OPERACJE MORFOLOGICZNE NA OBRAZACH BINARNYCH ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "OPERACJE MORFOLOGICZNE NA OBRAZACH BINARNYCH ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ"

Transkrypt

1 STUI INORTI 24 Volume 25 Number 2 58 dam ŚWITOŃSKI Katarzyna STĄPOR Politechnia Śląsa Instytut Informatyi OPERJE OROLOGIZNE N ORZH INRNYH ZSTOSOWNIE N POTRZEY WIZJI KOPUTEROWEJ Streszczenie. Opracowanie stanowi omplesowy przegląd operatorów morfologii matematycznej dla obrazów binarnych. Zostały podane ich pełne definicje wraz z wyjaśnieniami sutów jaie powodują na obrazach. ziałanie opisanych operacji morfologicznych zaprezentowano na przyładowych obrazach. Słowa luczowe: morfologia matematyczna przetwarzanie obrazów wizja omputerowa ORPHOLOGIL OPERTIONS OR INRY IGES PPLITION OR OPUTER VISION Summary. The article is complex review of mathematical morphology operators for binary images. Their full definitions with explanations of their impact on the images have been given. The worings of described operators have been presented on example images. Keywords: mathematical morphology image processing computer vision. Wprowadzenie orfologia matematyczna jest narzędziem pozwalającym na wydobywanie informacji o ształcie obietów. Jej począti datuje się na lata 96 iedy to w Paris Schools of ines G. atheron i Jean Serra rozpoczęli badania nad geometrią obietów porowatych. Pierwsze formalne definicje zostały wprowadzone w [4] i ta pozycja jest powszechnie uważana jao fundament morfologii matematycznej. W niniejszym opracowaniu wprowadzimy definicje podstawowych operacji morfologicznych na binarnych obrazach cyfrowych.

2 6. Świtońsi K. Stąpor inarny obraz cyfrowy definiowany jest jao funcja odwzorowująca zbiór f ZxZ puntów obrazu w zbiór {}[28]: f : f { } zasami wygodniej obraz binarny zdefiniować jao podzbiór zbioru f dla tórego funcja f przyjmuje wartość []: gdzie { x : f } x f Translacją obrazu o wetor h jest przesunięty obraz o wetor h: h + h : y y y2 h h h2 { y + h y } 3 y + h y + h y2 + h2 o wydobycia geometrycznych informacji obrazu operatory morfologiczne będą potrzebowały zdefiniowania wzorca obietu przedstawiającego poszuiwany ształt na obrazie. Tai obiet będziemy oreślali mianem elementu struturalnego i tratowali jao obraz. Załadamy że element struturalny jest ograniczony Operacje morfologiczne 2.. Erozja i dylatacja ylatacja obrazu elementem struturalnym to suma obrazów powstałych z translacji obrazu wejściowego względem wszystich puntów elementu struturalnego [4]: U h h ylatacja będzie powodowała przyrost obietów na brzegach zgodnie z ształtem elementu struturalnego. Implementując dylatację wygodniej odwołać się do własności tóra mówi że obraz po dylatacji zawiera tylo te punty wobec tórych przesunięty odbity względem puntu element struturalny oraz obraz wejściowy posiadają część wspólną [3]: 5 gdzie _ h f : + h φ _ { x y : x y } 6 7

3 Operacje morfologiczne na obrazach binarnych... 7 Erozja obrazu elementem struturalnym to iloczyn obrazów powstałych z translacji obrazu wejściowego względem wszystich puntów elementu struturalnego [4]: E I h h Erozja będzie powodowała zmniejszanie się obietów na ich brzegach zgodnie z ształtem elementu struturalnego. Podobnie ja dla dylatacji implementując erozję lepiej posłużyć się własnością tóra mówi że obraz po erozji zawiera tylo te punty wobec tórych przesunięty element struturalny całowicie zawiera się w obrazie wejściowym [3]: { h : + h } E f 9 Poniżej zaprezentowano działanie operacji dylatacji i erozji dla binarnego obrazu litery H z rysunu a. 8 a b c d e Rys.. ylatacja i erozja: a obraz wejściowy b ylatacja elementem struturalnym o ształcie wadratu c dylatacja elementem struturalnym o ształcie pionowego odcina d erozja elementem struturalnym o ształcie wadratu e dylatacja elementem struturalnym o ształcie pionowego odcina ig.. ilatation and erosion: a input image b dilatation with square structing element c dilatation with vertical structing element d erosion with square structing element e erosion with vertical structing element Na rysunu b znajduje się obraz po dylatacji elementem struturalnym o ształcie wadratu. ylatacja spowodowała rozrost litery H we wszystich ierunach. Na rysunu c znajduje się litera H po dylatacji elementem struturalnym w ształcie odcina o orientacji pionowej. W tym przypadu rozrost jest zauważalny jedynie dla rawędzi horyzontalnych. Na rysunach d i e znajdują się obrazy po erozji obrazu litery H tymi samymi elementami struturalnymi i. la elementu struturalnego zani obietu jest widoczny dla wszystich ierunów natomiast dla elementu zani następował jedynie dla rawędzi horyzontalnych.

4 8. Świtońsi K. Stąpor 2.2. Hitiss Wyni operacji Hitiss trafi-nie trafi obrazu z elementami struturalnymi: Hit i iss jest równy iloczynowi obrazów uzysanych z erozji obrazu elementem struturalnym i erozji dopełnienia obrazu elementem struturalnym [7]: E E Hitiss 2 Operację Hitiss stosuje się do poszuiwania ształtów na płaszczyźnie obrazu gdyż w wyniu jej działania uzysujemy obiety bądź ich znacznii mieszczące się pomiędzy elementami i Wyznaczanie narożniów a b Rys.2. Zastosowanie operacji Hittiss do detecji narożniów: a obraz wejściowy b wyryte narożnii ig. 2. The application of Hitiss for corner detection: a input image b detected corners Na rysunu 2a znajduje się binarny obraz prostoąta. W celu wyznaczenia jego narożniów zastosowano operacje Hitiss z następującymi parami elementów struturalnych: Para wyrywa prawy górny narożni 2 2 prawy dolny 3 3 lewy dolny natomiast 4 4 lewy górny narożni.

5 Operacje morfologiczne na obrazach binarnych... 9 Wyryte narożnii znajdują się na rysunu. 2b tóry jest sumą obrazów powstałych w wyniu operacji Hitiss obrazu 2a wyżej wymienionymi parami elementów struturalnych Szieletyzacja Szielet obietu definiowany jest jao zbiór środów wszystich oręgów stycznych do przynajmniej dwóch rawędzi obietu i całowicie zwartych wewnątrz obietu []. Jednym ze sposobów wyznaczenia przybliżonego szieletu jest zastosowanie morfologii matematycznej. o tego celu wyorzystuje się operację ścieniania ang. thinning [2] tóra podobnie do erozji powoduje zmniejszanie się obietów na ich brzegach. W odróżnieniu od erozji zani nie może powodować podziału jednego obietu na dwie części oraz powinien być równomierny ze wszystich ierunów. o realizacji ścieniania stosuje się operację Hitiss. Z jej pomocą zostaną wyryte wszystie wierzchołi obietów oraz płasie brzegi nie będące jedynymi połączeniami pomiędzy odrębnymi partiami obietów. o wyrycia wierzchołów wyorzystamy elementy struturalne z równania 2 natomiast do wyrycia brzegów elementy z równania 3: Obraz ścieniony będzie obrazem pozbawionym wierzchołów oraz brzegów. la ażdej pary elementów struturalnych doonujemy ścienienia: Thin Hitiss 5 Istotna jest olejność w jaiej będziemy usuwali brzegi oraz wierzchołi. Jest ona następująca: Thinning Thin Thin... Thin Thin Szielety obietów obrazu uzysamy przez powtarzanie ścieniania aż do momentu gdy nie będzie ono powodowało żadnych zmian na obrazie: Seleton Thinning 7 Thinning inf Thinning Thinning... Thinning razy + { : Thinning Thinning } Na rysunu. 3b znajduje się szielet litery T z obrazu 3a uzysany za pomocą powyższego algorytmu: 9

6 . Świtońsi K. Stąpor a b Rys.3. Szieletyzacja: a obraz wejściowy b uzysany szielet ig. 3. Seletonization: a input image b achieved seleton 2.3. Otwarcie i zamnięcie Otwarcie obrazu za pomocą elementu struturalnego definiowane jest jao sewencyjne wyonanie operacji erozji i dylatacji elementem struturalnym [34 i 7]: O E 2 Otwarcie jest operacją tóra powoduje zani obietów oraz połączeń pomiędzy obietami węższych od rozmiaru elementu struturalnego. Na rysunu 4b znajduje się otwarty obraz z rysunu 4a elementem struturalnym w ształcie wadratu i długości bou 5. Widoczny jest zani połączeń pomiędzy obietami. a b Rys.4. Otwarcie: a obraz wejściowy b otwarcie ig. 4. Opening: a input image b opening Zamnięcie obrazu za pomocą elementu struturalnego definiowane jest jao sewencyjne wyonanie operacji dylatacji i erozji elementem struturalnym [34 i 7]: E 2 Zamnięcie powoduje wypełnienie wszystich dziur oraz przerw pomiędzy obietami tóre są węższe od rozmiaru elementu struturalnego.

7 Operacje morfologiczne na obrazach binarnych... a b Rys.5. Zamnięcie: a obraz wejściowy b zamnięcie ig. 5. losing: a input image b closing Na rysunu 5b znajduje się zamnięty obraz z rysunu 5a elementem struturalnym w ształcie wadratu i długości bou 5. Widoczny jest zani dziur wewnątrz obietu z rysunu 5a Gradient morfologiczny Wewnętrzny gradient morfologiczny obrazu elementem struturalnym jao wyni działania daje obraz będący różnicą wejściowego obrazu i obrazu po erozji elementem struturalnym []: Gint ernal E 22 Gradient wewnętrzny uwydatnia rawędzie obietów tóre są zaznaczane od strony wewnętrznej. Wielość i ształt elementu struturalnego decyduje o rozległości rawędzi. o wyznaczenia rzeczywistych rawędzi należy stosować podstawowy element struturalny z równania. Zewnętrzny gradient morfologiczny obrazu elementem struturalnym jao wyni działania daje obraz będący różnicą dylatacji wejściowego obrazu elementem struturalnym i obrazu []: G external 23 Efet działania jest podobny do gradientu wewnętrznego z tą różnicą że w tym przypadu rawędzie będą zaznaczane po stronie zewnętrznej obietu. ałowity gradient morfologiczny obrazu z elementem struturalnym jao wyni działania daje obraz będący różnicą dylatacji wejściowego obrazu elementem struturalnym i erozji obrazu elementem struturalnym []: G E Gint G 24 ernal + external Efetem działania jest uwydatnienie rawędzi zarówno po stronie wewnętrznej i zewnętrznej obietów. Obraz na rysunu 6b stanowi wewnętrzny natomiast na rysunu 6c całowity gradient morfologiczny elementem struturalnym z równania obrazu wejściowego z rysunu. 6a.

8 2. Świtońsi K. Stąpor a b c Rys.6. Gradient: a obraz wejściowy b gradient wewnętrzny c gradient całowity ig. 6. Gradient: a input image b internal gradient c full gradient 2.5. Reonstrucja geodezyjna Idea reonstrucji geodezyjnej przestawiona zostanie za pomocą sładowych spójnych obrazu [9]. Reonstrucją geodezyjną obietów obrazu * z obrazu znacznia obietów stanowi suma taich sładowych spójnych 2. n obrazu tóre mają część wspólną z obrazem znacznia [3]: U GR 25 i : φ i i Reonstrucją geodezyjną tła obrazu z obrazu znacznia tła jest dopełnienie zbioru taich sładowych spójnych dopełnienia obrazu tóre mają część wspólną z dopełnieniem obrazu znacznia: GR i U 26 i : i φ Jednym ze sposobów wyznaczenia reonstrucji geodezyjnej jest zastosowanie morfologii matematycznej. o tego celu wprowadzona zostaną definicje dylatacji i erozji warunowej: ylatacja warunowa obrazu z masą i elementem struturalnym jest równa iloczynowi obrazu masi i obrazu uzysanego przez dylatację obrazu elementem struturalnym [ 3]: 27 Erozja warunowa obrazu z masą i elementem struturalnym jest równa sumie obrazu masi i obrazu uzysanego przez erozję obrazu elementem struturalnym : E E 28 Reonstrucja geodezyjna obietów obrazu ze znacznia elementem struturalnym otrzymujemy przez powtarzanie dylatacji warunowej z masą i elementem struturalnym na obrazie wejściowym []: * alej reonstrucje obietów obrazu będziemy oreślali mianem reonstrucji obrazu

9 Operacje morfologiczne na obrazach binarnych... 3 GR 29 gdzie razy Z puntu widzenia implementacji dylatację warunową ończymy w momencie gdy olejne dylatacje nie powodują żadnych zmian w obrazie wejściowym GR 3 gdzie + : inf 32 Reonstrucję geodezyjną tła obrazu ze znacznia elementem struturalnym uzysujemy przez powtarzanie erozji warunowej z masą i elementem struturalnym na obrazie wejściowym aż do momentu gdy nie będzie ona powodowała zmian: + : inf E E E GR 33 a b c d e Rys.7. Reonstrucja geodezyjna: a obraz wejściowy b znaczni obietów c zreonstruowany obraz a ze znacznia obietów d znaczni tła e zreonstruowane tło obrazu a ze znacznia tła ig. 7. Geodesic reconstruction: a input image b object marer c reconstructed image from the object marer e reconstructed image bacground from the bacground marer

10 4. Świtońsi K. Stąpor Na rysunu. 7c znajduje się zreonstruowany obraz z rysunu 7a ze znacznia z rysnu. 7b podstawowym elementem struturalnym z równania. Na rysunu 7e znajduje się zreonstruowane tło tego obrazu ze znacznia tła z rysunu 7d tym samym elementem struturalnym. LITERTUR. Goutsias J. atman S.: orphological ethods for iomedical Image nalysis. Handboo of edical Imaging. Volume 2. edical Image Processing and nalysis Optical Engineering Press 2 s Gonzales R.: igital Image Processing. Prentice Hall oston Nieniewsi.: orfologia matematyczna w przetwarzaniu obrazów. ademica Oficyna Wydawnicza Warszawa Serra J.: Image nalysis and athematical orphology. cademic Press London Serra J.: Introduction to mathematical morphology. omputer Vision Graphics and Image Processing s Serra J.: Image nalysis and athematical orphology vol. 2. cademic Press London Soille P.: orphological Image nalysis: Principles and pplications Springer-Verlag erlin Tadeusiewicz R. Korohodza P. Komputerowa analiza i przetwarzanie obrazów Wydawnictwo Postępu Teleomuniacji Kraów Tadeusiewicz R. lasińsi.: Rozpoznawanie obrazów Państwowe Wydawnictwo Nauowe 99.. Pavlidis T. Grafia i przetwarzanie obrazów Wydawnictwo Nauowo Techniczne Warszawa 987. Recenzent: r hab. inż. Ewa Pięta Prof. Pol. Śląsiej Wpłynęło do Redacji 9 stycznia 24 r.

11 Operacje morfologiczne na obrazach binarnych... 5 bstract The article presents mathematical morphology operators for binary images. In the first section binary image 2 and structuring element have been defined. The following section has been devoted to a complex review of binary mathematical morphology operators with their applications to selected images. The basic ones are dilatation 5 and erosion 8. ilatation enlarges fig. b c and erosion shrins fig. d e objects in size and the shape of structuring element. Hitiss operator 2 is based on erosion and results in objects or their marers which are between two structuring elements. Hitiss can for instance be applied to detect corners fig. 2 or to find seleton of an object fig. 3. In the subsequent part such operators as opening 2 and closing 2 are presented. They are sequences of dilatation and erosion. nother application of dilatation and erosion is gradient operator which detects edges of objects. They can be mared inside the object - internal gradient 22 outside the object external gradient 23 and on both sides 24. Subsection 2.5 provides a definition of geodesic reconstruction of the foreground 25 and the bacground 26 objects. It also presents the way to reconstruct objects 29 and the bacground 33 from the marer image by means of mathematical morphology operations. dresy dam Świtońsi: Politechnia Śląsa Instytut Informatyi ul. ademica Gliwice Polsa a.switonsi@zti.iinf.polsl.gliwice.pl Katarzyna Stąpor: Politechnia Śląsa Instytut Informatyi ul. ademica Gliwice Polsa delta@zti.iinf.polsl.gliwice.pl

OPERACJE MORFOLOGICZNE NA OBRAZACH W ODCIENIACH SZAROŚCI ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ

OPERACJE MORFOLOGICZNE NA OBRAZACH W ODCIENIACH SZAROŚCI ZASTOSOWANIE NA POTRZEBY WIZJI KOMPUTEROWEJ STUDIA INFORMATICA 2004 Volume 25 Number 2 (58) Adam ŚWITOŃSKI, Katarzyna STĄPOR Politechnika Śląska, Instytut Informatyki OPERACJE MORFOLOICZNE NA OBRAZACH W ODCIENIACH SZAROŚCI ZASTOSOWANIE NA POTRZEBY

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk

Cyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Grupowanie sekwencji czasowych

Grupowanie sekwencji czasowych BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule

Bardziej szczegółowo

Operacje morfologiczne w przetwarzaniu obrazu

Operacje morfologiczne w przetwarzaniu obrazu Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH

EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Anna BŁACH Centre of Geometry and Engineering Graphics Silesian University of Technology in Gliwice EXAMPLES OF CABRI GEOMETRE II APPLICATION IN GEOMETRIC SCIENTIFIC RESEARCH Introduction Computer techniques

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

Matematyka Dyskretna - zagadnienia

Matematyka Dyskretna - zagadnienia Matematya Dysretna - zagadnienia dr hab. Szymon Żebersi opracował: Miołaj Pietre Semestr letni 206/207 - strona internetowa Zasada inducji matematycznej. Zbiory sończone, podstawowe tożsamości 2. Zasada

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów. Wykład. Podstawowe przekształcenia morfologiczne. dr inż. Robert Kazała

Cyfrowe przetwarzanie sygnałów. Wykład. Podstawowe przekształcenia morfologiczne. dr inż. Robert Kazała Cyfrowe przetwarzanie sygnałów Wykład Podstawowe przekształcenia morfologiczne dr inż. Robert Kazała Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

IMPLEMENTACJA FUNKCJI ZBIORÓW POZIOMICOWYCH W ALGORYTMACH KONSTRUKCJI OBRAZU TOMOGRAFICZNEGO

IMPLEMENTACJA FUNKCJI ZBIORÓW POZIOMICOWYCH W ALGORYTMACH KONSTRUKCJI OBRAZU TOMOGRAFICZNEGO Tomasz RYMARCZYK Stefan F. FLPOWCZ MPLEMENTACJA FUNKCJ ZBORÓW POZOMCOWYCH W ALGORYTMACH KONSTRUKCJ OBRAZU TOMOGRAFCZNEGO STRESZCZENE W pracy przedstawiono metodę rozwiązania zagadnienia odwrotnego w tomografii

Bardziej szczegółowo

zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych

zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych

Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci

Bardziej szczegółowo

12 Stereometria Podstawy geometrii przestrzennej Graniastosłupy Wielościany

12 Stereometria Podstawy geometrii przestrzennej Graniastosłupy Wielościany 12 STEREOMETRI 1 12 Stereometria 12.1 Podstawy geometrii przestrzennej Prostopadłościan jest utworzony z dwóch sześcianów, tóre mają wspólną ścianę P QRT. (Rys. 8.9) Sorzystaj z rysunu w zadaniach 1, 2,

Bardziej szczegółowo

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d

Komputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) = Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie

Bardziej szczegółowo

NEURONOWE MODELOWANIE OCENY JAKOŚCI USŁUG TRANSPORTOWYCH

NEURONOWE MODELOWANIE OCENY JAKOŚCI USŁUG TRANSPORTOWYCH Andrzej ŚWIDERSKI Wojsowa Aademia Techniczna Wydział Mechaniczny Załad Systemów Jaości i Zarządzania 02-010 Warszawa, ul. Nowowiejsa 26 aswidersi@wat.edu.pl NEURONOWE MODELOWANIE OCENY JAKOŚCI USŁUG TRANSPORTOWYCH

Bardziej szczegółowo

A4: Filtry aktywne rzędu II i IV

A4: Filtry aktywne rzędu II i IV A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX6 Operacje morfologiczne Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami podstawowych

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość

Bardziej szczegółowo

P k k (n k) = k {O O O} = ; {O O R} =

P k k (n k) = k {O O O} = ; {O O R} = Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba

Bardziej szczegółowo

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION ELEKTRYKA 0 Zeszyt (9) Rok LX Andrzej KUKIEŁKA Politechnika Śląska w Gliwicach DUAL SIMILARITY OF VOLTAGE TO CURRENT AND CURRENT TO VOLTAGE TRANSFER FUNCTION OF HYBRID ACTIVE TWO- PORTS WITH CONVERSION

Bardziej szczegółowo

1 Przestrzeń zdarzeń elementarnych

1 Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych Przestrzeń zdarzeń elementarnych jest pojęciem pierwotnym w teorii prawdopodobieństwa. W zastosowaniach tej teorii zdarzenia elementarne interpretuje się jao możliwe przypadi,

Bardziej szczegółowo

ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU

ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU Mirosław Tomera Aademia Morsa w Gdyni Wydział Eletryczny Katedra Automatyi Orętowej ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU W pracy przedstawiona została implementacja sieci neuronowej

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

Operacje morfologiczne

Operacje morfologiczne Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Operacje morfologiczne 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami prostych operacji morfologicznych: zw»ania/erozji

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN ZAKŁAD MECHATRONIKI LABORATORIUM PODSTAW AUTOMATYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 4 Temat: Identyfiacja obietu regulacji

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim: DIAGNOSTYKA OBRAZOWA Nazwa w języku angielskim: DIAGNOSTIC IMAGING Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

RACJONALIZACJA PROCESU EKSPLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA PRZEJAZDACH KOLEJOWYCH

RACJONALIZACJA PROCESU EKSPLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA PRZEJAZDACH KOLEJOWYCH RACE NAUKOWE OLITECHNIKI WARSZAWSKIEJ z. Transport 6 olitechnika Warszawska, RACJONALIZACJA ROCESU EKSLOATACYJNEGO SYSTEMÓW MONITORINGU WIZYJNEGO STOSOWANYCH NA RZEJAZDACH KOLEJOWYCH dostarczono: Streszczenie

Bardziej szczegółowo

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES

QUANTITATIVE AND QUALITATIVE CHARACTERISTICS OF FINGERPRINT BIOMETRIC TEMPLATES ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 74 Nr kol. 1921 Adrian KAPCZYŃSKI Politechnika Śląska Instytut Ekonomii i Informatyki QUANTITATIVE AND QUALITATIVE CHARACTERISTICS

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

LABORATORIUM 4: Wpływ operatorów mutacji na skuteczność poszukiwań AE

LABORATORIUM 4: Wpływ operatorów mutacji na skuteczność poszukiwań AE Instytut Mechanii i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnia Śląsa www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 4: Wpływ operatorów mutacji na suteczność poszuiwań

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

Komputerowe przetwarzanie obrazu Laboratorium 5

Komputerowe przetwarzanie obrazu Laboratorium 5 Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 9, Oeconomica 68 54), 55 6 Anna LANDOWSKA ZASTOSOWANIE DYSKRETNEGO PROGRAMOWANIA DYNAMICZNEGO DO ROZWIĄZANIA PROBLEMU

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urządzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urządzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie czwarte Przekształcenia morfologiczne obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych

Bardziej szczegółowo

Detekcja i śledzenie ruchomych obiektów w obrazie

Detekcja i śledzenie ruchomych obiektów w obrazie Detecja i śledzenie ruchomych oietów w orazie Piotr Dala Plan prezentacji Wprowadzenie Metody wyrywania oietów ruchomych Podstawowe metody Modelowanie tła Usuwanie cienia Przetwarzanie morfologiczne Metody

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS

Wykaz linii kolejowych, które są wyposażone w urzadzenia systemu ETCS Wykaz kolejowych, które są wyposażone w urzadzenia W tablicy znajdującej się na kolejnych stronach tego załącznika zastosowano następujące oznaczenia: - numer kolejowej według instrukcji Wykaz Id-12 (D-29).

Bardziej szczegółowo

OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU

OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU Inżynieria Rolnicza 2(90)/2007 OKREŚLENIE PRĘDKOŚCI PORUSZANIA SIĘ SZKODNIKÓW Z WYKORZYSTANIEM KOMPUTEROWEJ ANALIZY OBRAZU Joanna Rut, Katarzyna Szwedziak, Marek Tukiendorf Zakład Techniki Rolniczej i

Bardziej szczegółowo

Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna

Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Przetwarzanie i Kompresja Obrazów. Morfologia matematyczna Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków

CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków 36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH ALGORYTMÓW OPTYMALIZACJI ROZPŁYWU MOCY W SYSTEMIE ELEKTROENERGETYCZNYM A COMPARISON OF SELECTED OPTIMAL POWER FLOW ALGORITHMS

PORÓWNANIE WYBRANYCH ALGORYTMÓW OPTYMALIZACJI ROZPŁYWU MOCY W SYSTEMIE ELEKTROENERGETYCZNYM A COMPARISON OF SELECTED OPTIMAL POWER FLOW ALGORITHMS ELEKRYKA 2013 Zeszyt 4 (228) Ro LIX Artur PASIERBEK, Marcin POŁOMSKI, Radosław SOKÓŁ Politechnia Śląsa w Gliwicach PORÓWNANIE WYBRANYCH ALGORYMÓW OPYMALIZACJI ROZPŁYWU MOCY W SYSEMIE ELEKROENERGEYCZNYM

Bardziej szczegółowo

REALIZACJA NA POZIOMIE RTL OBLICZANIA PIERWIASTKA KWADRATOWEGO Z UŻYCIEM METODY NIEODTWARZAJĄCEJ

REALIZACJA NA POZIOMIE RTL OBLICZANIA PIERWIASTKA KWADRATOWEGO Z UŻYCIEM METODY NIEODTWARZAJĄCEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 206 Robert SMYK* Maciej CZYŻAK* REALIZACJA NA POZIOMIE RTL OBLICZANIA PIERWIASTKA KWADRATOWEGO Z UŻYCIEM METODY NIEODTWARZAJĄCEJ

Bardziej szczegółowo

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie 9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy

Bardziej szczegółowo

THE MODELLING OF CONSTRUCTIONAL ELEMENTS OF HARMONIC DRIVE

THE MODELLING OF CONSTRUCTIONAL ELEMENTS OF HARMONIC DRIVE ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2008 Seria: TRANSPORT z. 64 Nr kol. 1803 Piotr FOLĘGA MODELOWANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH PRZEKŁADNI FALOWYCH Streszczenie. W pracy na podstawie rzeczywistych

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

Wykorzystanie logiki rozmytej w badaniach petrofizycznych

Wykorzystanie logiki rozmytej w badaniach petrofizycznych NAFTA-GAZ, ROK LXXII, Nr / DOI: 1.1/NG...1 Barbara Darła, Małgorzata Kowalsa-Włodarczy Instytut Nafty i Gazu Państwowy Instytut Badawczy Wyorzystanie logii rozmytej w badaniach petrofizycznych Praca ta

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW dr Bartłomiej Roici atedra Maroeonomii i Teorii Handlu Zagranicznego Wydział Nau Eonomicznych UW dr Bartłomiej Roici Maroeonomia II Model Solowa z postępem technologicznym by do modelu Solowa włączyć postęp

Bardziej szczegółowo

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE

Bardziej szczegółowo

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion

DM-ML, DM-FL. Auxiliary Equipment and Accessories. Damper Drives. Dimensions. Descritpion DM-ML, DM-FL Descritpion DM-ML and DM-FL actuators are designed for driving round dampers and square multi-blade dampers. Example identification Product code: DM-FL-5-2 voltage Dimensions DM-ML-6 DM-ML-8

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: TRANSPORT z. 82 Nr kol. 1903 Piotr FOLĘGA 1 DOBÓR ZĘBATYCH PRZEKŁADNI FALOWYCH Streszczenie. Różnorodność typów oraz rozmiarów obecnie produkowanych zębatych

Bardziej szczegółowo

Struktury proponowane dla unikalnych rozwiązań architektonicznych.

Struktury proponowane dla unikalnych rozwiązań architektonicznych. 23 Struktury proponowane dla unikalnych rozwiązań architektonicznych.. System fundamentu zespolonego może być zastosowany jako bezpieczna podstawa dla obiektów silnie obciążonych mogących być zlokalizowanymi

Bardziej szczegółowo

Porównanie wybranych miar kontrastu obrazów achromatycznych

Porównanie wybranych miar kontrastu obrazów achromatycznych KWS 00 87 Porównanie wybranych miar ontrastu obrazów achromatycznych Artur Ba Streszczenie: W artyue poruszono zagadnienie oceny ontrastu achromatycznych obrazów cyfrowych. W pracy przedstawiono porównanie

Bardziej szczegółowo

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych.

Materiały do wykładów na temat Obliczanie sił przekrojowych i momentów przekrojowych. dla prętów zginanych. ateriały do wyładów na temat Obliczanie sił przerojowych i momentów przerojowych dla prętów zginanych Wydr eletroniczny. slajdów na. stronach przeznaczony do celów dydatycznych dla stdentów II ro stdiów

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Analiza obrazów - sprawozdanie nr 3

Analiza obrazów - sprawozdanie nr 3 Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i

Bardziej szczegółowo

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

METODY GENERACJI I SELEKCJI CECH GRAFU W ROZPOZNAWANIU ZDJĘĆ SATELITARNYCH *)

METODY GENERACJI I SELEKCJI CECH GRAFU W ROZPOZNAWANIU ZDJĘĆ SATELITARNYCH *) Wojciech CZECH METODY GENERACJI I SELEKCJI CECH GRAFU W ROZPOZNAWANIU ZDJĘĆ SATELITARNYCH *) STRESZCZENIE W pracy tej przedstawiona została nowa metoda rozpoznawania zdjęć satelitarnych i lotniczych w

Bardziej szczegółowo

KARTA PRZEDMIOTU. Kod przedmiotu Nazwa przedmiotu w języku. M INF _05.15 Analiza obrazów medycznych Analysis of medical images. polskim angielskim

KARTA PRZEDMIOTU. Kod przedmiotu Nazwa przedmiotu w języku. M INF _05.15 Analiza obrazów medycznych Analysis of medical images. polskim angielskim Kod przedmiotu Nazwa przedmiotu w języku polskim angielskim KARTA PRZEDMIOTU M INF _05.15 Analiza obrazów medycznych Analysis of medical images 1. USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW 1.1. Kierunek

Bardziej szczegółowo

Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI

Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI IMIĘ i NAZWISKO: Zbigniew Winiarski Nr albumu: 237828 KIERUNEK: Informatyka

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej

Przestrzenne uwarunkowania lokalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Cezary Ziółowsi Jan M. Kelner Instytut Teleomuniacji Wojsowa Aademia Techniczna Przestrzenne uwarunowania loalizacji źródeł sygnałów radiowych na bazie pomiaru częstotliwości chwilowej Problematya loalizacji

Bardziej szczegółowo

Wykład wprowadzający

Wykład wprowadzający Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Wykład wprowadzający dr inż. Michał Grochowski kiss.pg.mg@gmail.com michal.grochowski@pg.gda.pl

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY KORESPONDENCJI W BADANIU AKTYWNOŚCI TURYSTYCZNEJ EMERYTÓW I RENCISTÓW

ZASTOSOWANIE ANALIZY KORESPONDENCJI W BADANIU AKTYWNOŚCI TURYSTYCZNEJ EMERYTÓW I RENCISTÓW METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 1 11 ZASTOSOWANIE ANALIZY KORESPONDENCJI W BADANIU AKTYWNOŚCI TURYSTYCZNEJ EMERYTÓW I RENCISTÓW Iwona Bą Katedra Zastosowań Matematyi w Eonomii,

Bardziej szczegółowo

UNIWERSALNY ELEKTRONICZNY PULPIT NASTAWCZY

UNIWERSALNY ELEKTRONICZNY PULPIT NASTAWCZY PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 116 Transport 2017 Andrzej Kochan, Marek Wilga UNIWERSALNY ELEKTRONICZNY PULPIT NASTAWCZY, w Streszczenie: ster Brak uniwersalnego pulpitu elementów sterowanych.

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Technika optymalizacji

Technika optymalizacji Algorytmy bezgraientowe Algorytmy optymalizacji loalnej c. Nieliniowe zaanie optymalizacji statycznej bez ograniczeń - nieliniowe algorytmy optymalizacji loalnej c. r inŝ. Ewa Szlachcic Wyział Eletronii

Bardziej szczegółowo

Ćwiczenie nr 1: Wahadło fizyczne

Ćwiczenie nr 1: Wahadło fizyczne Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel

Bardziej szczegółowo

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ

MATEMATYCZNY MODEL PĘTLI HISTEREZY MAGNETYCZNEJ ELEKTRYKA 014 Zeszyt 1 (9) Rok LX Krzysztof SZTYMELSKI, Marian PASKO Politechnika Śląska w Gliwicach MATEMATYCZNY MODEL PĘTLI ISTEREZY MAGNETYCZNEJ Streszczenie. W artykule został zaprezentowany matematyczny

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a) ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM

WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM 2/1 Archives of Foundry, Year 200, Volume, 1 Archiwum Odlewnictwa, Rok 200, Rocznik, Nr 1 PAN Katowice PL ISSN 1642-308 WPŁYW SZYBKOŚCI STYGNIĘCIA NA WŁASNOŚCI TERMOFIZYCZNE STALIWA W STANIE STAŁYM D.

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo