WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony
|
|
- Tomasz Maj
- 6 lat temu
- Przeglądów:
Transkrypt
1 WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór wartości i miejsce zerowe; -zapisać funkcję różnymi sposobami; -odczytać z wykresu największa i najmniejszą wartość funkcji w podanym przedziale; -obliczyć wartość funkcji dla danego argumentu; -wykonać wykres funkcji np.: y=3x+7 i odczytać jej własności; 3x 6 -wyznaczyć dziedzinę i miejsce zerowe funkcji np.: y = 2x 5, -wykonać wykres funkcji np.: y = x 2, y = x 3, y = x 3 i odczytać własności; -zbadać monotoniczność funkcji; -rozróżnić na grafie funkcji: różnowartościową, na, w ; -rozróżnić na podstawie wykresu funkcje parzyste, nieparzyste, okresowe; y =x 2-9, y = 2x 8 ; -sporządzić wykres funkcji np.: y = x, y = x 2 i odczytać własności; bardzo -narysować wykres funkcji, której wzór jest dany przedziałami liczbowymi; -narysować wykres funkcji odwrotnej do danej; -zapisać wzorem zależności między danymi; -zinterpretować dane z prasy, rocznika statystycznego, literatury fachowej; -uzasadnić własności funkcji; -opisać zależności w życiu codziennym za pomocą funkcji; -wyznaczyć wzór funkcji odwrotnej do danej; -napisać wzór funkcji, która jest złożeniem dwóch innych funkcji; -zbadać parzystość i nieparzystość funckji; -przekształcić wykres funkcji przez symetrię względem osi układu współrzędnych; -uzasadnić na przykładzie własności funkcji; -zbadać własności funkcji nieciągłej; -biegle stosować poznane wiadomości i stosować je w sytuacjach nietypowych; Przekształcenia wykresów funkcji. - zna określenie wektora i potrafi podać jego cechy; -obliczyć współrzędne wektora, mając dane współrzędne początku i końca wektora; - obliczyć współrzędne początku wektora (końca wektora), gdy dane ma współrzędne wektora oraz współrzędne końca (początku) wektora; wyznaczyć długość wektora (odległość między punktami na płaszczyźnie kartezjańskiej); zna określenie wektorów równych i wektorów przeciwnych oraz potrafi stosować własności tych wektorów przy rozwiązywaniu zadań; obliczyć współrzędne środka odcinka; potrafi wykonywać działania na wektorach: dodawanie, odejmowanie oraz mnożenie przez liczbę (analitycznie); potrafi podać współrzędne punktu, który jest obrazem danego punktu w symetrii osiowej względem osi OX oraz osi OY; potrafi podać współrzędne punktu, który jest obrazem danego punktu w symetrii środkowej względem punktu (0,0);
2 potrafi podać współrzędne punktu, który jest obrazem danego punktu w przesunięciu równoległym o dany wektor; -potrafi narysować wykres funkcji y = f(x) + q, y = f(x p), y = f(x p) + q, y = f(x), y = f( x) oraz y = f( x) w przypadku, gdy dany jest wykres funkcji y = f(x); (potrafi narysować wykresy funkcji określonych wzorami, np.: y = (x + 3) 2 ; y = x 4; y = x 1 ; 1 y = (x 1) 2 5, y = x, y = 3 ); x 2 umie podać własności funkcji: y = f(x) + q, y = f(x p), y = f(x p) + q, y = f(x), y = f( x), y = f( x) w oparciu o dane własności funkcji y = f(x); potrafi zapisać wzór funkcji, której wykres otrzymano w wyniku przekształcenia wykresu funkcji f przez symetrię osiową względem osi OX, symetrię osiową względem osi OY, symetrię środkową względem początku układu współrzędnych, przesunięcie równoległe o dany wektor; bardzo -zna własności działań na wektorach i potrafi je stosować w rozwiązywaniu zadań o średnim stopniu trudności; -potrafi na podstawie wykresu funkcji y = f (x) sporządzić wykresy funkcji: y = f(x, ) y = f( x ), y = k f(x), k 0 oraz y = f(k x), k 0; -potrafi przeprowadzić dyskusję rozwiązań równania z parametrem f(x) = m, w oparciu o wykres funkcji f; - potrafi stosować własności przekształceń geometrycznych przy rozwiązywaniu zadań o średnim stopniu trudności; -potrafi naszkicować wykres funkcji, którego sporządzenie wymaga kilku poznanych przekształceń; -potrafi rozwiązywać nietypowe zadania (o podwyższonym stopniu trudności), dotyczące przekształceń wykresów funkcji oraz własności funkcji; Funkcja liniowa. wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością prostą; potrafi wskazać współczynnik proporcjonalności; rozwiązuje zadania tekstowe z zastosowaniem proporcjonalności prostej; zna pojęcie funkcji liniowej; potrafi interpretować współczynniki we wzorze funkcji liniowej; potrafi sporządzić wykres funkcji liniowej danej wzorem; potrafi na podstawie wykresu funkcji liniowej (wzoru funkcji) określić monotoniczność funkcji; potrafi wyznaczyć algebraicznie i graficznie zbiór tych argumentów, dla których funkcja liniowa przyjmuje wartości dodatnie (ujemne, niedodatnie, nieujemne); potrafi sprawdzić algebraicznie, czy punkt o danych współrzędnych należy do wykresu funkcji liniowej; potrafi podać własności funkcji liniowej na podstawie wykresu tej funkcji; wie, że współczynnik kierunkowy a we wzorze funkcji y = ax + b oznacza tangens kąta nachylenia wykresu funkcji liniowej do osi OX; wie, że współczynnik kierunkowy a we wzorze funkcji liniowej y = ax + b wyraża się wzorem y a x 2 2 y x 1 1, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; potrafi znaleźć wzór funkcji liniowej o zadanych własnościach (np. takiej, której wykres przechodzi przez dwa dane punkty; jest nachylony do osi OX pod danym kątem i przechodzi przez dany punkt); potrafi napisać wzór funkcji liniowej na podstawie informacji o jej wykresie;
3 bardzo potrafi wyznaczyć algebraicznie zbiór tych argumentów, dla których funkcja kawałkami liniowa przyjmuje wartości dodatnie (ujemne); potrafi obliczyć wartość funkcji kawałkami liniowej dla podanego argumentu; potrafi napisać wzór funkcji liniowej, której wykres jest równoległy do wykresu danej funkcji liniowej i przechodzi przez punkt o danych współrzędnych; potrafi napisać wzór funkcji liniowej, której wykres jest prostopadły do wykresu danej funkcji liniowej i przechodzi przez punkt o danych współrzędnych; potrafi określić, na podstawie wzorów dwóch funkcji liniowych, wzajemne położenie ich wykresów; potrafi stosować wiadomości o funkcji liniowej do opisu zjawisk z życia codziennego (podać opis matematyczny zjawiska w postaci wzoru funkcji liniowej, odczytać informacje z wykresu lub wzoru, zinterpretować je, przeanalizować i przetworzyć); potrafi rozwiązać równanie liniowe z jedną niewiadomą; potrafi rozwiązać nierówność liniową z jedną niewiadomą i przedstawić jej zbiór rozwiązań na osi liczbowej; potrafi rozwiązać układ nierówności liniowych z jedną niewiadomą; potrafi interpretować graficznie równania i nierówności liniowe z jedną niewiadomą; zna pojęcia równania pierwszego stopnia z dwiema niewiadomymi; wie, że wykresem równania pierwszego stopnia z dwiema niewiadomymi jest prosta; zna pojęcie układu dwóch równań pierwszego stopnia z dwiema niewiadomymi; potrafi rozpoznać układ oznaczony, nieoznaczony, sprzeczny i umie podać ich interpretację geometryczną; potrafi rozwiązywać algebraicznie (metodą przez podstawienie oraz metodą przeciwnych współczynników) układy dwóch równań liniowych z dwiema niewiadomymi; zna pojęcie nierówności pierwszego stopnia z dwiema niewiadomymi i potrafi interpretować geometrycznie taką nierówność. potrafi naszkicować wykres funkcji kawałkami liniowej i na jego podstawie omówić własności danej funkcji; potrafi wyznaczyć algebraicznie miejsca zerowe funkcji kawałkami liniowej oraz współrzędne punktu wspólnego wykresu funkcji i osi OY; potrafi rozwiązywać algebraicznie proste równania i nierówności z wartością bezwzględną i interpretować je graficznie np. x 2 1 = 3, x + 4 > 2x + 3; potrafi rozwiązywać zadania tekstowe prowadzące do układów równań liniowych; potrafi opisać daną figurę geometryczną (np. kąt, trójkąt, czworokąt) przedstawioną w prostokątnym układzie współrzędnych, za pomocą odpowiedniego układu nierówności liniowych z dwiema niewiadomymi; potrafi przedstawić na płaszczyźnie z prostokątnym układem współrzędnych, zbiór tych wszystkich punktów, których współrzędne spełniają dany układ nierówności liniowych z dwiema niewiadomymi. potrafi udowodnić, na podstawie definicji, niektóre własności funkcji liniowej, takie jak: monotoniczność, różnowartościowość itp.; potrafi przeprowadzić dowód warunku na prostopadłość wykresów funkcji liniowych o współczynnikach różnych od zera; potrafi rozwiązywać zadania z wartością bezwzględną i parametrem dotyczące własności funkcji liniowej; potrafi rozwiązywać równania i nierówności liniowe z wartością bezwzględną i interpretować je graficznie; potrafi przeprowadzić dyskusję liczby rozwiązań równania liniowego z parametrem (z dwoma parametrami); potrafi wyznaczyć wszystkie wartości parametru, dla których zbiorem rozwiązań nierówności liniowej z parametrem, jest podany zbiór; potrafi rozwiązywać układy równań pierwszego stopnia z dwiema niewiadomymi metodą wyznacznikową; potrafi przeprowadzić dyskusję liczby rozwiązań układu równań liniowych z dwiema niewiadomymi z parametrem, stosując metodę wyznacznikową; potrafi rozwiązać układ dwóch równań liniowych z dwiema niewiadomymi z wartością bezwzględną oraz zinterpretować go graficznie; potrafi wykreślać w prostokątnym układzie współrzędnych zbiory punktów opisane równaniem, nierównością, układem równań lub układem nierówności liniowych z dwiema niewiadomymi z wartością bezwzględną;
4 potrafi stosować wiedzę o układach nierówności pierwszego stopnia z dwiema niewiadomymi do rozwiązywania zadań ( programowanie liniowe ). - rozwiązuje zadania nietypowe o podwyższonym stopniu trudności. Funkcja kwadratowa. potrafi naszkicować wykres funkcji kwadratowej określonej wzorem y = ax 2, gdzie a 0, oraz omówić jej własności na podstawie wykresu; zna wzór funkcji kwadratowej w postaci ogólnej y= ax 2 + bx + c, gdzie a 0; zna wzór funkcji kwadratowej w postaci kanonicznej y = a(x p) 2 + q, gdzie a 0; zna wzór funkcji kwadratowej w postaci iloczynowej y = a(x x 1)(x x 2), gdzie a 0; zna wzory pozwalające obliczyć: wyróżnik funkcji kwadratowej, współrzędne wierzchołka paraboli, miejsca zerowe funkcji kwadratowej (o ile istnieją); potrafi obliczyć miejsca zerowe funkcji kwadratowej lub uzasadnić, że funkcja kwadratowa nie ma miejsc zerowych; potrafi obliczyć współrzędne wierzchołka paraboli na podstawie poznanego wzoru oraz na podstawie znajomości miejsc zerowych funkcji kwadratowej; potrafi sprawnie zamieniać wzór funkcji kwadratowej (wzór w postaci kanonicznej na wzór w postaci ogólnej i odwrotnie, wzór w postaci iloczynowej na wzór w postaci kanonicznej itp.); interpretuje współczynniki występujące we wzorze funkcji kwadratowej w postaci kanonicznej, w postaci ogólnej i w postaci iloczynowej (o ile istnieje); potrafi podać niektóre własności funkcji kwadratowej (bez szkicowania jej wykresu) na podstawie wzoru funkcji w postaci kanonicznej (np. przedziały monotoniczności funkcji, równanie osi symetrii paraboli, zbiór wartości funkcji) oraz na podstawie wzoru funkcji w postaci iloczynowej (np. zbiór tych argumentów, dla których funkcja przyjmuje wartości dodatnie czy ujemne); potrafi naszkicować wykres dowolnej funkcji kwadratowej, korzystając z jej wzoru; potrafi na podstawie wykresu funkcji kwadratowej omówić jej własności; potrafi napisać wzór funkcji kwadratowej o zadanych własnościach; potrafi napisać wzór funkcji kwadratowej na podstawie informacji o jej wykresie; potrafi algebraicznie rozwiązywać równania i nierówności kwadratowe z jedną niewiadomą; potrafi graficznie rozwiązywać równania i nierówności kwadratowe z jedną niewiadomą; potrafi przeanalizować zjawisko z życia codziennego opisane wzorem (wykresem) funkcji kwadratowej; potrafi opisać dane zjawisko za pomocą wzoru funkcji kwadratowej; zna wzory Viète a i ich zastosowanie; potrafi przekształcać wyrażenia, tak by można było obliczać ich wartości, stosując wzory Viète a; potrafi przekształcać wykresy funkcji kwadratowych, stosując poznane w klasie pierwszej przekształcenia, oraz napisać wzór funkcji, której wykres otrzymano w danym przekształceniu; potrafi wyznaczyć najmniejszą oraz największą wartość funkcji kwadratowej w danym przedziale domkniętym; potrafi zastosować własności funkcji kwadratowej do rozwiązywania prostych zadania optymalizacyjnych; potrafi rozwiązywać zadania prowadzące do równań i nierówności kwadratowych z jedną niewiadomą (w tym także zadania geometryczne); potrafi rozwiązywać równania z niewiadomą występującą pod znakiem pierwiastka stopnia parzystego, które można sprowadzić do równań kwadratowych; potrafi rozwiązywać proste zadania z parametrem, w których jest mowa o własnościach funkcji kwadratowej; potrafi szkicować wykres funkcji kwadratowej z wartością bezwzględną; potrafi rozwiązywać proste równania i nierówności kwadratowe z wartością bezwzględną; - potrafi rozwiązywać proste równania i nierówności kwadratowe z parametrem. potrafi rozwiązywać zadania z parametrem o podwyższonym stopniu trudności dotyczące własności
5 bardzo funkcji kwadratowej; potrafi rozwiązywać zadania na dowodzenie dotyczące własności funkcji kwadratowej; potrafi rozwiązywać równania kwadratowe z wartością bezwzględną i parametrem. potrafi rozwiązywać zadania z parametrem o podwyższonym stopniu trudności dotyczące własności funkcji kwadratowej; potrafi rozwiązywać zadania optymalizacyjne potrafi rozwiązywać równania kwadratowe z wartością bezwzględną i parametrem o podwyższonym stopniu trudności. Uczeń potrafi wyprowadzić wzory na miejsca zerowe funkcji kwadratowej; potrafi wyprowadzić wzory na współrzędne wierzchołka paraboli; potrafi rozwiązywać równania i nierówności, w których niewiadoma występuje pod znakiem pierwiastka kwadratowego; potrafi rozwiązywać różne problemy dotyczące funkcji kwadratowej, które wymagają niestandardowych metod pracy oraz niekonwencjonalnych pomysłów. Geometria płaska czworokąty. zna podział czworokątów; potrafi wyróżnić wśród trapezów: trapezy prostokątne i trapezy równoramienne; poprawnie posługuje się takimi określeniami, jak: podstawa, ramię, wysokość trapezu; wie, że suma kątów przy każdym ramieniu trapezu jest równa 180 i umie tę własność wykorzystać w rozwiązywaniu prostych zadań; zna twierdzenie o odcinku łączącym środki ramion trapezu i umie zastosować je w rozwiązywaniu prostych zadań; potrafi rozwiązywać proste zadania dotyczące własności trapezów; zna podstawowe własności równoległoboków i umie je stosować w rozwiązywaniu prostych zadań; wie, jakie własności ma romb; zna własności prostokąta i kwadratu; wie, co to są trapezoidy, potrafi podać przykłady takich figur; zna własności deltoidu; rozumie, co to znaczy, że czworokąt jest wpisany w okrąg, czworokąt jest opisany na okręgu; zna warunki, jakie musi spełniać czworokąt, aby można było okrąg wpisać w czworokąt oraz aby można było okrąg opisać na czworokącie; potrafi zastosować te warunki w rozwiązywaniu prostych zadań; potrafi wymienić nazwy czworokątów, w które można wpisać, i nazwy czworokątów, na których można opisać okrąg; zna i rozumie definicję podobieństwa; potrafi wskazać figury podobne. potrafi rozwiązywać proste zadania dotyczące trapezów wpisanych w okrąg i opisanych na okręgu, w tym również z wykorzystaniem wcześniej poznanych własności trapezu; korzysta z wcześniej zdobytej wiedzy do rozwiązywania zadań dotyczących czworokątów (trygonometria, twierdzenie Talesa, twierdzenie Pitagorasa, własności trójkątów itp.); potrafi rozwiązywać proste zadania dotyczące podobieństwa czworokątów. umie na podstawie własności czworokąta podanych w zadaniu wywnioskować, jaki to jest czworokąt; umie udowodnić twierdzenie o odcinku łączącym środki ramion trapezu; potrafi udowodnić twierdzenie o odcinku łączącym środki przekątnych trapezu; potrafi rozwiązywać zadania o średnim stopniu trudności dotyczące czworokątów, w tym trapezów i równoległoboków; potrafi stosować twierdzenia o okręgu wpisanym w czworokąt i okręgu opisanym na czworokącie, w rozwiązywaniu złożonych zadań o średnim stopniu trudności; potrafi zastosować twierdzenia o okręgu wpisanym w czworokąt i okręgu opisanym na czworokącie do rozwiązania zadań o średnim stopniu trudności dotyczących trapezów wpisanych w okrąg i
6 bardzo opisanych na okręgu; potrafi wyprowadzić wzór na pole czworokąta opisanego na okręgu w zależności od długości promienia okręgu i obwodu tego czworokąta; korzysta z wcześniej poznanych twierdzeń (np. twierdzenia sinusów i twierdzenia cosinusów) do rozwiązywania zadań dotyczących czworokątów. potrafi rozwiązywać zadania o większym stopniu trudności dotyczące czworokątów, w tym trapezów i równoległoboków; potrafi stosować twierdzenia o okręgu wpisanym w czworokąt i okręgu opisanym na czworokącie, w rozwiązywaniu złożonych zadań o większym stopniu trudności; potrafi zastosować twierdzenia o okręgu wpisanym w czworokąt i okręgu opisanym na czworokącie do rozwiązania zadań o większym stopniu trudności dotyczących trapezów wpisanych w okrąg i opisanych na okręgu. umie udowodnić twierdzenia o okręgu wpisanym w czworokąt i okręgu opisanym na czworokącie; potrafi rozwiązywać nietypowe zadania o podwyższonym stopniu trudności dotyczące czworokątów, czworokątów wpisanych w okrąg i opisanych na okręgu, korzystając przy tym z wcześniej poznanych twierdzeń. Geometria płaska pole czworokąta. bardzo potrafi zastosować wzory na pole kwadratu i prostokąta w rozwiązaniach prostych zadań; zna wzory na pole równoległoboku; potrafi rozwiązywać proste zadania geometryczne dotyczące równoległoboków, wykorzystując wzór na jego pole i poznane wcześniej twierdzenia; zna wzory na pole rombu; potrafi rozwiązywać proste zadania geometryczne dotyczące rombów, wykorzystując wzory na jego pole i poznane wcześniej twierdzenia; zna wzór na pole trapezu; potrafi rozwiązywać proste zadania geometryczne dotyczące trapezów, wykorzystując wzór na jego pole i poznane wcześniej twierdzenia; zna związek między polami figur podobnych i potrafi korzystać z tego związku, rozwiązując zadania geometryczne o niewielkim stopniu trudności. potrafi rozwiązywać proste zadania geometryczne dotyczące czworokątów, wykorzystując wzory na ich pola i poznane wcześniej twierdzenia, w szczególności twierdzenie Pitagorasa oraz twierdzenie o okręgu wpisanym w czworokąt i opisanym na czworokącie; zna związek między polami figur podobnych i potrafi korzystać z tego związku, rozwiązując proste zadania geometryczne. potrafi wyprowadzić wzór na pole równoległoboku; potrafi wyprowadzić wzory na pole rombu; potrafi wyprowadzić wzór na pole trapezu; potrafi rozwiązywać zadania geometryczne o średnim stopniu trudności, wykorzystując wzory na pola trójkątów i czworokątów, w tym również z wykorzystaniem wcześniej poznanych twierdzeń (np. twierdzenia sinusów i cosinusów, twierdzenia o okręgu wpisanym w czworokąt i opisanym na czworokącie). potrafi rozwiązywać zadania geometryczne o większym stopniu trudności, wykorzystując wzory na pola trójkątów i czworokątów, w tym również z wykorzystaniem wcześniej poznanych twierdzeń (np. twierdzenia sinusów i cosinusów, twierdzenia o okręgu wpisanym w czworokąt i opisanym na czworokącie). - potrafi rozwiązywać nietypowe zadania geometryczne o podwyższonym stopniu trudności z wykorzystaniem wzorów na pola figur i innych twierdzeń.
7 Wielomiany. bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wskazać jednomiany podobne; potrafi rozpoznać wielomian jednej zmiennej rzeczywistej; potrafi uporządkować wielomian (malejąco lub rosnąco); potrafi określić stopień wielomianu jednej zmiennej; potrafi obliczyć wartość wielomianu dla danej wartości zmiennej; potrafi wykonać dodawanie, odejmowanie i mnożenie wielomianów; potrafi podzielić wielomian przez dwumian ax + b; potrafi rozpoznać wielomiany równe; potrafi rozwiązywać proste zadania, w których wykorzystuje się twierdzenie o równości wielomianów; potrafi sprawdzić, czy podana liczba jest pierwiastkiem wielomianu; potrafi określić krotność pierwiastka wielomianu; zna twierdzenie Bezouta i potrafi je stosować w rozwiązywaniu prostych zadań; zna twierdzenie o reszcie i potrafi je stosować w rozwiązywaniu prostych zadań; potrafi rozłożyć wielomian na czynniki poprzez wyłączanie wspólnego czynnika poza nawias, zastosowanie wzorów skróconego mnożenia; potrafi rozwiązywać równania wielomianowe, które wymagają umiejętności rozkładania wielomianów na czynniki wymienionych w poprzednim punkcie; zna definicję funkcji wielomianowej. potrafi podzielić wielomian przez dowolny wielomian; potrafi podzielić wielomian przez dwumian liniowy za pomocą schematu Hornera; potrafi wyznaczyć wielomian, który jest resztą z dzielenia wielomianu o danych własnościach przez inny wielomian; potrafi rozłożyć wielomian na czynniki poprzez zastosowanie metody grupowania wyrazów, a także wówczas, gdy ma podany jeden z pierwiastków wielomianu i konieczne jest znalezienie pozostałych z wykorzystaniem twierdzenia Bezouta; potrafi rozwiązywać równania wielomianowe, które wymagają umiejętności rozkładania wielomianów na czynniki wymienionych w poprzednim punkcie; potrafi rozwiązywać proste zadania tekstowe prowadzące do równań wielomianowych; potrafi rozwiązywać proste zadania dotyczące wielomianów, w których występują parametry; potrafi naszkicować przybliżony wykres funkcji wielomianowej na podstawie informacji o miejscach zerowych tej funkcji oraz znaku współczynnika przy najwyższej potędze zmiennej; potrafi rozwiązywać nierówności wielomianowe (korzystając z siatki znaków, posługując się przybliżonym wykresem funkcji wielomianowej). potrafi sprawnie wykonywać działania na wielomianach; potrafi udowodnić twierdzenie Bezouta; zna i potrafi stosować twierdzenie o wymiernych pierwiastkach wielomianu o współczynnikach całkowitych; potrafi sprawnie rozkładać wielomiany na czynniki (w tym stosując metodę prób ); potrafi rozwiązywać równania i nierówności wielomianowe z wartością bezwzględną; potrafi rozwiązywać zadania tekstowe prowadzące do równań i nierówności wielomianowych. potrafi udowodnić twierdzenie o wymiernych pierwiastkach wielomianu o współczynnikach całkowitych; potrafi rozwiązywać równania i nierówności wielomianowe z parametrem; potrafi rozwiązywać zadania dotyczące własności wielomianów, w których występują parametry; potrafi udowodnić wzory Viète a dla równania trzeciego stopnia. - potrafi rozwiązywać różne problemy dotyczące wielomianów, które wymagają niestandardowych metod pracy oraz niekonwencjonalnych pomysłów.
8 Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne. zna pojęcie ułamka algebraicznego jednej zmiennej; potrafi wyznaczyć dziedzinę ułamka algebraicznego; potrafi podać przykład ułamka algebraicznego o zadanej dziedzinie; potrafi wykonywać działania na ułamkach algebraicznych, takie jak: skracanie ułamków, rozszerzanie ułamków, dodawanie, odejmowanie, mnożenie i dzielenie ułamków algebraicznych, określając warunki wykonalności tych działań; potrafi wykonywać działania łączne na ułamkach algebraicznych; zna definicję równania wymiernego; potrafi rozwiązywać proste równania wymierne; zna definicję nierówności wymiernej; potrafi rozwiązywać proste nierówności wymierne; wie, jaką zależność między dwiema wielkościami zmiennymi, nazywamy proporcjonalnością odwrotną; potrafi wskazać współczynnik proporcjonalności; rozwiązuje zadania z zastosowaniem proporcjonalności odwrotnej; zna definicję funkcji wymiernej; potrafi określić dziedzinę funkcji wymiernej; zna definicję funkcji homograficznej ax b y =, gdzie c 0 i ad cb 0. cx d potrafi rozwiązywać proste zadania na dowodzenie z zastosowaniem ułamków algebraicznych; potrafi rozwiązywać zadania tekstowe prowadzące do prostych równań wymiernych; rozwiązuje proste zadania z parametrem dotyczące funkcji wymiernych; ax b potrafi przekształcić wzór funkcji y =, gdzie c 0 i ad cb 0, do postaci cx d k y = q ; x p k potrafi naszkicować wykres funkcji homograficznej o równaniu y = q ; x p k potrafi na podstawie wzoru funkcji y = q określić jej dziedzinę i zbiór wartości; x p potrafi obliczyć miejsce zerowe funkcji homograficznej oraz współrzędne punktu wspólnego wykresu funkcji i osi OY; k potrafi wyznaczyć przedziały monotoniczności funkcji y = q ; x p potrafi przekształcać wykres funkcji homograficznej w S OX, S OY, S (0, 0), przesunięciu równoległym o dany wektor; potrafi rozwiązywać proste zadania z parametrem dotyczące funkcji homograficznej. potrafi sprawnie wykonywać działania łączne na ułamkach algebraicznych; potrafi rozwiązywać zadania na dowodzenie z zastosowaniem ułamków algebraicznych (w tym zadania dotyczące związków pomiędzy średnimi: arytmetyczną, geometryczną, średnią kwadratową); potrafi rozwiązywać równania i nierówności wymierne; potrafi rozwiązywać układy równań i nierówności wymiernych; potrafi rozwiązywać zadania dotyczące własności funkcji wymiernej; potrafi dowodzić własności funkcji wymiernej; potrafi rozwiązywać zadania z parametrem dotyczące własności funkcji homograficznej; potrafi napisać wzór funkcji homograficznej na podstawie informacji o jej wykresie; potrafi naszkicować wykres funkcji homograficznej z wartością bezwzględną i na podstawie wykresu funkcji opisać własności funkcji; potrafi rozwiązywać proste równania i nierówności wymierne z wartością bezwzględną; bardzo potrafi rozwiązywać równania i nierówności wymierne z wartością bezwzględną;
9 potrafi rozwiązywać układy równań i nierówności wymiernych z wartością bezwzględną; potrafi rozwiązywać równania i nierówności wymierne z parametrem; potrafi rozwiązywać zadania dotyczące własności funkcji wymiernej z parametrem; potrafi przeprowadzić dyskusję liczby rozwiązań równania wymiernego z wartością bezwzględną i parametrem, na podstawie wykresu funkcji homograficznej, we wzorze której występuje wartość bezwzględna; potrafi rozwiązywać zadania tekstowe prowadzące do równań i nierówności wymiernych. potrafi przeprowadzić dyskusję liczby rozwiązań równania wymiernego z parametrem; potrafi rozwiązywać zadania o podwyższonym stopniu trudności dotyczące funkcji wymiernych wymagające zastosowania niekonwencjonalnych metod. Ciągi. bardzo zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym; potrafi narysować wykres ciągu liczbowego określonego wzorem ogólnym; potrafi podać przykłady ciągów liczbowych monotonicznych; potrafi sprawdzić, które wyrazy ciągu należą do danego przedziału; potrafi wyznaczyć wyrazy ciągu o podanej wartości; zna definicję ciągu arytmetycznego; potrafi podać przykłady ciągów arytmetycznych; zna i potrafi stosować w rozwiązywaniu zadań wzór na n-ty wyraz ciągu arytmetycznego; zna i potrafi stosować w rozwiązywaniu zadań wzór na sumę n kolejnych początkowych wyrazów ciągu arytmetycznego; potrafi wykorzystać średnią arytmetyczną do obliczenia wyrazu środkowego ciągu arytmetycznego; zna definicję ciągu geometrycznego; zna i potrafi stosować w rozwiązywaniu zadań wzór na n-ty wyraz ciągu geometrycznego; zna i potrafi stosować wzór na sumę n kolejnych początkowych wyrazów ciągu geometrycznego; potrafi wykorzystać średnią geometryczną do obliczenia wyrazu środkowego ciągu geometrycznego; potrafi stosować procent prosty i składany w zadaniach dotyczących oprocentowania lokat i kredytów; rozumie intuicyjnie pojęcie granicy ciągu liczbowego zbieżnego; potrafi odróżnić ciąg geometryczny od szeregu geometrycznego; zna warunek na zbieżność szeregu geometrycznego i wzór na sumę szeregu. potrafi zbadać na podstawie definicji monotoniczność ciągu liczbowego określonego wzorem ogólnym; potrafi zbadać na podstawie definicji, czy dany ciąg określony wzorem ogólnym jest geometryczny; potrafi wyznaczyć ciąg arytmetyczny (geometryczny) na podstawie wskazanych danych; potrafi rozwiązywać zadania mieszane dotyczące ciągów arytmetycznych i geometrycznych zna i potrafi stosować twierdzenie o działaniach arytmetycznych na granicach ciągów zbieżnych; potrafi obliczyć granicę ciągu liczbowego (proste przykłady); potrafi zbadać warunek na istnienie sumy szeregu geometrycznego (proste przykłady); potrafi obliczać sumę szeregu geometrycznego (zamiana ułamka okresowego na ułamek zwykły, proste równania i nierówności wymierne, proste zadania geometryczne); potrafi obliczać granice niewłaściwe ciągów rozbieżnych do nieskończoności (proste przykłady). potrafi określić ciąg wzorem rekurencyjnym; potrafi wyznaczyć wyrazy ciągu określonego wzorem rekurencyjnym; wie, jaki ciąg liczbowy nazywamy ciągiem Fibonacciego; zna definicję rekurencyjną tego ciągu i wzór na wyraz ogólny; zna definicję i rozumie pojęcie granicy ciągu liczbowego zbieżnego; zna i potrafi stosować twierdzenia dotyczące własności ciągów zbieżnych; potrafi obliczać granice różnych ciągów zbieżnych; potrafi obliczać granice niewłaściwe różnych ciągów rozbieżnych do nieskończoności.
10 potrafi wyprowadzić wzór na sumę n kolejnych początkowych wyrazów ciągu arytmetycznego; potrafi wyprowadzić wzór na sumę n kolejnych początkowych wyrazów ciągu geometrycznego; potrafi udowodnić nierówność Bernoulliego; potrafi wykazać na podstawie definicji, że dana liczba jest granicą ciągu; potrafi rozwiązywać różne zadania z zastosowaniem wiadomości o szeregu geometrycznym zbieżnym. zna, rozumie i potrafi zastosować twierdzenie o trzech ciągach do obliczenia granicy danego ciągu; wie, co to jest liczba e oraz potrafi obliczać granice ciągów z liczbą e; potrafi rozwiązywać zadania na dowodzenie, w których jest mowa o ciągach. Trygonometria. wie, co to jest miara łukowa kąta; potrafi stosować miarę łukową i stopniową kąta (zamieniać stopnie na radiany i radiany na stopnie); zna definicje funkcji trygonometrycznych dowolnego kąta i potrafi się nimi posługiwać w rozwiązywaniu zadań; zna związki pomiędzy funkcjami trygonometrycznymi tego samego kąta; potrafi wyznaczyć wartości pozostałych funkcji trygonometrycznych kąta, gdy dana jest jedna z nich; zna i potrafi stosować wzory redukcyjne dla kątów o miarach wyrażonych w stopniach oraz radianach; potrafi naszkicować wykres funkcji y = sin x; potrafi naszkicować wykres funkcji y = cos x; potrafi naszkicować wykres funkcji y = tg x; potrafi naszkicować wykres funkcji y = ctg x; zna wzory na sinus i cosinus sumy i różnicy kątów i potrafi je stosować do rozwiązywania prostych zadań; zna wzory na sumę i różnicę sinusów i cosinusów i potrafi je stosować do rozwiązywania prostych zadań; zna wzory na sinus i cosinus kąta podwojonego kąta i potrafi je stosować do rozwiązywania prostych zadań. potrafi naszkicować wykres funkcji y = sin x i omówić jej własności; potrafi naszkicować wykres funkcji y = cos x i omówić jej własności; potrafi naszkicować wykres funkcji y = tg x i omówić jej własności; potrafi naszkicować wykres funkcji y = ctg x i omówić jej własności; potrafi przekształcać wykresy funkcji trygonometrycznych, stosując takie przekształcenia, jak: symetria osiowa względem osi OX, symetria osiowa względem osi OY, symetria środkowa, względem punktu (0, 0), przesunięcie równoległe o dany wektor); potrafi wyznaczyć zbiór wartości funkcji trygonometrycznej (w prostych przypadkach); wykorzystuje okresowość funkcji trygonometrycznych; potrafi rozwiązywać proste równania i nierówności trygonometryczne, korzystając z wykresów odpowiednich funkcji trygonometrycznych; potrafi rozwiązywać proste równania i nierówności trygonometryczne z zastosowaniem poznanych wzorów. potrafi zbadać, czy funkcja trygonometryczna jest parzysta (nieparzysta); potrafi określić zbiór wartości funkcji trygonometrycznej; potrafi wyznaczyć okres podstawowy funkcji trygonometrycznej; potrafi przekształcać wykresy funkcji trygonometrycznych, stosując takie przekształcenia, jak: y = f(x), y = f( x ), y = s f(x) oraz y = f(s x), gdzie s 0; potrafi rozwiązywać równania i nierówności trygonometryczne; potrafi stosować wzory na funkcje trygonometryczne sumy i różnicy kątów, wzory na sumy i różnice funkcji trygonometrycznych, wzory na funkcje trygonometryczne wielokrotności kąta do przekształcania wyrażeń trygonometrycznych; potrafi stosować wzory na funkcje trygonometryczne sumy i różnicy kątów, wzory na sumy i różnice funkcji trygonometrycznych, wzory na funkcje trygonometryczne wielokrotności kąta do dowodzenia
11 tożsamości trygonometrycznych; potrafi rozwiązywać równania i nierówności trygonometryczne z zastosowaniem wzorów na funkcje trygonometryczne sumy i różnicy kątów, wzorów na sumy i różnice funkcji trygonometrycznych, wzorów na funkcje trygonometryczne wielokrotności kąta. bardzo potrafi rozwiązywać równania i nierówności trygonometryczne z wartością bezwzględną z zastosowaniem poznanych wzorów; potrafi rozwiązywać równania trygonometryczne z parametrem; potrafi rozwiązywać różne zadania z innych działów matematyki, w których wykorzystuje się wiadomości i umiejętności z trygonometrii. - potrafi rozwiązywać zadania o podwyższonym stopniu trudności lub wymagające niekonwencjonalnych pomysłów i metod rozwiązywania.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2017/2018 - klasa 2a, 2b, 2c 1. Funkcja
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Funkcja liniowa dopuszczającą jeżeli: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy
I. Funkcja liniowa WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY DRUGIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES ROZSZERZONY I. Funkcja liniowa wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony. I Przekształcenia wykresów funkcji
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI Z MATEMATYKI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 2a zakres rozszerzony I Przekształcenia wykresów funkcji Stopień bardzo Wiadomości i umiejętności Uczeń: - zna określenie
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY. (zakres podstawowy) klasa 2
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres podstawowy) klasa 2 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016
PLAN WYNIKOWY (zakres podstawowy) klasa 2. rok szkolny 2015/2016 Wymagania wykraczające zawierają w sobie wymagania dopełniające, te zaś zawierają wymagania podstawowe. Ocenę dopuszczającą powinien otrzymać
WYMAGANIA EDUKACYJNE. rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE rok szkolny 2018/2019 Przedmiot Klasa Nauczyciel uczący Poziom matematyka 3t Zuzanna Durlak rozszerzony 1. Funkcja kwadratowa Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena
KRYTERIA OCENIANIA Z MATEMATYKI (zakres rozszerzony) klasa 2LO
Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe (zawierają wymagania konieczne); Wymagania dopełniające (zawierają wymagania rozszerzające); Wymagania wykraczające. KRYTERIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2. 1. Funkcja liniowa Tematyka zajęć: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej.
a =, gdzie A(x 1, y 1 ),
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI 1. Funkcja liniowa (zakres podstawowy) Rok szkolny 2018/2019 - klasa
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom rozszerzony.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom rozszerzony. Wymagania ogólne Uczeń: używa języka matematycznego do opisu rozumowania
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY (zakres rozszerzony) klasa 2.
1. Wielomiany Wielomian jednej zmiennej rzeczywistej Dodawanie, odejmowanie i mnożenie wielomianów Równość wielomianów Podzielność wielomianów Dzielenie wielomianów. Dzielenie wielomianów z resztą Dzielenie
Zakres Dopuszczający Dostateczny Dobry Bardzo dobry
Kryteria oceniania z matematyki poziom podstawowy klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: wie, jaką zależność między dwiema wielkościami zmiennymi nazywamy proporcjonalnością
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY matematyka stosowana kl.2 rok szkolny 2018-19 Zbiór liczb rzeczywistych. Wyrażenia algebraiczne. potrafi sprawnie działać na wyrażeniach zawierających potęgi
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
zna wykresy i własności niektórych funkcji, np. y = x, y =
Wymagania edukacyjne dla uczniów klasy II z podstawowym programem nauczania matematyki, niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
MATeMAtyka klasa II poziom rozszerzony
MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.
Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie
Kształcenie w zakresie podstawowym. Klasa 2
Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
Klasa II - zakres podstawowy i rozszerzony
Klasa II - zakres podstawowy i rozszerzony 1. PLANIMETRIA stosuje twierdzenie o sumie miar kątów w trójkącie oraz nierówność trójkąta uzasadnia przystawanie trójkątów, wykorzystując cechy przystawania
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
PLAN WYNIKOWY (zakres rozszerzony) klasa 2.
PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Spis treści 1. Funkcja liniowa 4 2. Funkcja kwadratowa.. 11 3. Geometria płaska czworokąty 17 4. Geometria płaska pole czworokąta 21 5. Wielomiany 24 6. Ułamki
K P K P R K P R D K P R D W
KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Wymagania edukacyjne z matematyki w klasie III A LP
Wymagania edukacyjne z matematyki w klasie III A LP Zakres rozszerzony Kryteria Znajomość pojęć, definicji, własności oraz wzorów objętych programem nauczania. Umiejętność zastosowania wiedzy teoretycznej
MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.
MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ
PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk
WYMAGANIA EDUKACYJNE - matematyka - poziom rozszerzony Dariusz Drabczyk str 1 Klasa 2f: wpisy oznaczone jako: GEOMETRIA ANALITYCZNA (GA), WIELOMIANY (W), FUNKCJE WYMIERNE (FW), FUNKCJE TRYGONOMETRYCZNE
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga.
Wymagania edukacyjne z matematyki w XVIII Liceum Ogólnokształcącym w Krakowie, zakres podstawowy. Klasa druga. Funkcja liniowa. Uczeń otrzymuje ocenę dopuszczającą, jeśli: - rozpoznaje funkcję liniową
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016. opracowała: mgr Anna Przybylska
PRZEDMIOTOWY SYSTEM OCENIANIA - - MATEMATYKA ROK SZKOLNY 2015/2016 opracowała: mgr Anna Przybylska I. CELE EDUKACJI MATEMATYCZNEJ w zakresie rozwoju intelektualnego ucznia (cele związane z kształceniem):
KLASA II LO Poziom rozszerzony (wrzesień styczeń)
KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO
Lp. I PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO Temat lekcji Umiejętności Podstawowe Ponadpodstawowe Funkcja kwadratowa Uczeń: Uczeń: 1 Wykres i własności funkcji y = ax 2. - narysuje
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15
Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY
MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania
1. Funkcja liniowa. a, gdzie A(x 1, y 1), B(x 2, y 2) są punktami należącymi do wykresu tej funkcji; Wymagania podstawowe: Uczeń:
1. Funkcja liniowa Tematyka: Proporcjonalność prosta Funkcja liniowa. Wykres funkcji liniowej Miejsce zerowe funkcji liniowej. Własności funkcji liniowej Znaczenie współczynników we wzorze funkcji liniowej
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II Ti ZAKRES PODSTAWOWY i ROZSZERZONY
. ROZUMOWANIE I ARGUMENTACJA stosuje ogólny zapis liczb naturalnych parzystych, nieparzystych, podzielnych przez 3 itp. wykorzystuje dzielenie z resztą do przedstawienia liczby naturalnej w postaci a k
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony Trygonometria. wie, co to jest miara łukowa kąta; potrafi stosować miarę łukową i stopniową kąta
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
1, y = x 2, y = x 3, y= x, y = [x], y = sgn x;
Wymagania edukacyjne dla uczniów klasy II z rozszerzonym programem nauczania matematyki, niezbędne do uzyskania rocznych i śródrocznych ocen klasyfikacyjnych z matematyki Nauczyciel: mgr Karolina Bębenek
Wymagania edukacyjne z matematyki w roku szkolnym 2018/2019
Wymagania edukacyjne z matematyki w roku szkolnym 2018/2019 Klasa Nauczyciele uczący Poziom 3i Maria Roman rozszerzony 1. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne. Ocena dopuszczająca
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Wymagania na egzamin poprawkowy z matematyki
23 czerwca 2017r. Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej LICEUM Strona 1 z 13 1. Funkcja i jej własności Uczeń:
Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:
Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)
Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane
1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)
Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
PLAN WYNIKOWY (zakres rozszerzony) klasa 2.
PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina
PLAN WYNIKOWY (zakres rozszerzony) klasa 2.
PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina
MATEMATYKA KL II LO zakres podstawowy i rozszerzony
MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania
Zakres materiału obowiązujący do próbnej matury z matematyki
ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli
PLAN WYNIKOWY (zakres rozszerzony) klasa 2.
PLAN WYNIKOWY (zakres rozszerzony) klasa 2. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina
Dział I FUNKCJE I ICH WŁASNOŚCI
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA STOSOWANA - KLASA II I. POWTÓRZENIE I UTRWALENIE WIADOMOŚCI Z ZAKRESU KLASY PIERWSZEJ zna i potrafi stosować przekształcenia wykresów funkcji zna i
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE
Wymagania edukacyjne matematyka klasa 1 zakres podstawowy 1. LICZBY RZECZYWISTE podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy
Wymagania edukacyjne z matematyki Klasa II zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Podstawowy., Oficyna Edukacyjna
MATeMAtyka zakres rozszerzony
MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
Matematyka do liceów i techników
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa II zakres rozszerzony 7 tygodni 6 godzin = godziny Lp. I. Funkcja liniowa Tematyka zajęć Liczba godzin. Proporcjonalność prosta. Funkcja
Plan wynikowy z matematyki kl.i LO
Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny
MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO
2016-09-01 MATEMATYKA KLASA II LICEUM OGÓLNOKSZTAŁCĄCEGO SZKOŁY BENEDYKTA Ramowy rozkład materiału Klasa II I. Trójmian kwadratowy II. Wielomiany III. Funkcja wymierna IV. Funkcje dowolnego argumentu V.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Przedmiot Klasa Matematyka (poziom podstawowy) II a lo I. Wymagania ogólne 1. Wykorzystanie i tworzenie informacji. - interpretuje
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II
Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać
Poziom wymagań. Temat lekcji Zakres treści Osiągnięcia ucznia 1. WIELOMIANY 1. Stopień i współczynniki wielomianu
Plan wynikowy klasa 2g - Jolanta Pająk Matematyka 2. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
MATEMATYKA Katalog wymagań programowych
MATEMATYKA Katalog wymagań programowych KLASA 1H LICZBY RZECZYWISTE Na poziomie wymagań koniecznych lub podstawowych - na ocenę dopuszczającą () lub dostateczną przedstawiać liczby rzeczywiste w różnych
Przedmiotowy system oceniania z matematyki klasa I i II ZSZ 2013/2014
I. Liczby rzeczywiste K-2 P-3 R-4 D-5 W-6 Rozpoznaje liczby: naturalne (pierwsze i złożone),całkowite, wymierne, niewymierne, rzeczywiste Stosuje cechy podzielności liczb przez 2, 3,5, 9 Podaje dzielniki
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury
LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne
83 Przekształcanie wykresów funkcji (cd.) 3
Zakres podstawowy Zakres rozszerzony dział temat godz. dział temat godz,. KLASA 1 (3 godziny tygodniowo) - 90 godzin KLASA 1 (5 godzin tygodniowo) - 150 godzin I Zbiory Zbiory i działania na zbiorach 2
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie I poziom rozszerzony Na ocenę dopuszczającą, uczeń: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ
KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).
Standardy wymagań maturalnych z matematyki - matura
Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony
Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ
ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ ZBIORY TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę
Program zajęć pozalekcyjnych z matematyki poziom rozszerzony- realizowanych w ramach projektu Przez naukę i praktykę na Politechnikę 1. Omówienie programu. Zaznajomienie uczniów ze źródłami finansowania
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste
Zagadnienia na egzamin poprawkowy z matematyki - klasa I 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite. Liczby wymierne Liczby niewymierne Rozwinięcie dziesiętne liczby rzeczywistej Pierwiastek
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas
WYMAGANIA SZCZEGÓŁOWE zakres podstawowy dla poszczególnych klas - klasy pierwsze kolor zielony + gimnazjum - klasy drugie kolor zielony + kolor czerwony + gimnazjum, - klasy maturalne cały materiał 1.
MATEMATYKA IV etap edukacyjny. I. Wykorzystanie i tworzenie informacji. II. Wykorzystanie i interpretowanie reprezentacji.
Cele kształcenia wymagania ogólne MATEMATYKA IV etap edukacyjny I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje otrzymany wynik. Uczeń
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom rozszerzony
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. LICZBY RZECZYWISTE Kl. I poziom rozszerzony podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych,
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie