Technika optymalizacji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Technika optymalizacji"

Transkrypt

1 Algorytmy bezgraientowe Algorytmy optymalizacji loalnej c. Nieliniowe zaanie optymalizacji statycznej bez ograniczeń - nieliniowe algorytmy optymalizacji loalnej c. r inŝ. Ewa Szlachcic Wyział Eletronii Kierune: Eletronia III r. Algorytm Neler a-meae a Matlab - uncja search Algorytm auss a-seil a Algorytm Powella Algorytm Zangwilla Algorytmy graientowe Algorytm najwięszego spau Zmoyiowany algorytm Newtona Algorytm Fletchera-Reeves a Algorytm Polaa-Ribiery Algorytm Fletchera-Powella-Daviona Matlab wersja metoy Quasi-Newton - uncja unc Metoa auss a-seiel a "punty.at" ***.5*** a metoa jest stosowana la uncji tórych poziomice mają ształt wąsich olin. MoŜna zięi niej uzysać znaczną poprawę szybości zbieŝności w stosunu o metoy aussa-seila. Moyiacja ierunu poszuiwań następuje tu w wyniu wprowazania o bazy ortogonalnej ierunów sprzęŝonych o juŝ istniejących. Do istniejącej bazy wprowaza się ieruni sprzęŝone co obieg czyli po imalizacji wzłuŝ n ierunów obowiązującej bazy. Wyres warstwic uncji PoniewaŜ ieruni wzajemnie sprzęŝone są liniowo niezaleŝne w metozie Powella zachowany pozostaje warune jenoznaczności przeształcenia bazy ierunów poszuiwań. Dzięi temu mamy pewność iŝ nie nastąpi reucja wymiarowości bazy co prowaziłoby o niezbieŝności metoy. Dla j...n obliczamy λ j imalizujące j oraz współrzęne puntu j j- λ j j Wyznaczamy słaowe ierunu sprzęŝonego zgonie ze wzorem : n n n 3 Oreślamy λ imalizujące n wzłuŝ nowego ierunu n oraz wyznaczamy współrzęne nowego puntu startowego n n λ n "punty.at" ***.5***--.5 ^ Doonujemy moyiacji ierunów poszuiwań zgonie z zasaą r r la r.. n Czynności o rou o 4 powtarzamy aŝ spełnione zostanie ryterium na imum Wyres warstwic uncji

2 Algorytm Neler a- Meae a algorytm symplesu NM la zaań bez ograniczeń Algorytm Comples la zaań z ograniczeniami Simples w n-wymiarowej przestrzeni jest zbiorem n lub n puntów wielościanem o nn wierzchołach. Metoa sprawza się obrze nawet la mocno nieliniowych uncji jena wymaga sporych nałaów pracy numerycznej szczególne przy uŝej liczbie zmiennych ecyzyjnych. Ogólny schemat algorytmu: Utworzyć simples o n lub n wierzchołach i wartości uncji w wierzchołach Obliczyć śroe symetrii symplesu z wyłączeniem puntu oraz wartość uncji w tym puncie n i Zastosować operacje: i n Operacja obicia n Operacja espansji Operacja ontracji Operacja zmniejszania Operacja obicia: naleŝy wyznaczyć nowy punt: jeśli: o α laα i o > NaleŜy wyznaczyć nowy simples z uŝyciem o w miejsce Operacja espansji: naleŝy wyznaczyć nowy punt: e o γ gy < laγ Operacja ontracji: naleŝy wyznaczyć nowy punt: o i i ρ gy la laρ / Operacja zmniejszanie: la wierzchołów i naleŝy wyznaczyć nowe współrzęne i i σ lai {... n } σ / LEMA. Niech : X R n R ZałóŜmy Ŝe istnieje la tórego: Metoy graientowe Metoa najwięszego spau NS jest to metoa graientowa tóra pozwala szuać imum róŝniczowalnej uncji nieliniowej. bęzie uncją róŝniczowalną w puncie < Wówczas istnieje taie σ > Ŝe la wszystich τ σ ] zachozi τ <. X Schemat algorytmu optymalizacji loalnej bez ograniczeń Wybierz punt startowy. Oblicz wartość uncji oraz jeŝeli jest to wymagane to jej graient czy hesjan H 3 Zbaaj przyjęte ryterium zbieŝności. Jeśli ryterium jest spełnione to oniec algorytmu uzysano rozwiązanie optymalne i optymalną wartość uncji celu JeŜeli nie to przejź o 4 4 Wyznacz ustalony ierune poszuiwań : 5 Wyonaj imalizację ierunową wybraną metoą: 6 Postaw i przejź o oraz Algorytm obliczeń metoa NS Wybierz punt startowy o. Oblicz wartość uncji oraz jej graient Zbaaj ryterium zbieŝności: czyli ε 3 Wyznacz ierune poszuiwań : 4 Wyonaj imalizację ierunową wybraną metoą: 5 Postaw oraz i powtórz gzie ε δ] np.: ε 6 Jeśli ta to oniec jeśli nie to przejź o 3

3 Algorytm bisecji z testem wusośnym olstein a algorytm graientowy Do imalizacji w ierunu zastosowano graientowy algorytm bisecji z testem wusośnym olstein a : Do wyszuania puntów spełniających test wusośny olsteina stosuje się algorytm bisecji: Oblicz pochoną w ierunu p o oraz współczynni rou τ R > tai Ŝe τ R < Wyznacz τ τl τr. Oblicz τ. 3 Jeśli τ < pτ to postaw τ L i przejź o rou w przeciwnym razie przejź o rou 4 4 Jeśli τ > pτ to postaw τ R i przejź o rou w przeciwnym przypau oniec. Działanie algorytmu bisecji z testem wusośnym olstein'a la uncji: Pochona w ierunu zatem mamy: p o 6 punt początowy [ ] ierune [ ] współczynni testu początowa wartość współczynnia rou τ R 9 ołaność la testu ε 5 5 la [ ] 6 4 [ 6] Otrzymujemy wartość pochonej p: o p [ 6 ] 6 Obliczamy τ τl τr oraz τ. τ τr 9 45 τ JeŜeli to postaw τ < pτ τ L i przejź o rou. W przeciwnym wypau przejź o rou 4 Przechozimy o rou 3 it. sprawzamy: -675 <? NIE Przechozimy o rou 4

4 4 JeŜeli to postaw τ > pτ τ R i przejź o rou. W przeciwnym wypau KONIEC 8 sprawzamy: -675 >? AK i przechozimy o rou DRUA IERACJA... Po trzeciej iteracji otrzymujemy wyni τ3375 Działanie algorytmu najwięszego spau la uncji: punt początowy [ 3] współczynni testu 4 początowa wartość współczynnia rou τ R Kolejno poane są punty wyznaczone za pomocą algorytmu najszybszego spau la uncji: [3] 5 [] [.5.5].5 3 [.55] [.5.5] 4.65 it. Funcja celu I ta olejno aŝ o momentu gy zostanie spełniony warune 3 ε np. : ε a uzysano rozwiązanie optymalne [] i. M Kolejne iteracje metoy najwięszego spau NS e i Metoa aussa-seila barzo wolna zbieŝność liniowa Metoa najwięszego spau zbieŝność liniowa 5 3 ^ 4 H H { h } Metoa Newtona zbieŝna waratowo ale osztowna i nie zawsze stabilna ij i j i j {... n} Najeetywniejsze są tzw. metoy quasi-newtonowsie w tórych w olejnych iteracjach onstruuje się przybliŝenie owrotności hesjanu. M

5 Wyzia Eletronii stuia I st. Kieruni poszuiwań la meto graientowych. Metoa Pola a-ribier y: Wyznacz ierune sprzęŝony gzie: DFP moyiacja macierzy polegająca na oawaniu w aŝej olejnej iteracji o atualnej macierzy czynnia powoującego ąŝenie macierzy o macierzy H -. A ><. Metoa Fletcher a-reeves a Wyznacz ierune sprzęŝony gzie: 3. Metoa Davion a-fletcher a-powell a DFP Wyzia Eletronii stuia I st. Metoy Quasi-Newtonowsie metoy przybliŝające wartość hesjanu 4. Metoa royen-fletcher-olarb-shanno FS Atualizacja rozwiązania: gzie: H I I gzie:. Właściwości metoy: ra operacji owracania macierzy hesjanu liso rozwiązania optymalnego obra zbieŝność Na początu obliczeń zbieŝność słaba słabe jest przybliŝenie hesjanu PrzybliŜenie hesjanu w aŝej iteracji polepsza się. H Dla

min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x

min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x Nelnowe zaane optymalzacj bez ogranczeń numeryczne metoy teracyjne optymalzacj mn n x R ) = f x Algorytmy poszuwana mnmum loalnego la: f zaana programowana nelnowego bez ogranczeń zaana programowana nelnowego

Bardziej szczegółowo

Metody optymalizacji nieliniowej (metody programowania nieliniowego) Ewa Niewiadomska-Szynkiewicz Instytut Automatyki i Informatyki Stosowanej

Metody optymalizacji nieliniowej (metody programowania nieliniowego) Ewa Niewiadomska-Szynkiewicz Instytut Automatyki i Informatyki Stosowanej Metody optymalizacji nieliniowej metody programowania nieliniowego Ewa Niewiadomsa-Szyniewicz Instytut Automatyi i Inormatyi Stosowanej Ewa Niewiadomsa-Szyniewicz ens@ia.pw.edu.pl Instytut Automatyi i

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ

WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość

Bardziej szczegółowo

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego

( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji Teora metoy optymalzacj Nelowe zaae optymalzacj bez ograczeń umerycze metoy teracyje optymalzacj m x R f = f x Algorytmy poszuwaa mmum loalego zaaa programowaa elowego: Bez ograczeń Z ograczeam Algorytmy

Bardziej szczegółowo

M eto dy o p ty m a liza cji

M eto dy o p ty m a liza cji M eto dy o p ty m a liza cji M e to d y d et erm i ni s ty cz n e M et od y st oc h a sty cz n e b e z o gr an ic z eń z o gra n ic z en ia m i m e to d a M o nt e-c ar lo b ezg r ad ie n to w e g r ad

Bardziej szczegółowo

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH ALGORYTMÓW OPTYMALIZACJI ROZPŁYWU MOCY W SYSTEMIE ELEKTROENERGETYCZNYM A COMPARISON OF SELECTED OPTIMAL POWER FLOW ALGORITHMS

PORÓWNANIE WYBRANYCH ALGORYTMÓW OPTYMALIZACJI ROZPŁYWU MOCY W SYSTEMIE ELEKTROENERGETYCZNYM A COMPARISON OF SELECTED OPTIMAL POWER FLOW ALGORITHMS ELEKRYKA 2013 Zeszyt 4 (228) Ro LIX Artur PASIERBEK, Marcin POŁOMSKI, Radosław SOKÓŁ Politechnia Śląsa w Gliwicach PORÓWNANIE WYBRANYCH ALGORYMÓW OPYMALIZACJI ROZPŁYWU MOCY W SYSEMIE ELEKROENERGEYCZNYM

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)

Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8) Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe

Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

Zadania do rozdziału 5

Zadania do rozdziału 5 Zadania do rozdziału 5 Zad.5.1. Udowodnij, że stosując równię pochyłą o dającym się zmieniać ącie nachylenia α można wyznaczyć współczynni tarcia statycznego µ o. ozwiązanie: W czasie zsuwania się po równi

Bardziej szczegółowo

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0

WYKŁAD nr Ekstrema funkcji jednej zmiennej o ciągłych pochodnych. xˆ ( ) 0 WYKŁAD nr 4. Zaanie programowania nieliniowego ZP. Ekstrema unkcji jenej zmiennej o ciągłych pochonych Przypuśćmy ze punkt jest punktem stacjonarnym unkcji gzie punktem stacjonarnym nazywamy punkt la którego

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Grupowanie sekwencji czasowych

Grupowanie sekwencji czasowych BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule

Bardziej szczegółowo

Geometria analityczna przestrzeni

Geometria analityczna przestrzeni ALGEBRA LINIOWA 1 Wydział Mechaniczny / AIR, MTR Semestr zimowy 2009/2010 Prowadzący: dr Teresa Jurlewicz Wetory, długość wetora Geometria analityczna przestrzeni Zadanie 1 [5.1] Obliczyć długości podanych

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

Zastosowanie informatyki w elektrotechnice

Zastosowanie informatyki w elektrotechnice Zastosowanie informatyi w eletrotechnice Politechnia Białostoca - Wydział Eletryczny Eletrotechnia, semestr V, studia niestacjonarne Ro aademici 2006/2007 Wyład nr 4 (15.12.2006 Zastosowanie informatyi

Bardziej szczegółowo

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.

Sterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji. emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę

Bardziej szczegółowo

Równanie Fresnela. napisał Michał Wierzbicki

Równanie Fresnela. napisał Michał Wierzbicki napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Linie wpływu w belkach statycznie niewyznaczalnych

Linie wpływu w belkach statycznie niewyznaczalnych EHANIKA BUOWI inie wpływu w belach statycznie niewyznaczalnych Zadanie.: la poniższej beli naszicuj linie wpływu reacji A, B i. Za pomocą metody przemieszczeń wyznaczyć rzędne poszczególnych linii w połowie

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305

ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305 ZASADY WYZNACZANIA BEZPIECZNYCH ODSTĘPÓW IZOLACYJNYCH WEDŁUG NORMY PN-EN 62305 Henry Boryń Politechnia Gdańsa ODSTĘPY IZOLACYJNE BEZPIECZNE Zadania bezpiecznego odstępu izolacyjnego to: ochrona przed bezpośrednim

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g zares rozszerzony 1. Wielomiany bardzo zna pojęcie jednomianu jednej zmiennej; potrafi wsazać jednomiany podobne; potrafi

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

ANALIZA WIELOKRYTERIALNA

ANALIZA WIELOKRYTERIALNA ANALIZA WIELOKRYTERIALNA Dział Badań Operacyjnych zajmujący się oceną możliwych wariantów (decyzji) w przypadu gdy występuje więcej niż jedno ryterium oceny D zbiór rozwiązań (decyzji) dopuszczalnych x

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

PARAMETRYCZNE ZAGADNIENIE ODWROTNE ODTWARZANIA WŁASNOŚCI FILTRACYJNYCH GRUNTU

PARAMETRYCZNE ZAGADNIENIE ODWROTNE ODTWARZANIA WŁASNOŚCI FILTRACYJNYCH GRUNTU MODELOWANIE INŻYNIERSIE ISNN 1896-771X 32, s. 439-446, Gliwice 2006 PARAMERYCZNE ZAGADNIENIE ODWRONE ODWARZANIA WŁASNOŚCI FILRACYJNYCH GRUNU IRENEUSZ SZCZYGIEŁ Instytut echnii Cieplnej, Politechnia Śląsa

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja

Bardziej szczegółowo

DWUPOZIOMOWA METODA WIELOKRYTERIALNEGO STEROWANIA PRZEPŁYWEM PRODUKTÓW

DWUPOZIOMOWA METODA WIELOKRYTERIALNEGO STEROWANIA PRZEPŁYWEM PRODUKTÓW DWUPOZIOMOWA METODA WIELOKRYTERIALNEGO STEROWANIA PRZEPŁYWEM PRODUKTÓW Mare MAGIERA Streszczenie: Zadanie sterowania przepływem produtów przez wielostadialną linię producyjną zostało podzielone na dwa

Bardziej szczegółowo

POPRAWA EFEKTYWNOŚCI METODY WSTECZNEJ

POPRAWA EFEKTYWNOŚCI METODY WSTECZNEJ Nowoczesne techniki informatyczne - Ćwiczenie 6: POPRAWA EFEKTYWNOŚCI METODY BP str. 1 Ćwiczenie 6: UCZENIE SIECI WIELOWARSTWOWYCH. POPRAWA EFEKTYWNOŚCI METODY WSTECZNEJ PROPAGACJI BŁĘDU WYMAGANIA 1. Sztuczne

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza

ef 3 (dziedzina, dziedzina naturalna) Niech f : A R, gdzie A jest podzbiorem płaszczyzny lub przestrzeni Zbiór A nazywamy dziedziną funcji f i oznacza FUNKCJE WÓCH I TRZECH ZMIENNYCH (było w semestrze II) ef 1 (funcja dwóch zmiennych) Funcją f dwóch zmiennych oreśloną na zbiorze A R o wartościach w R nazywamy przyporządowanie ażdemu puntowi ze zbioru

Bardziej szczegółowo

Wykład 21: Studnie i bariery cz.1.

Wykład 21: Studnie i bariery cz.1. Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania. Przykładowe zadania optymalizacji nieliniowej bez ograniczeń

Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania. Przykładowe zadania optymalizacji nieliniowej bez ograniczeń Wydział Elektroniki Kier: Automatyka i Robotyka Studia magisterskie II stopnia Dr. inŝ. Ewa Szlachcic Katedra Automatyki, Mechatroniki i Systemów Sterowania Przykładowe zadania optymalizacji nieliniowej

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

Wykład VIII Rozwiązywanie równań i układów równań nieliniowych

Wykład VIII Rozwiązywanie równań i układów równań nieliniowych Wyład VIII Rozwiązywanie równań i uładów równań nieliniowych Równania nieliniowe w technice Zadanie wyznaczenia pierwiastów równania nieliniowego Metody iteracji z otaczaniem i podziałem (bisecja i regula-falsi)

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Metoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 )

Metoda rozwiązywania układu równań liniowych z symetryczną, nieokreśloną macierzą współczynników ( 0 ) MATEMATYKA STOSOWANA 7, 2006 Izabella Czochralsa (Warszawa) Metoda rozwiązywania uładu równań liniowych z symetryczną, nieoreśloną macierzą współczynniów ( 0 ) Streszczenie. W pracy zaadaptowano opracowaną

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

LZNK. Rozkªad QR. Metoda Householdera

LZNK. Rozkªad QR. Metoda Householdera Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x

Bardziej szczegółowo

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.

Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako

Bardziej szczegółowo

NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES

NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES JANUSZ GERMAN, ZBIGNIEW MIKULSKI NUMERYCZNA SYMULACJA STOPNIOWEGO USZKADZANIA SIĘ LAMINATÓW KOMPOZYTOWYCH NUMERICAL SIMULATION OF PROGRESSIVE DAMAGE IN COMPOSITE LAMINATES S t r e s z c z e n i e A b s

Bardziej szczegółowo

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4

długość całkowita: L m moment bezwładności (względem osi y): J y cm 4 moment bezwładności: J s cm 4 .9. Stalowy ustrój niosący. Poład drewniany spoczywa na dziewięciu belach dwuteowych..., swobodnie podpartych o rozstawie... m. Beli wyonane są ze stali... Cechy geometryczne beli: długość całowita: L

Bardziej szczegółowo

Analiza nośności poziomej pojedynczego pala

Analiza nośności poziomej pojedynczego pala Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu

Bardziej szczegółowo

ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY

ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY ANALIZA STATYCZNA i WYMIAROWANIE KONSTRUKCJI RAMY 11 10 9 8 7 6 5 4 1 1 WĘZŁY: Nr: X [m]: Y [m]: Nr: X [m]: Y [m]: 1,7 1,41 7 1,6,17,968 1,591 8 1,07,46,658 1,759 9 0,688,54 4,4 1,916 10 0,46,609 5,00,061

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12

Bardziej szczegółowo

KOLOKWIUM Z ALGEBRY I R

KOLOKWIUM Z ALGEBRY I R Instrucje: Każde zadanie jest za 4 puntów. Rozwi azanie ażdego zadania musi znajdować siȩ na osobnej artce oraz być napisane starannie i czytelnie. W nag lówu ażdego rozwi azania musz a znajdować siȩ dane

Bardziej szczegółowo

Analiza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x

Analiza B II zadania. cos kx = sin(n x) 2 sin x 2. cos n sin 1 n., tan x, cot x, log sin x, log tan x, 1 + x Analiza B II zadania Oblicz granicę n cos n n Udowodnij wzór dla mπ 3 Udowodnij że szereg + n = cos = sin(n + sin cos n sin n jest zbieżny warunowo 4 Wyprowadź wzory (sin = cos (cos = sin 5 Wyaż że funcje

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej.

Do wprowadzania symboli pochodnych można wykorzystać paletę Calculus lub skróty klawiszowe: SHIFT+? - wprowadza symbol pierwszej pochodnej. 1. Pochone funkcji Mathca umożliwia obliczenie pochonej funkcji w zaanym punkcie oraz wyznaczenie pochonej funkcji w sposób symboliczny. 1.1 Wyznaczanie wartości pochonej w punkcie Aby wyznaczyć pochoną

Bardziej szczegółowo

Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku

Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Metoda Runge-Kutta-Fehlberga i sterowanie długością kroku Cel: Dla zadanej tolerancji e wybrać minimalną liczbę węzłów, wystarczającą do utrzymania globalnego błedu w ramach tolerancji. Błąd globalny trudny

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych

Modelowanie i obliczenia techniczne. Równania różniczkowe Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Moelowanie i obliczenia echniczne Równania różniczowe Numeryczne rozwiązywanie równań różniczowych zwyczajnych Przyła ułau ynamicznego E Uła ynamiczny R 0 Zachozi porzeba wyznaczenia: C u C () i() ur ir

Bardziej szczegółowo

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH Andrzej SZYMONIK, Krzysztof PYTEL Streszczenie: W złożonych sieciach omputerowych istnieje problem doboru przepustowości

Bardziej szczegółowo

Redukcja wariancji w metodach Monte-Carlo

Redukcja wariancji w metodach Monte-Carlo 14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

WB Wieszak Belki DOCISK. 3,26 MPa

WB Wieszak Belki DOCISK. 3,26 MPa DOCISK Założenia: - Drewno lasy C24 - Wytrzymałość charaterystyczna na ścisanie w poprze włóien c,90, 5,3 Pa - Przyjęto 1 lasę użytowania - Przyjęto onstrucję obciążoną obciążeniem ciężarem własnym i użytowym

Bardziej szczegółowo