Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM"

Transkrypt

1 Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

2 Spis treści 4 Pola elektryczne w materii Polaryzacja elektryczna Pole ciała spolaryzowanego Pole indukcji elektrycznej Dielektryki liniowe

3 4 Pola elektryczne w materii 4.1 Polaryzacja elektryczna Indukowany moment dipolowy Co się dzieje z atomem jeśli umieścimy go w polu elektrycznym E? p = αe, α polaryzowalność atomowa

4 Przykład: Przyjmijmy, że atom to punktowe jądro (+q) otoczone chmurą ładunku w kształcie jednorodnie naładowanej kuli o promieniu a i całkowitym ładunku q. Obliczyć polaryzowalność atomową dla takiego modelu. q +q a q d +q E E = E e = 1 4πɛ 0 qd a 3, pole przesuniętych ładunków równoważy pole zewnętrzne p = qd = (4πɛ 0 a 3 )E α = 4πɛ 0 a 3 = 3ɛ 0 v

5 O C O p = α E + α E, cząsteczka anizotropowa α = [ C 2 m N α = [ C 2 m N ] ] p x = α xx E x + α xy E y + α xz E z p y = α yx E x + α yy E y + α yz E z p z = α zx E x + α zy E y + α zz E z, α ij współrzędne tensora polaryzowalności

6 4.1.3 Zmiana orientacji momentów dipolowych cząsteczek polarnych p +q H H + O d F + O F q cząsteczka polarna F + = qe = F siły się równoważą N = (r + F + ) + (r F ) = [ (d/2) (qe) ] + [ ( d/2) ( qe) ] = qd E moment siły E N = p E

7 F = F + + F = q(e + E ) = q(δe) pole niejednorodne δe = (d )E F = (p )E siła działająca na dipol w polu niejednorodnym U = p E energia dipola w polu U = 1 4πɛ 0 1 r 3 [ p1 p 2 3(p 1 ˆr)(p 2 ˆr) ] energia oddziaływania dwóch dipoli

8 4.1.4 Polaryzacja elektryczna Co się dzieje z dielektrykiem umieszczonym w polu? Materiał zostaje spolaryzowany. P moment dipolowy na jednostkę objętości polaryzacja elektryczna

9 4.2 Pole ciała spolaryzowanego Ładunki związane Jakie pole wytwarza spolaryzowane ciało? R P p V (r) = 1 ˆR p 4πɛ 0 R 2 V (r) = 1 4πɛ 0 V dla pojedynczego dipola ˆR P (r ) R 2 dτ dla objętości V

10 ( ) 1 = ˆR R R 2 V (r) = 1 ( ) 1 P dτ, 4πɛ 0 R V V (r) = 1 ( ) P dτ 4πɛ 0 R V (r) = 1 4πɛ 0 σ zw P ˆn S V 1 R P ˆn da 1 4πɛ 0 korzystamy z (fa) = f( A) + A ( f) 1 R ( P ) dτ V 1 R ( P ) dτ V gęstość powierzchniowa ładunków związanych ρ zw P gęstość objętościowa ładunków związanych

11 V (r) = 1 4πɛ 0 S σ zw R da + 1 4πɛ 0 V ρ zw R dτ Przykład: Znaleźć natężenie pola elektrycznego wytwarzanego przez jednorodnie spolaryzowaną kulę o promieniu R. z ˆn P θ R σ zw = P ˆn = P cos θ Szukamy pola wytworzonego przez rozkład powierzchniowy ładunku P cos θ. To już obliczyliśmy!

12 V (r, θ) = P 3ɛ 0 r cos θ dla r R P R 3 3ɛ 0 cos θ dla r R r 2 E = V = P 3ɛ 0 ẑ = 1 3ɛ 0 P dla r < R, pole jednorodne V = 1 4πɛ 0 p ˆr r 2 dla r R, p = 4 3 πr3 P, wartość dipola potencjał od dipola umieszczonego w środku kuli E(r, θ) = 1 p (2 cos θ ˆr + sin θ ˆθ) pole 4πɛ 0 r3 dipola

13 linie pola dla jednorodnie spolaryzowanej kuli

14 4.2.2 Fizyczna interpretacja ładunków związanych = Spolaryzowany walec A d = q +q P (Ad) = (P A)d = qd moment dipolowy wycinka σ zw = q A = P gęstość powierzchniowa ładunku

15 ρ zw dτ = V S ρ zw = P + polaryzacja niejednorodna P da = V ( P ) dτ

16 4.2.3 Pole w dielektryku R r chcemy obliczyć pole makroskopowe w punkcie r; rozważmy kulę o promieniu R wokół punktu r E = E zew + E wew E wew =?. jakie jest pole od ładunków wewnątrz kuli? E śred = 1 4πɛ 0 p R 3 uśrednione pole od ładunków znajdujących się wewnątrz kuli o promieniu R; p jest całkowitym momentem dipolowym

17 dτ R R r q obliczamy średnie pole od ładunku q umieszczonego w punkcie r E śred = 1 E dτ = 1 1 q 4 3 πr3 4 3 πr3 4πɛ 0 R ˆR 2 dτ E ρ = 1 ρ 4πɛ 0 R ˆR pole w punkcie r od równomiernie 2 dτ naładowanej kuli, które łatwo policzyć E śred = E ρ jeśli ρ = q 4 3 E πr3 ρ = 1 ρr = 1 qr 3ɛ 0 4πɛ 0 R 3 = 1 p 4πɛ 0 R 3 E wew = E śred = 1 p uśrednione pole od ładunków 4πɛ 0 R 3 wewnątrz kuli V zew = 1 4πɛ 0 na zewnątrz kuli ˆR P (r ) R 2 dτ potencjał od ładunków zewnętrznych

18 E wew = 1 4πɛ 0 E wew = 1 3ɛ 0 P p R 3, p = ( ) 4 3 πr3 P Uśrednione po dowolnej kuli pole pochodzące od ładunków wewnątrz kuli jest takie samo jak pole w środku jednorodnie spolaryzowanej kuli Potencjał pola makroskopowego: V (r) = 1 4πɛ 0 ˆR P (r ) R 2 dτ całka obejmuje całą objętość dielektryka

19 4.3 Pole indukcji elektrycznej Prawo Gaussa w obecności dielektryka ρ = ρ zw + ρ sw gęstość ładunków związanych i swobodnych ɛ 0 E = ρ = ρ zw + ρ sw = P + ρ sw prawo Gaussa (ɛ 0 E + P ) = ρ sw D ɛ 0 E + P wektor indukcji elektrycznej D = ρ sw prawo Gaussa D da = Q sw wew Przykład:

20 Długi prosty drut, naładowany jednorodnie z gęstością liniową λ, otoczony jest gumową izolacją. Promień warstwy izolacji wynosi a. Znaleźć indukcję elektryczną w tym układzie. λ L s a D(2πsL) = λl z prawa Gaussa D = λ 2πsŝ, wzór słuszny wewnątrz i na zewnątrz izolacji E = 1 D = λ dla s > a (P = 0) ɛ 0 2πɛ 0 sŝ Wewnątrz izolacji nie znamy P!

21 4.3.2 Zwodnicze podobieństwo D(r) 1 4π ˆR R 2 ρ sw(r ) dτ, dla D nie ma prawa Coulomba D = ɛ 0 ( E) + ( P ) = P Do wyznaczenia pola wektorowego nie wystarczy znajomość dywergencji. Trzeba jeszcze znać rotację. D 0, D nie jest gradientem skalara, D nie ma potencjału! D nie jest wyznaczone wyłącznie przez ładunek swobodny.

22 4.3.3 Warunki brzegowe D da = Q sw wew D nad D pod = σ sw skok składowej prostopadłej D nad D pod = P nad P pod, skok składowej równoległej W obecności dielektyka te warunki są często bardziej użyteczne niż warunki dla pola. E nad E pod = 1 ɛ 0 σ E nad E pod = 0

23 4.4 Dielektryki liniowe Podatność elektryczna i przenikalność elektryczna P = ɛ 0 χ e E dla niezbyt silnych pól χ e jest podatnością elektryczną ośrodka D = ɛ 0 E + P = ɛ 0 E + ɛ 0 χ e E = ɛ 0 (1 + χ e )E, w ośrodkach liniowych D = ɛe, D jest proporcjonalne do E ɛ ɛ 0 (1 + χ e ) przenikalność elektryczna ośrodka ɛ r 1 + χ e = ɛ, ɛ 0 Przykład: względna przenikalność elektryczna

24 Metalowa kula o promieniu a naładowana została ładunkiem Q. Kula otoczona jest powłoką z dielektryka o przenikalności elektrycznej ɛ; promień powłoki wynosi b. Znaleźć różnicę potencjałów między środkiem kuli i punktem w nieskończoności. a Q b D = Q ˆr, dla r > a ze względu na symetrię sferyczną 4πr2

25 E = P = D = 0, E = V = = Q 4π Q 4πɛr 2 ˆr Q 4πɛ 0 r 2 ˆr 0 E dl = wewnątrz metalowej kuli dla a < r < b dla r > b b ( 1 ɛ 0 b + 1 ɛa 1 ɛb ( Q ) 4πɛ 0 r 2 ) dr a b ( Q ) 4πɛr 2 dr 0 a (0) dr Nie musieliśmy obliczać polaryzacji ani gęstości ładunków związanych! Chociaż w tym przypadku nie jest to trudne.

26 P = ɛ 0 χ e E = ɛ 0χ e Q 4πɛr 2 ˆr ρ zw = P = 0 σ zw = P ˆn = ɛ 0 χ e Q 4πɛb 2 ɛ 0χ e Q 4πɛa 2 na powierzchni zewnętrznej na powierzchni wewnętrznej Znak minus wynika z tego, że wektor ˆn jest skierowany na zewnątrz dielektryka (+ ˆr dla r = b i ˆr dla r = a).

27 próżnia dielektryk P = 0 P 0 P dl 0, P 0, ɛ 0 χ e różne po obu stronach Także dla dielektryków liniowych podobieństwo D i E jest zwodnicze. Chyba, że przestrzeń jest całkowicie wypełniona jednorodnym dielektrykiem. D = ρ sw, D = 0, znając ρ sw można obliczyć D D = ɛ 0 E próżni, E próżni jest natężeniem pola elektrycznego jakie dany rozkład ładunków wytworzyłby w próżni E = 1 ɛ D = 1 ɛ r E próżni pole w dielektryku jest redukowane o ɛ r

28 q + ładunek swobodny q umieszczony w dużym kawałku dielektryka jest ekranowany przez ładunki związane E = 1 4πɛ 1 r 2 ˆr, we wzorze występuje ɛ a nie ɛ 0 ( ) P x = ɛ 0 χ e xxe x + χ e xye y + χ e xze z ( ) P y = ɛ 0 χ e yxe x + χ e yye y + χ e yze z ( ) P z = ɛ 0 χ e zxe x + χ e zye y + χ e zze z dla kryształów tensor podatności elektrycznej

29 4.4.2 Zagadnienia brzegowe w obecności dielektryków liniowych ρ zw = P = ( D ɛ 0 χ e ɛ = ɛ 0χ e ɛ 0 (1 + χ e ) D = ) ( χe 1 + χ e ) ρ sw W jednorodnym dielektryku liniowym gęstość ładunku związanego ρ zw jest proporcjonalna do gęstości ładunku swobodnego ρ sw. Jeśli w dielektryku nie ma ładunków swobodnych ρ sw = 0, to nieznikająca gęstość ładunku może wystąpić jedynie na powierzchni. ɛ nad E nad ɛ pod E pod = σ sw, warunek brzegowy

30 ɛ nad V nad n ɛ pod V pod n = σ sw, w języku potencjału V nad = V pod, potencjał jest ciągły

31 Przykład: Kula wykonana z jednorodnego dielektryka liniowego została umieszczona w jednorodnym zewnętrznym polu elektrycznym o natężeniu E 0. Znaleźć natężenie pola elektrycznego wewnątrz i na zewnątrz kuli. E E 0

32 Należy rozwiązać równanie Laplace a przy następujących warunkach brzegowych: (i) V wew = V zew gdy r = R (ii) ɛ V wew r = ɛ 0 V zew r (iii) V zew E 0 r cos θ gdy r R V wew (r, θ) = A l r l P l (cos θ) l=0 V zew (r, θ) = E 0 r cos θ + l=0 gdy r = R (nie ma ładunków swobodnych) B l r l+1 P l(cos θ)

33 A l R l P l (cos θ) = E 0 R cos θ + l=0 l=0 A l R l = B l dla l 1 R l+1 A 1 R = E 0 R + B 1 R dla l = 1 2 ɛ r la l R l 1 P l (cos θ) = E 0 cos θ l=0 l=0 ɛ r la l = (l+1)b l, dla l 1 R l+2 ɛ r A 1 = E 0 2B 1 R, dla l = 1 3 A l = B l = 0 dla l 1 A 1 = 3 ɛ r +2 E 0, B 1 = ɛ r 1 ɛ r +2 R3 E 0, dla l = 1 B l R l+1 P l(cos θ), (i) (l + 1)B l R l+2 P l (cos θ), (ii)

34 V wew (r, θ) = 3E 0 ɛ r + 2 r cos θ = 3E 0 ɛ r + 2 z E wew = 3 ɛ r + 2 E 0, pole wewnątrz kuli jest jednorodne R 3 r 2 E 0 cos θ V zew (r, θ) = E 0 r cos θ + ɛ r 1 ɛ r + 2 E zew = E p (2 cos θ ˆr + sin θ ˆθ), pole 4πɛ 0 r3 p = 4πɛ 0 ɛ r 1 ɛ r + 2 R3 E 0, moment dipolowy kuli E 0 plus pole dipola

35 4.4.3 Energia w układach z dielektrykami W = ɛ 0 2 W = ɛ 0 2 δw = E 2 dτ, ɛ r E 2 dτ = 1 2 (δρ sw )V dτ, energia zmagazynowana w polu D E dτ, w układach z dielektrykami do dielektryka wprowadzamy ładunki swobodne D = ρ sw δρ sw = (δd) δw = [ (δd)]v dτ [(δd)v ] = [ (δd)]v + δd ( V )

36 δw = [(δd)v ] dτ + (δd) E dτ [(δd)v ] dτ = (δd)v da = 0 δw = (δd) E dτ S całkujemy po całej przestrzeni D = ɛe, dla dielektryków liniowych 1 2 δ(d E) = 1 2 δ(ɛe2 ) = ɛ(δe) E = (δd) E ( ) 1 δw = δ D E dτ 2

37 W = 1 2 D E dτ Energia układu to praca konieczna do utworzenia danego układu. Dwa sposoby tworzenia układu : (i) Wprowadzamy małymi porcjami ładunki swobodne i związane i umieszczamy je w ich położeniach W = W sw + W zw (ii) Wprowadzamy małymi porcjami ładunki swobodne pozwalając dielektrykowi dostosować się do ich obecności W całk = W sw + W zw + W sprężynek

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................

Bardziej szczegółowo

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................

Bardziej szczegółowo

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu. Elektrodynamika Część 5 Pola magnetyczne w materii yszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.......................

Bardziej szczegółowo

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna

Bardziej szczegółowo

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni

Bardziej szczegółowo

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11 Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19

Bardziej szczegółowo

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2

Bardziej szczegółowo

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Pojemność elektryczna, Kondensatory Energia elektryczna

Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo

Bardziej szczegółowo

Wykład 17 Izolatory i przewodniki

Wykład 17 Izolatory i przewodniki Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy

Bardziej szczegółowo

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3

Bardziej szczegółowo

cz.3 dr inż. Zbigniew Szklarski

cz.3 dr inż. Zbigniew Szklarski Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD

Bardziej szczegółowo

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat

Bardziej szczegółowo

Elektrostatyka dielektryki

Elektrostatyka dielektryki Rozdział 2 Elektrostatyka dielektryki 2.1 Stała dielektryczna. Ładunki polaryzacyjne W rozdziale tym będziemy rozważać wpływ izolujących ośrodków dielektryków na oddziaływanie ładunków elektrycznych i

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone.

10 Udowodnić, że rozwiązanie równania Laplace a nie może posiadać lokalnych ekstremów we wnętrzu obszaru na którym może być określone. 1 Elektrostatyka 1 Z prawa Coulomba obliczyć pole elektryczne od jednorodnie naładowanego odcinka. Wykonać przejście graniczne l 0 (przy ustalonym ładunku odcinka) oraz l (przy ustalonej gęstości liniowej

Bardziej szczegółowo

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Elektrostatyka. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Elektrostatyka Projekt współfinansowany przez Unię Europejską w ramach Europejskiego unduszu Społecznego Ładunek elektryczny Materia zbudowana jest z atomów. Atom składa się z dodatnie naładowanego jądra

Bardziej szczegółowo

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wykład 2. POLE ELEKTROMEGNETYCZNE: Wykład 2. POLE ELEKTROMEGNETYCZNE: Ładunek elektryczny Ładunki elektryczne: -dodatnie i ujemne - skwantowane, czyli że mają pewną najmniejszą wartość, której nie można już dalej podzielić. Nie można ładunków

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Pojemność elektryczna

Pojemność elektryczna Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym

Bardziej szczegółowo

Zadania na zaliczenie ćwiczeń z Elektrodynamiki

Zadania na zaliczenie ćwiczeń z Elektrodynamiki Zadania na zaliczenie ćwiczeń z Elektrodynamiki semest letni 2009 literatura: J. D. Jackson, Elektrodynamika klasyczna, PWN 1987 D. J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 M. Suffczyński, Elektrodynamika,

Bardziej szczegółowo

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F. Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności

Bardziej szczegółowo

Różniczkowe prawo Gaussa i co z niego wynika...

Różniczkowe prawo Gaussa i co z niego wynika... Różniczkowe prawo Gaussa i co z niego wynika... Niech ładunek będzie rozłożony w objętości V z ciągłą gęstością ρ(x,y,z). Wytworzone przez ten ładunek pole elektryczne będzie również zmieniać się w przestrzeni

Bardziej szczegółowo

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13 Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ

Bardziej szczegółowo

Zadania z Elektrodynamiki

Zadania z Elektrodynamiki Zadania z Elektrodynamiki literatura: 1. J.D. Jackson, Elektrodynamika klasyczna, PWN 1987 2. D.J. Griffiths, Podstawy Elektrodynamiki, PWN 2001 3. M. Suffczyński, Elektrodynamika, PWN 1980 4. W. Panofsky,

Bardziej szczegółowo

Strumień pola elektrycznego i prawo Gaussa

Strumień pola elektrycznego i prawo Gaussa Strumień pola elektrycznego i prawo Gaussa Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Strumień pola

Bardziej szczegółowo

Wykład 8: Elektrostatyka Katarzyna Weron

Wykład 8: Elektrostatyka Katarzyna Weron Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Podstawy fizyki. 3 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2-1 dodr. Warszawa, Spis treści

Podstawy fizyki. 3 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2-1 dodr. Warszawa, Spis treści Podstawy fizyki. 3 / David Halliday, Robert Resnick, Jearl Walker. wyd. 2-1 dodr. Warszawa, 2016 Spis treści Od Wydawcy do drugiego wydania polskiego Przedmowa Podziękowania XI XIII XXI 21. Prawo Coulomba

Bardziej szczegółowo

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Potencjał pola elektrycznego U ab ΔV W q b a F dx q b a F q dx b a (x)dx U gradv ab ΔV b a dv dv dv x,y,z i j k (x)dx dx dy dz Natężenie pola wskazuje kierunek w którym potencjał

Bardziej szczegółowo

Odp.: F e /F g = 1 2,

Odp.: F e /F g = 1 2, Segment B.IX Pole elektrostatyczne Przygotował: mgr Adam Urbanowicz Zad. 1 W atomie wodoru odległość między elektronem i protonem wynosi około r = 5,3 10 11 m. Obliczyć siłę przyciągania elektrostatycznego

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie

Bardziej szczegółowo

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5

ELEKTROSTATYKA. Zakład Elektrotechniki Teoretycznej Politechniki Wrocławskiej, I-7, W-5 ELEKTROSTATYKA 2.1 Obliczyć siłę, z jaką działają na siebie dwa ładunki punktowe Q 1 = Q 2 = 1C umieszczone w odległości l km od siebie, a z jaką siłą - w tej samej odległości - dwie jednogramowe kulki

Bardziej szczegółowo

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych

Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych napisał Michał Wierzbicki Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych Rozważmy tak zwaną linię Lechera, czyli układ dwóch równoległych, nieskończonych przewodników, o przekroju

Bardziej szczegółowo

Pole elektromagnetyczne

Pole elektromagnetyczne Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością

Bardziej szczegółowo

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka

Elektrostatyka. mgr inż. Grzegorz Strzeszewski. 20 kwietnia 2013 r. ZespółSzkółnr2wWyszkowie. mgr inż. Grzegorz Strzeszewski Elektrostatyka Elektrostatyka mgr inż. Grzegorz Strzeszewski ZespółSzkółnr2wWyszkowie 20 kwietnia 2013 r. Nauka jest dla tych, którzy chcą być mądrzejsi, którzy chcą wykorzystywać swój umysł do poznawania otaczającego

Bardziej szczegółowo

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku

4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Elektryczność i magnetyzm Pole elektryczne, kondensatory, przewodniki i dielektryki. Zadanie 1. Dwie niewielkie, przewodzące kulki o masach równych odpowiednio m 1 i m 2 naładowane ładunkami q 1 i q 2

Bardziej szczegółowo

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO POLE MAGNETYZNE ŹRÓDŁA POLA MAGNETYZNEGO Wykład lato 011 1 Definicja wektora indukcji pola magnetycznego F = q( v B) Jednostką indukcji pola B jest 1T (tesla) 1T=1N/Am Pole magnetyczne zakrzywia tor ruchu

Bardziej szczegółowo

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni.

Pole magnetyczne. Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. Pole magnetyczne Magnes wytwarza wektorowe pole magnetyczne we wszystkich punktach otaczającego go przestrzeni. naładowane elektrycznie cząstki, poruszające się w przewodniku w postaci prądu elektrycznego,

Bardziej szczegółowo

Zastosowanie metod dielektrycznych do badania właściwości żywności

Zastosowanie metod dielektrycznych do badania właściwości żywności Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

Przewodniki w polu elektrycznym

Przewodniki w polu elektrycznym Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po

Bardziej szczegółowo

POLE ELEKTRYCZNE PRAWO COULOMBA

POLE ELEKTRYCZNE PRAWO COULOMBA POLE ELEKTRYCZNE PRAWO COULOMBA gdzie: Q, q ładunki elektryczne wyrażone w kulombach [C] r - odległość między ładunkami Q i q wyrażona w [m] ε - przenikalność elektryczna bezwzględna środowiska, w jakim

Bardziej szczegółowo

Ramowy program ćwiczeń z elektrodynamiki klasycznej

Ramowy program ćwiczeń z elektrodynamiki klasycznej 1 Ramowy program ćwiczeń z elektrodynamiki klasycznej Ćwiczenia I II uzupełnienia matematyczne Warszawa, 25.02.2011 1. Elementy rachunku wektorowego: iloczyn skalarny i wektorowy; tożsamości rachunku wektorowego.

Bardziej szczegółowo

Prawo Coulomba i wektor natężenia pola elektrostatycznego

Prawo Coulomba i wektor natężenia pola elektrostatycznego Prawo Coulomba i wektor natężenia pola elektrostatycznego Wykłady do kursu Fizyka II dla studentów Wydziału Inżynieria Środowiska Politechniki Wrocławskiej Autor: Włodzimierz Salejda Instytut Fizyki PWr

Bardziej szczegółowo

Pole elektrostatyczne

Pole elektrostatyczne Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie

Bardziej szczegółowo

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni

Rozdział 5. Twierdzenia całkowe. 5.1 Twierdzenie o potencjale. Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej C w przestrzeni Rozdział 5 Twierdzenia całkowe 5.1 Twierdzenie o potencjale Będziemy rozpatrywać całki krzywoliniowe liczone wzdłuż krzywej w przestrzeni trójwymiarowej, I) = A d r, 5.1) gdzie A = A r) jest funkcją polem)

Bardziej szczegółowo

Strumień pola elektrycznego

Strumień pola elektrycznego Powierzchnia Gaussa Właściwości : - jest to powierzchnia hipotetyczna matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą w praktyce powinna mieć kształt związany z symetrią pola, -

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium

Kolokwium 2. Środa 14 czerwca. Zasady takie jak na pierwszym kolokwium Kolokwium 2 Środa 14 czerwca Zasady takie jak na pierwszym kolokwium 1 w poprzednim odcinku 2 Ramka z prądem F 1 n Moment sił działających na ramkę b/2 b/2 b M 2( F1 ) 2 b 2 F sin(θ ) 2 M 1 F 1 iab F 1

Bardziej szczegółowo

Energia potencjalna pola elektrostatycznego ładunku punktowego

Energia potencjalna pola elektrostatycznego ładunku punktowego Energia potencjalna pola elektrostatycznego ładunku punktowego Wszystkie rysunki i animacje zaczerpnięto ze strony http://web.mit.edu/8.02t/www/802teal3d/visualizations/electrostatics/index.htm. Tekst

Bardziej szczegółowo

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo iota-savarta. Prawo Ampère a. Prawo Gaussa a pola magnetycznego. Prawo indukcji Faradaya. Reguła Lenza. Równania

Bardziej szczegółowo

Elektryczność i magnetyzm

Elektryczność i magnetyzm Władysław Tomaszewicz Przemysław Ciesielski Elektryczność i magnetyzm (na prawach rękopisu) Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska 2002 Wstęp Przedmiotem wykładu jest elektrodynamika

Bardziej szczegółowo

Pojemnośd elektryczna

Pojemnośd elektryczna Pojemnośd elektryczna Tekst jest wolnym tłumaczeniem pliku guide05pdf kursu dostępnego na stronie http://webmitedu/802t/www/802teal3d/visualizations/coursenotes/indexhtm Wszystkie rysunki i animacje zaczerpnięto

Bardziej szczegółowo

Ćwiczenie nr 31: Modelowanie pola elektrycznego

Ćwiczenie nr 31: Modelowanie pola elektrycznego Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni

Bardziej szczegółowo

Siła magnetyczna działająca na przewodnik

Siła magnetyczna działająca na przewodnik Siła magnetyczna działająca na przewodnik F 2 B b F 1 F 3 a F 4 I siła Lorentza: F B q v B IL B F B ILBsin a moment sił działający na ramkę: M' IabBsin a B F 2 b a S M moment sił działający cewkę o N zwojach

Bardziej szczegółowo

3. Równania pola elektromagnetycznego

3. Równania pola elektromagnetycznego 3. Równania pola elektromagnetycznego Oddziaływanie pola elektromagnetycznego z materią Pole elektromagnetyczne jest opisywane zazwyczaj za pomocą następujących 5 pól wektorowych: gęstości prądu J, natężenia

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 3. Magnetostatyka.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została

Bardziej szczegółowo

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy Podstawy elektromagnetyzmu Wykład 1 Rachunek wektorowy Co to jest,,pole? Matematyka: odwzorowanie Rn Rm które przypisuje każdemu punktowi wartość (skalarną lub wektorową). Fizyka: Własność przestrzeni

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ

Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.Długość l łuku zwykłego gładkiego Γ Niektóre zastosowania całki krzywoliniowej niezorientowanej 1.ługość l łuku zwykłego gładkiego l = 1dl = b a (x (t)) 2 + (y (t) 2 ) + (z (t)) 2 dt 2.Pole powierzchni walcowej = {(x, y, z) : (x, y), 0 z

Bardziej szczegółowo

Teoria Pola Elektromagnetycznego

Teoria Pola Elektromagnetycznego Teoria Pola Elektromagnetycznego Wykład 3 Pole elektryczne w środowisku przewodzącym 19.05.2006 Stefan Filipowicz 3.1. Prąd i gęstość prądu przewodzenia Jeżeli w przewodniku istnieje pole elektryczne,

Bardziej szczegółowo

Elementy optyki relatywistycznej

Elementy optyki relatywistycznej Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.

Bardziej szczegółowo

Rozdział 22 Pole elektryczne

Rozdział 22 Pole elektryczne Rozdział 22 Pole elektryczne 1. NatęŜenie pola elektrycznego jest wprost proporcjonalne do A. momentu pędu ładunku próbnego B. energii kinetycznej ładunku próbnego C. energii potencjalnej ładunku próbnego

Bardziej szczegółowo

dr inż. Zbigniew Szklarski

dr inż. Zbigniew Szklarski Wykład 13: Pole magnetyczne dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Wektor indukcji pola magnetycznego, siła Lorentza F L Jeżeli na dodatni ładunek q poruszający

Bardziej szczegółowo

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna

Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest

Bardziej szczegółowo

Literatura. Prowadzący: dr inż. Sławomir Bielecki adiunkt Zakład Racjonalnego Użytkowania Energii ITC PW. Zakres wykładu. Pole pojęcie fizyczne

Literatura. Prowadzący: dr inż. Sławomir Bielecki adiunkt Zakład Racjonalnego Użytkowania Energii ITC PW. Zakres wykładu. Pole pojęcie fizyczne Prowadzący: dr inż. Sławomir Bielecki adiunkt Zakład Racjonalnego Użytkowania Energii ITC PW pok. 405A TC slawomir.bielecki@itc.pw.edu.pl http://itc.pw.edu.pl/pracownicy/naukowo-dydaktyczni/bielecki-slawomir

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Wykład elektrodynamiki

Wykład elektrodynamiki Wykład elektrodynamiki L. Adamowicz, M. Wierzbicki Dostęp przez Internet Treść wykładu (http://www.if.pw.edu.pl/ zak5www/electrodyn.pdf) Zadania (http://www.if.pw.edu.pl/ wierzba/zajecia.html) Ostatnia

Bardziej szczegółowo

Badanie rozkładu pola elektrycznego

Badanie rozkładu pola elektrycznego Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych

Bardziej szczegółowo

ELEKTRONIKA ELM001551W

ELEKTRONIKA ELM001551W ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

2. Dany jest dipol elektryczny. Obliczyć potencjał V dla dowolnego punktu znajdującego się w odległości r znacznie większej od rozmiarów dipola.

2. Dany jest dipol elektryczny. Obliczyć potencjał V dla dowolnego punktu znajdującego się w odległości r znacznie większej od rozmiarów dipola. Na egzaminie wybranych będzie 8 zagadnień spośród zamieszczonych poniżej. Każda odpowiedź będzie punktowana w skali od 0 do 5. Maksymalna liczba punktów możliwych do zdobycia wynosi zatem 40. Skala ocen:

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo