Matematyka bankowa 1 1 wykład

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka bankowa 1 1 wykład"

Transkrypt

1 Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, Łódź, Poland address: klimdr/

2 Bibliografia [1] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN. [2] S. G. Kellison, The Theory of Interest, McGraw-Hill Int. Ed. [3] E. Smaga, Arytmetyka finansowa, PWN. [4] M. Sobczyk, Matematyka finansowa, Placet. [5] M. Szałański, Podstawy matematyki finansowej, Elipsa. [6] M. Capinski, T. Zastawniak, Mathematics for Finance: An Introduction to Financial Engineering, Springer. 1

3 Oprocentowanie, kapitalizacja i dyskontowanie Podstawowymi transakcjami finansowymi jest inwestowanie pewnych ilości pieniędzy w celu osiągnięcia zysku. Przykładem takiej inwestycji może być wpłata określonej kwoty na rachunek oszczędnościowy w banku. Kwotę tę nazywamy kapitałem, kapitałem początkowym, wartością poczatkową inwestycji (ang. principal, present value) i oznaczamy przez P, P V. Kwotę jaką uzyskamy po pewnym czasie albo pod koniec inwestycji nazywamy kapitałem końcowym, kapitałem przyszłym, wartością przyszłą (ang. accumulated value, future value) i oznaczamy przez F, F t, F V. Będziemy zakładać, że F > P. Różnicę I = F P, czyli zysk z zainwestowanego kapitału nazywamy odsetkami (amount of interest lub krótko interest). Miernikiem wielkości wygenerowanych odsetek w ustalonym czasie jest stopa procentowa r > 0 (rate of interest). Definiujemy ją jako stosunek odsetek do kapitału początkowego, czyli r = I P. Stopa procentowa jest przeważnie liczbą z przedziału (0, 1). Możemy ją wyrazić jako liczbę niemianowaną tj. liczbę w postaci ułamka dziesiętnego lub zwykłego albo wyrazić w procentach mnożąc przez 100%. Przedział czasu uwzględniony w określających stopę procentową odsetkach nazywamy okresem stopy procentowej (period of interest). W praktyce najczęściej mamy do czynienia ze stopami określonymi dla okresu rocznego. Mówimy wtedy o rocznej stopie procentowej lub stopie procentowej w skali roku. Przy badaniu problemów teorii zmiany kapitału w czasie oraz konsekwencji stąd wypływających podstawowymi pojęciami są: oprocentowanie, kapitalizacja i dyskontownie. Oprocentowaniem nazywamy wyznaczanie odsetek. Najkrótszy przedział czasu, po którym zostały wyznaczone odsetki, nazywamy okresem oprocentowania. Natomiast czas pomiędzy początkiem i końcem inwestycji - czasem oprocentowania, czasem inwestycji, horyzontem czasowym inwestycji. Czas może być mierzony za pomocą różnych jednostek np. dni, miesięcy, roku, itp. Jednostka, którą będziemy mierzyć czas inwestycji nazywamy krótko okresem (period). Kapitalizacją odsetek lub krótko kapitalizacja nazywamy powiększanie kapitału o odsetki. Czas, po którym odsetki są skapitalizowane nazywamy okresem kapitalizacji. Gdy okres stopy procentowej pokrywa się z okresem oprocentowania, to mówimy o oprocentowaniu zgodnym. W przeciwnym przypadku mówimy o oprocentowaniu niezgodnym. W zależności od sposobu ustalania odsetek wyróżniamy oprocentowanie proste (simple interest) i składane (złożone) (compound interest). W pierwszym przypadku oprocentowaniu podlega wyłącznie kapitał początkowy zaś w drugim oprocentowaniu podlega kapitał początkowy i wygenerowane w trakcie czasu oprocentowania odsetki. Przez warunki oprocentowania rozumiemy zbiór danych potrzebnych do wyznaczenia w sposób jednoznaczny wysokości odsetek należnych od ustalonego kapitału za ustalony czas. Dyskontowaniem rzeczywistym lub krótko dyskontowaniem nazywamy wyznaczanie wcześniejszych wartości kapitału w oparciu o wartości przyszłe. W szczególności dyskontowaniem 2

4 jest obliczanie wartości początkowej kapitału P na podstawie wartości końcowej F. Kwota D, o którą należy pomniejszyć F, aby otrzymać P, nazywa się dyskontem. Funkcja akumulacji i dyskontowania Niech [0, T ] będzie czasem inwestycji, T 0. Rozważmy inwestycję kapitału jednej jednostki. Niech a(t) 0 oznacza wartość przyszłą tego kapitału w momencie t [0, T ]. Funkcję a : t a(t) nazywamy funkcją akumulacji (accumulation function) jednej jednostki kapitału. Funkcja akumulacji posiada następujące własności: 1. a(0) = a jest funkcja rosnącą. Gdyby funkcja przyjmowała wartości mniejsze przy wzroście t, to generowała by ujemne odsetki, co od strony matematycznej jest możliwe natomiast od strony finansowej takimi przypadkami nie będziemy się zajmować. 3. Jeżeli generowane odsetki będą gromadzić się w sposób ciągły, to funkcja akumulacji też będzie ciągła. Jeżeli odsetki będą gromadzić się w sposób skokowy zależnie od okresu oprocentowania, to funkcja akumulacji będzie w tych punktach nieciągła a dokładnie będzie ciągła z prawej strony. Dla ustalonego t wartość a(t) będziemy nazywali t-okresowym czynnikiem akumulacji (accumulation factor). Jeżeli inwestycją będzie kapitał P, to wartość przyszła tego kapitału w czasie t [0, T ] wyrazi się wzorem F t = P a(t). Oczywiscie F 0 = P. W celu wyznaczenia wartości początkowej kapitału 1 jednostki po czasie T należy rozważyć fnkcję a 1 : t a 1 (t) spełniającą a 1 (t) a(t) = 1 dla każdego t [0, T ]. a 1 nazywamy funkcją dyskontowania (discount function) jednej jednostki kapitału. Dla ustalonego t wartość a 1 (t) będziemy nazywali t-okresowym czynnikiem dyskontowania (discount factor). Oczywiście dla kapitału F t wartość początkowa tego kapitału wyraża się wzorem P = F t a 1 (t). Przypuśćmy teraz, że dana jest pewna inwestycja o horyzoncie czasowym [0, T ] i że w momencie t 1 [0, T ] został zainwestowany pewien kapitał P 1. W celu wyznaczenia wartości przyszłej F t2 tego kapitału w momencie t 2 [0, T ], t 2 > t 1 należy skorzystać ze wzoru F t2 = P 1 a 1 (t 1 ) a(t 2 ). Dla t = 0, 1, 2,... będziemy częściej stosowali oznaczenie a(n) zamiast a(t), F n zamiast F t itp. Przez I n będziemy oznaczać odsetki uzyskane w n-tym okresie inwestycji. Zatem I n = F n F n 1 dla n = 1, 2, 3,.... Oprocentowanie zgodne Będziemy zakładać, że: -) czas oprocentowania składa się ze skończonej ilości podokresów będących okresami oprocentowania; -) okres stopy procentowej r pokrywa się z okresem oprocentowania. 3

5 Oprocentowanie proste Zasady oprocentowania prostego są stosowane w obliczeniach bankowych transakcji krótkoterminowych (do jednego roku) oraz umowach zawieranych poza sferą bankową. Zasada oprocentowania prostego charakteryzuje się następującą cechą: odsetki uzyskane w czasie inwestycji po każdym okresie oprocentowania są generowane od wartości początkowej kapitału, czyli nie podlegają kapitalizacji w czasie a na końcu inwestycji. Wyznaczymy postać ogólna ciągu {F n } n=1 przyszłych wartości kapitału P po czasie n, będącym całkowitą wielokrotnością okresu oprocentowania. Obliczanie wartości F n+1 na koniec (n + 1) go okresu oprocentowania przebiega następująco: do wartości F n z końca n-tego okresu kapitalizacji dopisujemy odsetki I n+1 przypadające za (n+1)-szy okres. Tak więc ciąg (F n ) spełnia równanie rekurencyjne postaci (1) F n+1 = F n + I n+1, n = 0, 1,... z warunkiem początkowym F 0 = P. Ponieważ oprocentowaniu podlega tylko kapitał początkowy P, to ciąg odsetek (I n ) jest ciągiem stałym o wyrazie ogólnym postaci (2) I n = P r, n = 0, 1,. Podstawiając (2) do (1) otrzymujemy równanie (3) F n+1 = F n + P r, n = 0, 1,..., a stąd (4) F n+1 F n = P r, n = 0, 1,.... Wzór (4) wskazuje, że ciąg (F n ) jest ciągiem arytmetycznym o różnicy P r i pierwszym wyrazie postaci F 1 = P + P r = P (1 + r). Zatem, w myśl (3) n-ty wyraz tego ciągu ma postać (5) F n = P (1 + nr). Funkcja akumulacji wyraża się tutaj wzorem a(t) = a(n) dla t [n, n + 1), gdzie a(n) = 1 + nr, n = 0, 1,... jest n-okresowym czynnikiem akumulacji kapitału w modelu oprocentowania prostego. Z (5) otrzymujemy postać n-okresowego czynnika dyskontowania 1/(1 + nr) oraz wzór na wartość początkową kapitału P (6) P = F n 1 + nr. Zauważmy, że suma odsetek wytworzonych przez kapitał P w ciągu n okresów kapitalizacji jest równa różnicy wartości przyszłej F n i wartości teraźniejszej P a więc (7) I = F n P = P nr. Zatem wzór (5) wskazuje, że wartość przyszła kapitału P po n okresach kapitalizacji jest sumą wartości kapitału początkowego i odsetek za czas n. 4

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

Matematyka bankowa 2

Matematyka bankowa 2 1. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki 2. Instytut Nauk Ekonomicznych i Informatyki Państwowa Wyższa Szkoła Zawodowa w Płocku Matematyka bankowa 2 średnio- i

Bardziej szczegółowo

I = F P. P = F t a(t) 1

I = F P. P = F t a(t) 1 6. Modele wartości pieniądza w czasie. Współczynnik akumulacji kapitału. Kapitalizacja okresowa, kapitalizacja ciągła. Wartość bieżąca, wartość przyszła. Pojęcia kredytu, renty, renty wieczystej, zadłużenia

Bardziej szczegółowo

0.2 Oprocentowanie, kapitalizacja i dyskontowanie

0.2 Oprocentowanie, kapitalizacja i dyskontowanie 0.1 Literatura 1 M. Podgórska J. Klimkowska Matematyka finansowa PWN. 2 S. G. Kellison The Theory of Interest McGraw-Hill Int. Ed. 3 E. Smaga Arytmetyka finansowa PWN. 0.2 Oprocentowanie kapitalizacja

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Matematyka bankowa. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki. Dorota Klim

Matematyka bankowa. Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki. Dorota Klim Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki Uniwersytet Łódzki Matematyka bankowa www.math.uni.lodz.pl/ klimdr klimdr@math.uni.lodz.pl 1 / 152 [1] M. Podgórska, J. Klimkowska, Matematyka

Bardziej szczegółowo

KARTA PRZEDMIOTU. MBAN1_M w języku polskim Matematyka bankowa 1 w języku angielskim Mathematics of banking 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. MBAN1_M w języku polskim Matematyka bankowa 1 w języku angielskim Mathematics of banking 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU MBAN1_M w języku polskim Matematyka bankowa 1 w języku angielskim Mathematics of banking 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171)

MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Przedmiot: MODELOWANIE RYNKÓW FINANSOWYCH (MAP1171) Prowadzący wykład: dr Krzysztof Samotij, e-mail: krzysztof.samotij@pwr.edu.pl Czas i miejsce wykładu: poniedziałki (wg definicji J.M. Rektora) g. 9:15-11:00,

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.

Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1 i 2

Zadania do wykładu Matematyka bankowa 1 i 2 Zadania do wykładu Matematyka bankowa 1 i 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address:

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Instytut Matematyki i Informatyki, Państwowej Wyższej Szkoły Zawodowej w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

1 Wstęp. arytmetykę finansową (problemy związane z oprocentowaniem i dyskontowaniem, w szczególności plany spłaty kredytów);

1 Wstęp. arytmetykę finansową (problemy związane z oprocentowaniem i dyskontowaniem, w szczególności plany spłaty kredytów); Wstęp Zastosowania matematyki w ekonomii obejmują cały szereg zagadnień, poczynając od prostych operacji arytmetycznych. Dzięki matematyce ekonomiści są w stanie opisywać złożone zjawiska i formułować

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 1

Zadania do wykładu Matematyka bankowa 1 Zadania do wykładu Matematyka bankowa 1 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk

Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Podstawy teorii oprocentowania Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Cykl produkcyjny zakładów ubezpieczeń Ryzyko działalności zakładu ubezpieczeń Ryzyko finansowe działalności

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS PRZEDMIOTU. Obowiązuje od roku akademickiego: 2010/2011 PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W NOWYM SĄCZU SYLABUS Obowiązuje od roku akademickiego: 2010/2011 Instytut Ekonomiczny Kierunek studiów: Ekonomia Kod kierunku: 04.9 Specjalność: Finanse i rachunkowość

Bardziej szczegółowo

2a. Przeciętna stopa zwrotu

2a. Przeciętna stopa zwrotu 2a. Przeciętna stopa zwrotu Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2a. Przeciętna stopa zwrotu Matematyka

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wstęp do matematyki finansowej Introduction to financial mathematics Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w

Bardziej szczegółowo

5. Strumienie płatności: renty

5. Strumienie płatności: renty 5. Strumienie płatności: renty Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5. Strumienie płatności: renty Matematyka

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Piotr Szczepankowski Poziom studiów (I lub II stopnia): I stopnia

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Papiery wartościowe o stałym dochodzie

Papiery wartościowe o stałym dochodzie Papiery wartościowe o stałym dochodzie Inwestycje i teoria portfela Strona 1 z 42 1. Wartość pieniądza w czasie Złotówka dzisiaj (którą mamy w ręku) jest więcej warta niż (przyrzeczona) złotówka w przyszłości,

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

Matematyka Ekonomiczna

Matematyka Ekonomiczna Matematyka Ekonomiczna Dr. hab. David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Wtorek 11-13, Czwartek 11-13 28 września

Bardziej szczegółowo

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Z-EKO-045 Matematyka finansowa Financial Mathematics. Ekonomia I stopień Ogólnoakademicki

Z-EKO-045 Matematyka finansowa Financial Mathematics. Ekonomia I stopień Ogólnoakademicki KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-EKO-045 Matematyka finansowa Financial Mathematics A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

1a. Lokaty - wstęp. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa

1a. Lokaty - wstęp. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa 1a. Lokaty - wstęp Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 1a. Lokaty - wstęp Matematyka finansowa 1 / 44 1

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Matematyka Ekonomiczna

Matematyka Ekonomiczna Matematyka Ekonomiczna David Ramsey, Prof. PWr e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Poniedziałek 14-16, Wtorek 16-18

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

1 INWESTOWANIE PODSTAWOWE POJĘCIA

1 INWESTOWANIE PODSTAWOWE POJĘCIA SPIS TREŚCI WSTĘP... 11 Rozdział 1 INWESTOWANIE PODSTAWOWE POJĘCIA... 13 1.1. Uwagi wstępne... 13 1.2. Pojęcie inwestycji ujęcie w różnych kontekstach... 14 1.2.1. Inwestowanie w kontekście ekonomicznym...

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 6 listopada 2017 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k 2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r. Wartość pieniądzaw czasie Wartość

Bardziej szczegółowo

Analiza opłacalności inwestycji v.

Analiza opłacalności inwestycji v. Analiza opłacalności inwestycji v. 2.0 Michał Strzeszewski, 1997 1998 Spis treści 1. Cel artykułu...1 2. Wstęp...1 3. Prosty okres zwrotu...2 4. Inflacja...2 5. Wartość pieniądza w czasie...2 6. Dyskontowanie...3

Bardziej szczegółowo

2. Funkcja akumulacji i wartość przyszła

2. Funkcja akumulacji i wartość przyszła 2. Funkcja akumulacji i wartość przyszła Zadanie 1 An investment of $10000 is made into a fund at time t=0. The fund develops the following balances over the next 4 years: F (0) = 10000, F (1) = 10600,

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty poniesione

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka Finansowa dla liderów dr Aneta Kaczyńska Uniwersytet Ekonomiczny w Poznaniu 30 listopada 2017 r. Dr Tomaszie Projektami EKONOMICZNY UNIWERSYTET DZIECIĘCY Copywrite

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2 Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane

Bardziej szczegółowo

Darmowa publikacja dostarczona przez PatBank.pl - bank banków

Darmowa publikacja dostarczona przez PatBank.pl - bank banków Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math)

Ciągi. Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Ciągi Kurs matematyki w Oratorium (http://www.salezjanie.rumia.pl/math) Spis treści 1 Ciągi liczbowe 1 1.1 Podstawowe własności ciągów................... 2 1.2 Granica ciągu............................

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Darmowa publikacja dostarczona przez ebooki24.org

Darmowa publikacja dostarczona przez ebooki24.org Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez ebooki24.org Copyright by Złote Myśli &, rok 2008 Autor: Tytuł:

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy

Bardziej szczegółowo

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS

Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Inżynieria finansowa Wykład IV Kontrakty OIS/IRS/CRIS Wydział Matematyki Informatyki i Mechaniki UW 25 października 2011 1 Kontrakty OIS 2 Struktura kontraktu IRS Wycena kontraktu IRS 3 Struktura kontraktu

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.

Bardziej szczegółowo

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa

2b. Inflacja. Grzegorz Kosiorowski. Uniwersytet Ekonomiczny w Krakowie. Matematyka finansowa 2b. Inflacja Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2b. Inflacja Matematyka finansowa 1 / 22 1 Motywacje i

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE Projekt Nakłady inwestycyjne, pożyczka + WACC Prognoza przychodów i kosztów Prognoza rachunku wyników Prognoza przepływów finansowych Wskaźniki

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska:

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska: Prawie wszyscy wiedzą, że pewna suma pieniędzy ma dziś większą wartość niż ta sama suma w przyszłości. Mówi się, że pieniądz traci na wartości. Używając bardziej precyzyjnej terminologii trzeba powiedzieć

Bardziej szczegółowo

Procenty zadania maturalne z rozwiązaniami

Procenty zadania maturalne z rozwiązaniami Każde zadanie 1 punkt. 1. Cena towaru bez podatku VAT jest równa 60 zł. Towar ten wraz z podatkiem VAT w wysokości 22% kosztuje 0,22 60 = 13,20 kwota VAT 60 + 13,20 = 73,20 Odp. A 2. Wskaż liczbę, której

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Przedstawienie

Bardziej szczegółowo

1 Pomiar dochodowości inwestycji istota,

1 Pomiar dochodowości inwestycji istota, 1 Pomiar dochodowości inwestycji istota, odmiany i cechy stóp zwrotu Wprowadzenie Podstawową miarą wykorzystywaną do oceny opłacalności inwestycji jest stopa zwrotu. Drugim obok niej miernikiem efektywności

Bardziej szczegółowo

1. Spłata długów. Są także kredyty preferencyjne udzielane przez banki zgodnie z projek-

1. Spłata długów. Są także kredyty preferencyjne udzielane przez banki zgodnie z projek- 1. Spłata długów Kredyt i pożyczka bywają traktowane jako synonimy, ale w sensie prawno-- ekonomicznym bardzo się różnią. Mianowicie: Pożyczka jest instytucją prawa cywilnego i może jej udzielać tylko

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Wprowadzenie do handlu na rynku kapitałowym Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia

Bardziej szczegółowo

Praktyczne Seminarium Inwestowania w Nieruchomości

Praktyczne Seminarium Inwestowania w Nieruchomości Praktyczne Seminarium Inwestowania w Nieruchomości Kalkulator finansowy 10BII pierwsze kroki www.edukacjainwestowania.pl Kalkulator finansowy 10BII, oprócz typowych funkcji matematycznych i statystycznych,

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku

INDEKS FINANSISTY. Monika Skrzydłowska. PWSZ w Chełmie. październik Projekt dofinansowała Fundacja mbanku INDEKS FINANSISTY Monika Skrzydłowska PWSZ w Chełmie październik 2017 Projekt dofinansowała Fundacja mbanku Monika Skrzydłowska (PWSZ w Chełmie) INDEKS FINANSISTY październik 2017 1 / 23 Spis treści 1

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł

Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Plan wynikowy z wymaganiami edukacyjnymi z matematyki w zakresie podstawowym dla klasy 1 zsz Katarzyna Szczygieł Lp. Temat Kształcone umiejętności 1 Zasady pracy na lekcjach matematyki. Dział I. LICZBY

Bardziej szczegółowo

Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014

Propozycje przedmiotów do wyboru. oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014 Propozycje przedmiotów do wyboru oferowane na stacjonarnych studiach I stopnia (dla 2 roku) w roku akademickim 2013/2014 Spis treści 1. ANALIZA PORTFELOWA I RYNKI KAPITAŁOWE................... 3 2. ELEMENTY

Bardziej szczegółowo

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2 METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2 - Cel ćwiczeń - Komunikacja email: i.ratuszniak@efficon.pl, w temacie - mopi - Konsultacje: pokój: 428,

Bardziej szczegółowo

7. Papiery wartościowe: weksle i bony skarbowe

7. Papiery wartościowe: weksle i bony skarbowe 7. Papiery wartościowe: weksle i bony skarbowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny 7. Papiery w Krakowie) wartościowe:

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po

Bardziej szczegółowo

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności

Bardziej szczegółowo

VIII Wojewódzki Konkurs Matematyczny "W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 3 marca 2016 r.

VIII Wojewódzki Konkurs Matematyczny W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 3 marca 2016 r. VIII Wojewódzki Konkurs Matematyczny "W Świecie Matematyki im. Prof. Włodzimierza Krysickiego Etap drugi - 3 marca 2016 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu składa się z

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

STOPA DYSKONTOWA 1+ =

STOPA DYSKONTOWA 1+ = Piotr Cegielski, MAI, MRICS, CCIM STOPA DYSKONTOWA (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 10 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 3. Podstawowe obliczenia finansowe w Matlabie. Obligacje Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo