Komputerowe przetwarzanie obrazu Laboratorium 5

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowe przetwarzanie obrazu Laboratorium 5"

Transkrypt

1 Komputerowe przetwarzanie obrazu Laboratorium 5 Przykład 1 Histogram obrazu a dobór progu binaryzacji. Na podstawie charakterystyki histogramu wybrano dwa różne progi binaryzacji (120 oraz 180). Proszę ocenić rezultaty wykonanych operacji. L1=imread('portret.jpg') imshow(l1) set(gcf,'color',([1 1 1])); grid; imhist(l1); ylabel('ilość pikseli', 'FontSize',15,'FontName','Arial CE') L2a=L1>120; imshow(l2a); L2b=L1>180; imshow(l2b) Przykład 2 Wyznaczenie progu za pomocą algorytmu Otsu. L1=imread('portret.jpg') imshow(l1) set(gcf,'color',([1 1 1])); grid; imhist(l1); ylabel('ilość pikseli', 'FontSize',15,'FontName','Arial CE') level = graythresh(l1); L2 = im2bw(l1,level); imshow(l2) GRAYTHRESH Compute global image threshold using Otsu's method. LEVEL = GRAYTHRESH(I) computes a global threshold (LEVEL) that can be used to convert an intensity image to a binary image with IM2BW. LEVEL is a normalized intensity value that lies in the range [0, 1]. GRAYTHRESH uses Otsu's method, which chooses the threshold to minimize the intraclass variance of the thresholded black and white pixels. Zadanie 1 Proszę wybrać dowolny obraz i na podstawie analizy histogramu spróbować dobrać optymalny próg binaryzacji. Czy dla każdego obrazu jest to możliwe? Następnie dobrać próg przy zastosowaniu algorytmu Otsu. Zadanie 2 Na podstawie analizy histogramu obrazu "cells1.bmp" proszę spróbować wybrać dwa progi (górny i dolny) tak, aby wyróżnić kontury komórek. Ćwiczenie należy wykonać metodą "prób i błędów". Przykład 3 Dodawanie dwóch obrazów monochromatycznych o takiej samej rozdzielczości [L1a,map1a] = imread('gory.bmp'); imshow(l1a,map1a); imshow(ind2gray(l1a,map1a)); L1a=double(ind2gray(L1a,map1a))/255;

2 imshow(l1b,map1b) imshow(ind2gray(l1b,map1b)); L1b=double(ind2gray(L1b,map1b))/255; L2a=L1a+L1b; imshow(mat2gray(l2a)) MAT2GRAY Convert matrix to intensity image. I = MAT2GRAY(A,[AMIN AMAX]) converts the matrix A to the intensity image I. The returned matrix I contains values in the range 0.0 (black) to 1.0 (full intensity or white). AMIN and AMAX are the values in A that correspond to 0.0 and 1.0 in I. Values less than AMIN become 0.0, and values greater than AMAX become 1.0. I = MAT2GRAY(A) sets the values of AMIN and AMAX to the minimum and maximum values in A. Przykład 4 Dodawanie dwóch obrazów o różnej rozdzielczości: L1a=L1a(201:650,101:700); %wycięcie odpowiedniego fragmentu obrazu imshow(l1b) L2a=L1a+L1b; imshow(mat2gray(l2a)) Uwaga: Jeżeli obrazy różnią się rozmiarami, należy z większego obrazu wyciąć odpowiedni fragment. Przykład 5 Mieszanie obrazów z różną wagą: L1a=L1a(201:650,101:700); imshow(l1b) L2a=imlincomb(0.3,L1a,0.7,L1b); % suma wag dodawanych obrazów musi być równa 1 imshow(l2a) Mieszanie dwóch obrazów z różną wagą (wagi zmieniają się co 1 sekundę: L1a=L1a(201:650,101:700); for i=0:0.05:1 L2=imlincomb(i,L1a,1-i,L1b);

3 imshow(l2); title(['l1a',mat2str(i*100),'%',' + L1b',mat2str((1- i)*100),'%']); pause(1) end Przykład 6 Funkcja "imadd" pozwala dodać stałą wartość do obrazu lub dodać dwa obrazy do siebie. Dodawanie wartości 80 do obrazu: L1 = imread('portret.jpg'); imshow(l1); L2 = imadd(l1,80); Zadanie 3 Proszę dodać dwa dowolne obrazy za pomocą funkcji "imadd", pamiętając o warunku zgodności wymiarów macierzy. Przykład 7 Odejmowanie dwóch obrazów monochromatycznych (obraz ukryty): L1a=L1a(201:650,101:700)>128; L1c=0.05*double(L1a)/ *double(L1b)/255; imshow(l1c); L2=mat2gray(L1c-0.95*double(L1b)/255); Zadanie 4 Proszę wykonać odejmowanie dwóch obrazów przy użyciu funkcji "imabsdiff". Następnie zmienić kolejność obrazów źródłowych i zaobserwować czy jest różnica w obrazie wynikowym. Zadanie 5 Proszę wypróbować odejmowanie dwóch obrazów przy użyciu funkcji "imsubtract". Czy zmiana kolejności obrazów źródłowych pociąga za sobą różnicę w obrazie wynikowym? Przykład 8 Mnożenie i dzielenie różnych obrazów ma niewielkie zastosowanie praktyczne. Operacje tego typu mogą być przydatne do odfiltrowywania zbędnej informacji (np: szumu). W fotografii krajobrazowej dalsze plany tracą wyrazistość ze względu na mgłę, która jest widoczna w kanale niebieskim. Mnożenie kanałów zielonego i czerwonego (za pomocą funkcji "immultiply") pozwoli na wyodrębnienie zieleni. L1r=double(L1(:,:,1))/255; imshow(l1r); L1g=double(L1(:,:,2))/255; imshow(l1g); L1b=double(L1(:,:,3))/255; L2=immultiply(L1g,L1r);

4 imshow(l2,[]); Zadanie 6 Proszę zastosować dzielenie kanału zielonego przez niebieski za pomocą funkcji "imdivide". Przykład 9 Wyznaczanie minimum i maksimum z dwóch obrazów dla każdego z pikseli w odpowiadającym sobie położeniu: L1r=double(L1(:,:,1))/255; imshow(l1r); L1g=double(L1(:,:,2))/255; imshow(l1g); L1b=double(L1(:,:,3))/255; L2a=max(L1g,L1b); L2b=min(L1g,L1b); imshow(l2a); imshow(l2b); Przykład 10 Operacja logiczna NOT dla obrazu binarnego oraz monochromatycznego: L1a=L1>0.5; L2a=~(L1a); imshow(l2a); imshow(bitcmp(uint8(l1*255),8)); Dopełnienie obrazu uzyskane przy zastosowaniu funkcji "imcomplement": imshow(l1); L2=imcomplement(L1); imshow(l2); Sposób 3 Identyczny obraz wynikowy uzyskany przez odwrócenie palety "Grayscale": ('Color', 'w'); imshow(l1); colormap(gray(256)); colorbar; ('Color', 'w'); imshow(l1); colormap(flipud(gray(256))); colorbar;

5 Przykład 11 Iloczyn logiczny obrazów binarnych: L1a=imread('wykr_10.tif'); imshow(l1a); L1b=imread('wykr_14.tif'); L2=L1a&L1b; L1a=imread('wykr_10.tif'); imshow(l1a); L1b=imread('wykr_14.tif'); L2=bitand(L1a,L1b); Zadanie 7 Bazując na powyższym przykładzie proszę wykonać operacje OR, XOR, SUB. Przykład 12 Iloczyn logiczny obrazów monochromatycznych: L1r=L1(:,:,1); imshow(l1r); L1g=L1(:,:,2); imshow(l1g); L1b=L1(:,:,3); L2=bitand(L1r,L1g);

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab

Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu

Bardziej szczegółowo

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie

9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie 9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy

Bardziej szczegółowo

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009

Analiza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze

Bardziej szczegółowo

Przetwarzanie obrazów wykład 4

Przetwarzanie obrazów wykład 4 Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)

Bardziej szczegółowo

Przetwarzanie obrazów wykład 2

Przetwarzanie obrazów wykład 2 Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości

Operator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1

Bardziej szczegółowo

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek

Bardziej szczegółowo

Wykonawca: PIOTR DOMALEWSKI. Termin oddania sprawozdania: 30.08

Wykonawca: PIOTR DOMALEWSKI. Termin oddania sprawozdania: 30.08 SPRAWOZDANIE Z LABORATORIUM Przedmiot: KOMUNIKACJA CZŁOWIEK KOMPUTER Temat ćwiczenia: ZNACZENIE BARWY W PROJEKTOWANIU INTERFEJSU UŻYTKOWNIKA Kierunek: Informatyka Tryb / semestr: Zaoczne / VI Termin wykonania

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie czwarte Przekształcenia morfologiczne obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych

Bardziej szczegółowo

Gimp Grafika rastrowa (konwersatorium)

Gimp Grafika rastrowa (konwersatorium) GIMP Grafika rastrowa Zjazd 1 Prowadzący: mgr Agnieszka Paradzińska 17 listopad 2013 Gimp Grafika rastrowa (konwersatorium) Przed przystąpieniem do omawiania cyfrowego przetwarzania obrazów niezbędne jest

Bardziej szczegółowo

Kiedy i czy konieczne?

Kiedy i czy konieczne? Bazy Danych Kiedy i czy konieczne? Zastanów się: czy często wykonujesz te same czynności? czy wielokrotnie musisz tworzyć i wypełniać dokumenty do siebie podobne (faktury, oferty, raporty itp.) czy ciągle

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++ Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk

i ruchów użytkownika komputera za i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Promotor: dr Adrian Horzyk System śledzenia oczu, twarzy i ruchów użytkownika komputera za pośrednictwem kamery internetowej i pozycjonujący oczy cyberagenta internetowego na oczach i akcjach użytkownika Mirosław ł Słysz Promotor:

Bardziej szczegółowo

Aplikacja sieciowa kalkulatora macierzowego zadanie za 10 punktów

Aplikacja sieciowa kalkulatora macierzowego zadanie za 10 punktów Laboratorium 2 Zadanie będzie polegało na zbudowaniu aplikacji kalkulatora macierzowego, która będzie umoŝliwiała wykonywanie operacji arytmetycznych na dwóch macierzach o zmienianym wymiarze od 3x3 do

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT

Konstruowanie Baz Danych SQL UNION, INTERSECT, EXCEPT Studia podyplomowe Inżynieria oprogramowania współfinansowane przez Unię Europejska w ramach Europejskiego Funduszu Społecznego Projekt Studia podyplomowe z zakresu wytwarzania oprogramowania oraz zarządzania

Bardziej szczegółowo

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab

LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem

Bardziej szczegółowo

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu

Programowanie strukturalne. Opis ogólny programu w Turbo Pascalu Programowanie strukturalne Opis ogólny programu w Turbo Pascalu STRUKTURA PROGRAMU W TURBO PASCALU Program nazwa; } nagłówek programu uses nazwy modułów; } blok deklaracji modułów const } blok deklaracji

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Instrukcje Laboratoryjne

Instrukcje Laboratoryjne Instrukcje Laboratoryjne Metody cyfrowego przetwarzania informacji multimedialnej 23/4 Laboratorium Treści programowe: Wprowadzenie w problematykę laboratorium, przedstawienie celów, treści programowych

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 75 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM PODSTAWOWY CZĘŚĆ

Bardziej szczegółowo

Python wstęp do programowania dla użytkowników WCSS

Python wstęp do programowania dla użytkowników WCSS Python wstęp do programowania dla użytkowników WCSS Dr inż. Krzysztof Berezowski Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej Wprowadzenie CHARAKTERYSTYKA JĘZYKA Filozofia języka

Bardziej szczegółowo

dr in. Artur Bernat, KMP, WM., PKos., wykład wstpny (rodowisko Matlab), strona: 1

dr in. Artur Bernat, KMP, WM., PKos., wykład wstpny (rodowisko Matlab), strona: 1 dr in. Artur Bernat, KMP, WM., PKos., wykład wstpny (rodowisko Matlab), strona: 1 Wykład wstpny (II) > z Podstaw Przetwarzania Informacji

Bardziej szczegółowo

Przetwarzanie obrazów wykład 7. Adam Wojciechowski

Przetwarzanie obrazów wykład 7. Adam Wojciechowski Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest

Bardziej szczegółowo

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu

CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu CUDA Median Filter filtr medianowy wykorzystujący bibliotekę CUDA sprawozdanie z projektu inż. Daniel Solarz Wydział Fizyki i Informatyki Stosowanej AGH 1. Cel projektu. Celem projektu było napisanie wtyczki

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program

Bardziej szczegółowo

Ś Ó Ć ć ć Ź ć Ć Ź ć Ś ć ć ć Ś ć Ź ć Ś Ź Ź ć ć ć ź ć ć ź Ź ć ć Ź ć Ś ć ć ć Ś ć Ź ć Ź ć ć ć ź Ś ć Ź ć Ź ć Ź ć Ź ć Ź Ś Ś ć ć Ś Ć ź Ę Ź Ź Ś Ć Ą Ó Ę Ó Ó Ą Ś Ę Ź Ó Ó Ę Ę Ź Ą Ó Ą Ą Ą Ą Ą Ś ć ć ć Ń Ó Ć ź ć ć Ś

Bardziej szczegółowo

Jacek Szlachciak. Urządzenia wirtualne systemu wieloparametrycznego

Jacek Szlachciak. Urządzenia wirtualne systemu wieloparametrycznego Jacek Szlachciak Urządzenia wirtualne systemu wieloparametrycznego Warszawa, 2009 1 1. Spektrometryczny przetwornik analogowo-cyfrowy (spectroscopy ADC) - wzmocnienie sygnału wejściowego (Conversion Gain

Bardziej szczegółowo

EGARA 2011. Adam Małyszko FORS. POLAND - KRAKÓW 2-3 12 2011r

EGARA 2011. Adam Małyszko FORS. POLAND - KRAKÓW 2-3 12 2011r EGARA 2011 Adam Małyszko FORS POLAND - KRAKÓW 2-3 12 2011r HISTORIA ELV / HISTORY ELV 1992r. 5 Program działań na rzecz ochrony środowiska / EAP (Environmental Action Plan) 1994r. Strategia dobrowolnego

Bardziej szczegółowo

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d

Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. 0,2-1Mbit yes yes yes n/d NOVUS IP CAMERAS CLASSIC CAMERAS Compatible cameras for NVR-5000 series Main Stream Sub stream Support Firmware ver. Resolution Bitrate FPS GOP Resolution Bitrate FPS GOP Audio Motion detection NVIP 5000

Bardziej szczegółowo

ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM)

ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) LABORATORIUM 5 - LOKALIZACJA OBIEKTÓW METODĄ HISTOGRAMU KOLORU 1. WYBÓR LOKALIZOWANEGO OBIEKTU Pierwszy etap laboratorium polega na wybraniu lokalizowanego obiektu.

Bardziej szczegółowo

GIS w nauce. Poznań 01-03.06.2015. Analiza obiektowa (GEOBIA) obrazów teledetekcyjnych pod kątem detekcji przemian środowiska. mgr inż.

GIS w nauce. Poznań 01-03.06.2015. Analiza obiektowa (GEOBIA) obrazów teledetekcyjnych pod kątem detekcji przemian środowiska. mgr inż. GIS w nauce Poznań 01-03.06.2015 Analiza obiektowa (GEOBIA) obrazów teledetekcyjnych pod kątem detekcji przemian środowiska mgr inż. Paweł Hawryło dr hab. inż. Piotr Wężyk dr inż. Marta Szostak Laboratorium

Bardziej szczegółowo

Zabawa z grak z programem Scilab. Jacek Tabor

Zabawa z grak z programem Scilab. Jacek Tabor Zabawa z grak z programem Scilab Jacek Tabor Rozdziaª 1 Operacje na obrazach 1.1 Elementy statystyki w analizie muzyki i zdj : histogram Statystyka = nauka sªu» ca do opisu, przetwarzania i interpretacji

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Wybrane wyniki w zakresie umiejętności matematycznych

Wybrane wyniki w zakresie umiejętności matematycznych Wybrane wyniki w zakresie umiejętności matematycznych Struktura badanych umiejętności matematycznych Umiejętności narzędziowe, stosowane w sytuacji typowej stosowane w sytuacji nietypowej Umiejętności

Bardziej szczegółowo

Techniki wizualizacji. Ćwiczenie 2. Obraz cyfrowy w komputerze

Techniki wizualizacji. Ćwiczenie 2. Obraz cyfrowy w komputerze Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 2 Obraz cyfrowy w komputerze Celem ćwiczenia

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)

Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

RBD Relacyjne Bazy Danych

RBD Relacyjne Bazy Danych Wykład 7 RBD Relacyjne Bazy Danych Bazy Danych - A. Dawid 2011 1 Selekcja σ C (R) W wyniku zastosowania operatora selekcji do relacji R powstaje nowa relacja T do której należy pewien podzbiór krotek relacji

Bardziej szczegółowo

Przetwarzanie obrazów

Przetwarzanie obrazów Przetwarzanie obrazów Zajęcia 11 Filtracje przestrzenne obrazów rastrowych (2). Zasady wykonania ćwiczenia Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników

Bardziej szczegółowo

Planning and Cabling Networks

Planning and Cabling Networks Planning and Cabling Networks Network Fundamentals Chapter 10 Version 4.0 1 Projektowanie okablowania i sieci Podstawy sieci Rozdział 10 Version 4.0 2 Objectives Identify the basic network media required

Bardziej szczegółowo

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB

PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB Zygmunt Wróbel Robert Koprowski PRAKTYKA PRZETWARZANIA OBRAZU W PROGRAMIE MATLAB EXIT 2004 2 3 SPIS TREŚCI Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA.  D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl http://orion.fis.agh.edu.pl/~grazyna/ D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Plan wykładu 2 Wprowadzenie, trochę historii, systemy liczbowe

Bardziej szczegółowo

JAVA. Platforma JSE: Środowiska programistyczne dla języka Java. Wstęp do programowania w języku obiektowym. Opracował: Andrzej Nowak

JAVA. Platforma JSE: Środowiska programistyczne dla języka Java. Wstęp do programowania w języku obiektowym. Opracował: Andrzej Nowak JAVA Wstęp do programowania w języku obiektowym Bibliografia: JAVA Szkoła programowania, D. Trajkowska Ćwiczenia praktyczne JAVA. Wydanie III,M. Lis Platforma JSE: Opracował: Andrzej Nowak JSE (Java Standard

Bardziej szczegółowo

Wykaz przedmiotu zamówienia Cz. II

Wykaz przedmiotu zamówienia Cz. II Załącznik nr 8 b do SIWZ (załącznik nr 1 do wzoru umowy stanowiącego zał. nr nr 2 b do SIWZ) Wykaz przedmiotu zamówienia Cz. II Wykaz oferowanego przedmiotu zamówienia do siedziby Wydziału Oświaty i Wychowania

Bardziej szczegółowo

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE

TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE TECHNICAL CATALOGUE WHITEHEART MALLEABLE CAST IRON FITTINGS EE Poland GENERAL INFORMATION USE Whiteheart malleable cast iron fittings brand EE are used in threaded pipe joints, particularly in water, gas,

Bardziej szczegółowo

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego

SKRYPTY. Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego 1 SKRYPTY Zadanie: Wyznaczyć wartość wyrażenia arytmetycznego z = 1 y + 1+ ( x + 2) 3 x 2 + x sin y y + 1 2 dla danych wartości x = 12.5 i y = 9.87. Zadanie to można rozwiązać: wpisując dane i wzór wyrażenia

Bardziej szczegółowo

Cała prawda o plikach grafiki rastrowej

Cała prawda o plikach grafiki rastrowej ~ 1 ~ Cała prawda o plikach grafiki rastrowej Grafika rastrowa to rodzaj grafiki zapisywanej na dysku w postaci bitmapy, czyli zbioru pikseli. W edytorach grafiki rastrowej możliwa jest edycja na poziomie

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Wiadomości wstępne Środowisko programistyczne Najważniejsze różnice C/C++ vs Java

Wiadomości wstępne Środowisko programistyczne Najważniejsze różnice C/C++ vs Java Wiadomości wstępne Środowisko programistyczne Najważniejsze różnice C/C++ vs Java Cechy C++ Język ogólnego przeznaczenia Można programować obiektowo i strukturalnie Bardzo wysoka wydajność kodu wynikowego

Bardziej szczegółowo

Grafika komputerowa. Zajęcia IX

Grafika komputerowa. Zajęcia IX Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów. Wykład. Podstawowe przekształcenia morfologiczne. dr inż. Robert Kazała

Cyfrowe przetwarzanie sygnałów. Wykład. Podstawowe przekształcenia morfologiczne. dr inż. Robert Kazała Cyfrowe przetwarzanie sygnałów Wykład Podstawowe przekształcenia morfologiczne dr inż. Robert Kazała Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany

Bardziej szczegółowo

Kwerendy (zapytania) wybierające

Kwerendy (zapytania) wybierające Access 2. Kwerendy (zapytania) wybierające Kwerendy wybierające (nazywane też zapytaniami wybierającymi) są podstawowymi obiektami w MS Access służącymi do wyszukiwania danych w tabelach. W wyniku uruchomienia

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Wyższa Szkoła Informatyki Stosowanej i Zarządzania Warsaw School of Information Technology WIT Grupa ID306, Zespół 5 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 1 Temat: Akwizycja i przetwarzanie

Bardziej szczegółowo

Zasady wystawiania ocen klasyfikacyjnych szkoła podstawowa.

Zasady wystawiania ocen klasyfikacyjnych szkoła podstawowa. Zasady wystawiania ocen klasyfikacyjnych szkoła podstawowa. Oceny klasyfikacyjne śródroczne i końcoworoczne ustalone są według skali: stopień niedostateczny 1 stopień dopuszczający 2 stopień dostateczny

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

1. Pobrać plik masm.zip (Macro Assembler 6.15 & Segmented Executable Linker 5.60) (http://www.cs.put.poznan.pl/mantczak/teaching/itc/masm.zip).

1. Pobrać plik masm.zip (Macro Assembler 6.15 & Segmented Executable Linker 5.60) (http://www.cs.put.poznan.pl/mantczak/teaching/itc/masm.zip). J.Nawrocki, M. Antczak, G. Palik, A. Widelska Plik źródłowy: 07cw4-asm.doc; Data: 2007-09-26 6:00 Ćwiczenie nr 4 Język asemblera Środowisko uruchomieniowe 1. Pobrać plik masm.zip (Macro Assembler 6.15

Bardziej szczegółowo

SYLABUS ECCC MOD U Ł : C S M2 GR A F I K A KO M P U T E R O W A PO Z I O M: PO D S T A W O W Y (A)

SYLABUS ECCC MOD U Ł : C S M2 GR A F I K A KO M P U T E R O W A PO Z I O M: PO D S T A W O W Y (A) SYLABUS ECCC MOD U Ł : C S M2 GR A F I K A KO M P U T E R O W A PO Z I O M: PO D S T A W O W Y (A) GRUPA KOMPETENCJI KOMPETENCJE OBJĘTE STANDARDEM ECCC 1. Teoria grafiki komputerowej 1.1. Podstawowe pojęcia

Bardziej szczegółowo

Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane

Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Podstawowe definicje Z czego składa się system ekspertowy? Wnioskowanie: wprzód, wstecz, mieszane Tworzymy system ekspertowy 1. Wstępna analiza i definicja dziedziny problemu. W tym: poznanie wiedzy dziedzinowej

Bardziej szczegółowo

Kod zestawu Set s code CDA/TS-01SET/10. grubość szkła (mm): 10 udźwig systemu (kg): Kod zestawu Set s code CDA/TS-02SET/10

Kod zestawu Set s code CDA/TS-01SET/10. grubość szkła (mm): 10 udźwig systemu (kg): Kod zestawu Set s code CDA/TS-02SET/10 CDA/ TS-01SET/ z odbojem i zaczepem Completed accessory kit for sliding system with end-stoper and fastner min 90 20 CDA/TS-01SET/ Przygotowanie szkła: zaleca się wykonanie otworów Ø 12 dla drzwi o wadze

Bardziej szczegółowo

ANALIZY DYSTANSU. Spatial analyst Network analyst. Anna Dąbrowska, Sylwia Książek, Arleta Soja, Miłosz Urbański

ANALIZY DYSTANSU. Spatial analyst Network analyst. Anna Dąbrowska, Sylwia Książek, Arleta Soja, Miłosz Urbański ANALIZY DYSTANSU Spatial analyst Network analyst Anna Dąbrowska, Sylwia Książek, Arleta Soja, Miłosz Urbański SPATIAL ANALYST Źródło:http://www.sli.unimelb.edu.au/gisweb/GISModule/GISTheory.htm Spatial

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/7 Język C Instrukcja laboratoryjna Temat: Wprowadzenie do języka C 2 Przygotował: mgr inż. Maciej Lasota 1) Wprowadzenie do języka C. Język C jest językiem programowania ogólnego zastosowania

Bardziej szczegółowo

WYBÓR PUNKTÓW POMIAROWYCH

WYBÓR PUNKTÓW POMIAROWYCH Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

FORMUŁY AUTOSUMOWANIE SUMA

FORMUŁY AUTOSUMOWANIE SUMA Wskazówki do wykonania Ćwiczenia 1, ocena sprawdzianu (Excel 2007) Autor: dr Mariusz Giero 1. Pobierz plik do pracy. W pracy należy wykonać obliczenia we wszystkich żółtych polach oraz utworzyć wykresy

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science

Proposal of thesis topic for mgr in. (MSE) programme in Telecommunications and Computer Science Proposal of thesis topic for mgr in (MSE) programme 1 Topic: Monte Carlo Method used for a prognosis of a selected technological process 2 Supervisor: Dr in Małgorzata Langer 3 Auxiliary supervisor: 4

Bardziej szczegółowo

OCENA POWTARZALNOŚCI WYNIKÓW ILOŚCIOWEJ OCENY STRUKTURY

OCENA POWTARZALNOŚCI WYNIKÓW ILOŚCIOWEJ OCENY STRUKTURY 79/21 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 21(2/2) ARCHIVES OF FOUNDARY Year 2006, Volume 6, Nº 21 (2/2) PAN Katowice PL ISSN 1642-5308 OCENA POWTARZALNOŚCI WYNIKÓW ILOŚCIOWEJ OCENY STRUKTURY L.

Bardziej szczegółowo

Technologie Informacyjne Wykład 3

Technologie Informacyjne Wykład 3 Technologie Informacyjne Wykład 3 Procesor i jego architektura (CISC, RISC, 32/64 bity) Systemy wieloprocesorowe Wojciech Myszka Jakub Słowiński Katedra Mechaniki i Inżynierii Materiałowej Wydział Mechaniczny

Bardziej szczegółowo

RADIO DISTURBANCE Zakłócenia radioelektryczne

RADIO DISTURBANCE Zakłócenia radioelektryczne AKREDYTOWANE LABORATORIUM BADAWCZE Page (Strona) 2 of (Stron) 9 Following requirements should be taken into account in the case of making use of Test Report and giving information about the tests performed

Bardziej szczegółowo

Zarządzanie sieciami telekomunikacyjnymi

Zarządzanie sieciami telekomunikacyjnymi SNMP Protocol The Simple Network Management Protocol (SNMP) is an application layer protocol that facilitates the exchange of management information between network devices. It is part of the Transmission

Bardziej szczegółowo

Podstawowe definicje statystyczne

Podstawowe definicje statystyczne Podstawowe definicje statystyczne 1. Definicje podstawowych wskaźników statystycznych Do opisu wyników surowych (w punktach, w skali procentowej) stosuje się następujące wskaźniki statystyczne: wynik minimalny

Bardziej szczegółowo

Diagnostyka obrazowa

Diagnostyka obrazowa Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1

Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1 Łukasz Przywarty 171018 Data utworzenia: 10.04.2010r. Prowadzący: dr inż. Marcin Markowski Sprawozdanie z zajęć laboratoryjnych: Technologie sieciowe 1 Temat: Zadanie domowe, rozdział 6 - Adresowanie sieci

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU

KARTA PRZEDMIOTU WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI CELE PRZEDMIOTU UWAGA! Karta przedmiotu nie jest zatwierdzona! Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Metody numeryczne Nazwa w języku angielskim: Numerical Methods Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Wstęp do Informatyki i Programowania (kierunek matematyka stosowana)

Wstęp do Informatyki i Programowania (kierunek matematyka stosowana) Wstęp do Informatyki i Programowania (kierunek matematyka stosowana) Jacek Cichoń Przemysław Kobylański Instytut Matematyki i Informatyki Politechnika Wrocławska Na podstawie: M.Summerfield.Python 3. Kompletne

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Elektroniczny podręcznik Selection Drzwi przesuwne i składane

Elektroniczny podręcznik Selection Drzwi przesuwne i składane Elektroniczny podręcznik Selection Drzwi przesuwne i składane Wersja: 1.0 Nazwa: Tematy: PL_Przesuwne-Składane_V1.PDF 1 Konstrukcje drzwi przesuwnych i składanych w SelectionProfessional...2 1.1 Zróżnicowanie

Bardziej szczegółowo

Architektura komputerów. Asembler procesorów rodziny x86

Architektura komputerów. Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Architektura komputerów Asembler procesorów rodziny x86 Rozkazy mikroprocesora Rozkazy mikroprocesora 8086 można podzielić na siedem funkcjonalnych

Bardziej szczegółowo

PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013

PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013 PROMOTION - Flexible Ducts and Accessories - FLX-REKU P13.1/2013 Offer conditions: Offer is valid until 08.11.2013 or end of stock The offer quantity is lilited All prices are EXW When placing an order

Bardziej szczegółowo

Ż Ł ć ć ź ź Ś Ó ćę Ę Ą Ę ć Ę ć Ń Ż ć ć Ż ć ć ć ć ć ć ć ć ć Ź ć ć Ę ć ć ć Ą ć Ż ć Ł Ż ć Ę ć ć ć ć ć ć ć ć Ż ć Ż ć ć ć ć ć Ż ć Ą Ź ć Ą ź Ż ć ć ć ć ć Ź ź Ź ć Ż Ź Ż Ź Ź ć Ż ć Ę Ł Ż ć ź Ż ć ć ź ć ć ć ź Ż Ę

Bardziej szczegółowo

ć ŚĆ Ś Ż Ś ć ć ŚĆ ć ć ć Ś ź ź Ł Ń Ź ź ć Ś ć Ę Ś ź ć Ó ć ć Ś Ś Ś Ł Ś ć ć Ł ć ŚĆ Ś ź Ś Ś Ś Ś ć ć Ł ć Ę Ę ć Ś Ś ć Ś Ę ć Ę Ś Ś Ś Ś Ś Ś ć ć Ś Ż ć ć ć ć ć ć ć ć ć Ę Ż ć ć Ś Ś ź Ś Ś Ę Ł Ń ć Ę ć Ś ć Ż ć Ę Ę Ę

Bardziej szczegółowo

ż Ść Ś Ś Ś Ś Ę Ą Ę ź Ę Ę ć ć Ź Ć Ó Ę Ę Ń Ś Ą ć Ę ć ć ćę ż ż ć Ó ż Ę Ń Ą Ą Ż Ę Ę Ść ć ż Ż ż Ż ć Ż ź Ę Ść Ż Ę Ść Ś ż Ń Ą ż Ę ż ż Ś ż ż Ó Ś Ę Ó ź ż ż ć ż Ś ż Ś ć ż ż Ś Ś ć Ż Ż Ó ż Ż Ż Ś Ś Ś ć Ź ż Ś Ś ć Ą

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie

Laboratorium. Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie Laboratorium Szyfrowanie algorytmami Vernam a oraz Vigenere a z wykorzystaniem systemu zaimplementowanego w układzie programowalnym FPGA. 1. Zasada działania algorytmów Algorytm Vernam a wykorzystuje funkcję

Bardziej szczegółowo

ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW IMAGE PROCESSING ALGORITHM BLOB DETECTION AND ANALYSIS

ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW IMAGE PROCESSING ALGORITHM BLOB DETECTION AND ANALYSIS ELEKTRYKA 203 Zeszyt 2-3 (226-227) Rok LIX Marek SZYMCZAK Politechnika Śląska w Gliwicach ALGORYTM PRZETWARZANIA OBRAZU DETEKCJA I ANALIZA OBSZARÓW Streszczenie. W artykule przedstawiono algorytm przetwarzania

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo