania zewnętrznego MSR 23 Koszty finansowania zewnętrznego Ujęcie kosztów finansowania zewnętrznego przed 2009r ROZWIĄZANIE WZORCOWE Koszty finansowania zewnętrznego ujmowane są jako koszt w rachunku zysków i strat w okresie,

Bardziej szczegółowo

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu

ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ. dr Grzegorz Kotliński; Katedra Bankowości AE w Poznaniu ZARZĄDZANIE RYZYKIEM STOPY PROCENTOWEJ 1 DEFINICJA RYZYKA STOPY PROCENTOWEJ Ryzyko stopy procentowej to niebezpieczeństwo negatywnego wpływu zmian rynkowej stopy procentowej na sytuację finansową banku

Bardziej szczegółowo

Niniejszy ebook jest własnością prywatną.

Niniejszy ebook jest własnością prywatną. Niniejszy ebook jest własnością prywatną. Niniejsza publikacja, ani żadna jej część, nie może być kopiowana, ani w jakikolwiek inny sposób reprodukowana, powielana, ani odczytywana w środkach publicznego

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe Lokata Inwestycyjna Kurs na Złoto powiązane z ceną złota ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer Serii

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

KONTROLING FINANSOWY W EXCELU. Tom IV NPV WSP.KORELACJI ROZKŁ.EXP JEŻELI COS KOMÓRKA VBA DNI.ROBOCZE ILOCZYN LOG SUMA CZY.LICZBA

KONTROLING FINANSOWY W EXCELU. Tom IV NPV WSP.KORELACJI ROZKŁ.EXP JEŻELI COS KOMÓRKA VBA DNI.ROBOCZE ILOCZYN LOG SUMA CZY.LICZBA z a a w a n s o w a n y KONTROLING FINANSOWY W EXCELU VBA NPV WSP.KORELACJI ROZKŁ.EXP KOMÓRKA CZY.LICZBA JEŻELI COS DNI.ROBOCZE ILOCZYN LOG SUMA Tom IV Kontroling finansowy w Excelu Wojciech Próchnicki

Bardziej szczegółowo

Wyniki sprzedaży obligacji skarbowych w sierpniu 2014 r.

Wyniki sprzedaży obligacji skarbowych w sierpniu 2014 r. Informacja prasowa Warszawa, 15 września 2014 r. Wyniki sprzedaży obligacji skarbowych w sierpniu 2014 r. Sierpień był kolejnym miesiącem, w którym wartość sprzedaży obligacji Skarbu Państwa wzrosła. Wciąż

Bardziej szczegółowo

<1,0 1,0-1,2 1,2-2,0 >2,0

<1,0 1,0-1,2 1,2-2,0 >2,0 1. WSKAŹNIKI PŁYNNOŚCI WSKAŹNIK BIEŻĄCEJ PŁYNNOŚCI Pozostałe wskaźniki 2,0 Wskaźnik służy do oceny zdolności przedsiębiorstwa do regulowania krótkoterminowych zobowiązań. Do tego

Bardziej szczegółowo

ANALIZA FINANSOWA INWESTYCJI PV

ANALIZA FINANSOWA INWESTYCJI PV ANALIZA FINANSOWA INWESTYCJI PV Inwestor: Imię i Nazwisko Obiekt: Dom jednorodzinny Lokalizacja: ul. Słoneczna 10 10-100 SŁONECZNO Data: 01.03.2015 Kontakt: Andrzej Nowak Firma instalatorska ul. Rzetelna

Bardziej szczegółowo

Wartość pieniądza w czasie (time value of money)

Wartość pieniądza w czasie (time value of money) Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY

MATERIAŁ INFORMACYJNY MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe powiązane z indeksem S&P 500 ze 100% gwarancją zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer Serii Certyfikatów Depozytowych

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

1. Wzrost zbyt szybki prowadzi do utraty samodzielności firmy (take-over). 2. Jednym z założeń modelu wzrostu zrównoważonego jest płynna struktura

1. Wzrost zbyt szybki prowadzi do utraty samodzielności firmy (take-over). 2. Jednym z założeń modelu wzrostu zrównoważonego jest płynna struktura 1. Wzrost zbyt szybki prowadzi do utraty samodzielności firmy (take-over). 2. Jednym z założeń modelu wzrostu zrównoważonego jest płynna struktura kapitałowa. 3. Wskaźnik zysku zatrzymanego to iloraz przyrostu

Bardziej szczegółowo

Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości

Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości Temat: Dochody z kapitału Opracowała Grażyna Drożdżowska Uwagi realizacyjne Lekcja jest przewidziana jako jednostka 2- godzinna stanowiąca utrwalenie

Bardziej szczegółowo

ANALIZA WSKAŹNIKOWA. Prosta, szybka metoda oceny firmy.

ANALIZA WSKAŹNIKOWA. Prosta, szybka metoda oceny firmy. ANALIZA WSKAŹNIKOWA Prosta, szybka metoda oceny firmy. WSKAŹNIKI: Wskaźniki płynności Wskaźniki zadłużenia Wskaźniki operacyjności Wskaźniki rentowności Wskaźniki rynkowe Wskaźniki płynności: pokazują

Bardziej szczegółowo

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

Matematyka finansowa 30.09.2013 r. Komisja Egzaminacyjna dla Aktuariuszy. LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

5,00 % 0,00 % 0,00 % 2,58 % 3,28 % 3,27 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 205,12 zł 152,99 zł 259,65 zł. 0,00 zł 0,00 zł 0,00 zł

5,00 % 0,00 % 0,00 % 2,58 % 3,28 % 3,27 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 205,12 zł 152,99 zł 259,65 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia: 06122015 (23:03) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruchomości:

Bardziej szczegółowo

FIN 402: Nieruchomość jako inwestycja narzędzia finansowe

FIN 402: Nieruchomość jako inwestycja narzędzia finansowe FIN 402: Nieruchomość jako inwestycja narzędzia finansowe Szczegółowy program kursu 1. Budżetowanie i analiza Budżety stanowią dla zarządców jedno z głównych źródeł informacji przy podejmowaniu decyzji

Bardziej szczegółowo

Instrumenty pochodne Instrumenty wbudowane

Instrumenty pochodne Instrumenty wbudowane www.pwcacademy.pl Instrumenty pochodne Instrumenty wbudowane Jan Domanik Instrumenty pochodne ogólne zasady ujmowania i wyceny 2 Instrument pochodny definicja. to instrument finansowy: którego wartość

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Co należy wiedzieć o racie mieszkaniowego kredytu hipotecznego?

Co należy wiedzieć o racie mieszkaniowego kredytu hipotecznego? Co należy wiedzieć o racie mieszkaniowego kredytu hipotecznego?, czyli na co zwrócić szczególną uwagę przy doborze kredytu. Autor: Przemysław Mudel p.mudel@niezaleznydoradca.pl Copyright 2007 Przemysław

Bardziej szczegółowo

05-530 Góra Kalwaria, ul. Pijarska 21 tel.: [22] 717-82-65 fax: [22] 717-82-66 kom.: [0] 692-981-991, [0] 501-633-694 Info: 0 708 288 308

05-530 Góra Kalwaria, ul. Pijarska 21 tel.: [22] 717-82-65 fax: [22] 717-82-66 kom.: [0] 692-981-991, [0] 501-633-694 Info: 0 708 288 308 05-530 Góra Kalwaria, ul. Pijarska 21 tel.: [22] 717-82-65 fax: [22] 717-82-66 kom.: [0] 692-981-991, [0] 501-633-694 Info: 0 708 288 308 biuro@assman.com.pl http://www.assman.com.pl 21-11-2006 W części

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 3. Podstawowe obliczenia finansowe w Matlabie. Obligacje Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych

Bardziej szczegółowo

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

5,00 % 0,00 % 0,00 % 2,57 % 3,33 % 3,09 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 204,98 zł 153,48 zł 151,10 zł.

5,00 % 0,00 % 0,00 % 2,57 % 3,33 % 3,09 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 204,98 zł 153,48 zł 151,10 zł. Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02092015 (23:28) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

2,00 % 5,00 % 0,00 % 2,99 % 2,57 % 3,20 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 150,09 zł 204,98 zł 152,19 zł. 0,00 zł 0,00 zł 0,00 zł

2,00 % 5,00 % 0,00 % 2,99 % 2,57 % 3,20 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z 5. 150,09 zł 204,98 zł 152,19 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia:02092015 (23:33) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruc homośc

Bardziej szczegółowo

Liczenie efektów ekonomicznych i finansowych projektów drogowych na sieci dróg krajowych w najbliższej perspektywie UE, co się zmienia a co nie?

Liczenie efektów ekonomicznych i finansowych projektów drogowych na sieci dróg krajowych w najbliższej perspektywie UE, co się zmienia a co nie? Liczenie efektów ekonomicznych i finansowych projektów drogowych na sieci dróg krajowych w najbliższej perspektywie UE, co się zmienia a co nie? Danuta Palonek dpalonek@gddkia.gov.pl Czym jest analiza

Bardziej szczegółowo

Rentowność najmu przebiła lokaty i obligacje

Rentowność najmu przebiła lokaty i obligacje najmu przebiła lokaty i obligacje Autor: Emil Szweda, Bernard Waszczyk, Open Finance 13.09.2010. Portal finansowy IPO.pl Szczyt sezonu najmu, związany z napływem studentów na uczelnie i spadek oprocentowania

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Strategie inwestycyjne na rynku kapitałowym Inwestowanie na rynku dr Piotr Stobiecki Uniwersytet Ekonomiczny w Poznaniu 13 października 2011 r. PLAN WYKŁADU I. Wprowadzenie

Bardziej szczegółowo

Uniwersalny harmonogram kredytowy

Uniwersalny harmonogram kredytowy 2008 Uniwersalny harmonogram kredytowy Sposoby spłaty i efektywny koszt kredytu Część II warsztatów komputerowych poświęcona tworzeniu dynamicznego harmonogramu kredytowego umożliwiającego porównanie sposobów

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

OPISY PRODUKTÓW. Rabobank Polska S.A.

OPISY PRODUKTÓW. Rabobank Polska S.A. OPISY PRODUKTÓW Rabobank Polska S.A. Warszawa, marzec 2010 Wymiana walut (Foreign Exchange) Wymiana walut jest umową pomiędzy bankiem a klientem, w której strony zobowiązują się wymienić w ustalonym dniu

Bardziej szczegółowo

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego).

Forward kontrakt terminowy o charakterze rzeczywistym (z dostawą instrumentu bazowego). Kontrakt terminowy (z ang. futures contract) to umowa pomiędzy dwiema stronami, z których jedna zobowiązuje się do kupna, a druga do sprzedaży, w określonym terminie w przyszłości (w tzw. dniu wygaśnięcia)

Bardziej szczegółowo