KINEMATYCZNE WŁASNOW PRZEKŁADNI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "KINEMATYCZNE WŁASNOW PRZEKŁADNI"

Transkrypt

1 KINEMATYCZNE WŁASNOW ASNOŚCI PRZEKŁADNI

2 Waunki współpacy pacy zazębienia Zasada n 1 - koła zębate mogą ze sobą współpacować, kiedy mają ten sam moduł m. Czy to wymaganie jest wystaczające dla pawidłowej współpacy zębów?

3 Wielkości chaakteyzujące koło zębate: liczba zębów z, cechy geometyczne: moduł m, śednica podziałowa d, wysokość zęba h, itp. kształt zaysu boku zęba.

4 kształt zaysu boku zęba linia zaysu boku zęba

5 Kształt zaysu boku zęba w zasadzie może być dowolny, ponieważ znana jest metoda REALAUX, pozwalająca wyznaczyć pzeciwzays danego zaysu.

6 Jednakże dla pawidłowej pacy pzekładni linia zaysu boku zęba musi zapewniać: 1. stałość pzełożenia enia 2. ciągłość zazębienia Niespełnienie piewszego waunku powoduje, że w pzekładni pzy ω = const. części napędzającej, wystąpi ozpędzanie lub hamowanie części napędzanej, zależnie od chwilowej watości pzełożenia i. Z piewszym waunkiem związana jest tzw. główna zasada zazębienia (zasada Willisa). Z dugim waunkiem związana jest tzw. liczba pzypou. Spełnienie obu waunków zależy w głównej mieze od kształtu linii zaysu boku zębaz ba.

7 Zasadniczo kształt zaysu zęba może być dowolny, jednakże nie wszystkie zaysy spełniają pzedstawione waunki: stałości pzełożenia, enia, ciągłości zazębienia bienia. Najkozystniejsze okazały się zaysy utwozone pzez kzywe cykliczne, a więc wszelkiego odzaju cykloidy oaz ewolwenta koła, jako szczególny pzypadek cykloidy.

8 Kzywe cykliczne używane w kołach zębatych to: cykloida zwyczajna (otocykloida), epicykloida, hipocykloida, ewolwenta zwyczajna.

9 Cykloida zwyczajna (otocykloida) kzywa, któą keśli punkt koła toczącego się po innym kole. ρ 2π ρ z = Koło toczące się o pomieniu ρ nazywamy kołem odtaczającym, a koło nieuchome o pomieniu z = nazywamy kołem zasadniczym.

10

11 Epicykloida - uzyskuje się ją wówczas, gdy koło odtaczające ρ toczy się po zewnętznej części koła zasadniczego z. ρ z

12 Hipocykloida - uzyskuje się ją wówczas, gdy koło odtaczające ρ toczy się po wewnętznym toze koła zasadniczego z. ρ O z

13 Ewolwenta zwyczajna - (odwinięcie koła) jako szczególny pzypadek cykloidy uzyskuje się, gdy posta toczy się po toze kołowym (kole zasadniczym) z z ρ = 6 7 W danym pzypadku pomień koła odtaczającego ρ =.

14 0 ewolwenta koło dna wębów koło zasadnicze z d f

15 Dla pawidłowej pacy pzekładni linia zaysu boku zęba musi zapewniać: 1. stałość pzełożenia enia 2. ciągłość zazębienia Z piewszym waunkiem związana jest tzw. główna zasada zazębienia (zasada Willisa).

16 ZASADA ZAZĘBIENIA (zasada Willisa) Z kinematycznego punktu widzenia od zazębienia wymaga się ównomieności pzenoszenia uchu obotowego. Z tego zadania wynika główna zasada zazębienia bienia. Posta nomalna do boku zęba z w punkcie styku zębów z w kółk współpacuj pacujących cych musi pzechodzić pzez punkt styku kółk tocznych.

17 posta nomalna do boku zęba nomalna do boku zęba w punkcie B B styczna do boku zęba w punkcie B

18 1 KT 1 punkt styczności kół tocznych ω wspólna nomalna do zaysów zębów w punkcie ich styku B ω 2 C KT 2

19 Aby dwa zaysy współpacujących ze sobą zębów miały wspólną nomalną w punkcie ich styku to muszą być one utwozone pzez to samo koło odtaczające. W pzypadku zaysu cykloidalnego koło odtaczające dla współpacujących zaysów musi mieć tę samą śednicę. epicykloida ρ ρ hipocykloida wspólna nomalna do zaysów

20 W pzypadku zaysu ewolwentowego kołem odtaczającym jest linia posta, a więc ten waunek zawsze jest spełniony. koło odtaczające o pomieniu ównym

21 Można udowodnić, że linia łącząca śednice kół zębatych O 1 i jest podzielona pzez punkt C popocjonalnie do pędkości kątowych ω 1 i ω 2. 1 KT 1 punkt styczności kół tocznych ω wspólna nomalna do zaysów zębów w punkcie ich styku B ω 2 C KT 2

22 dowód: Koła 1 i 2 obacają się dokoła swoich śodków O 1 i w ten sposób, że ich zęby pozostają w stałym styku. Koło 1 obacając się z chwilową pędkością ω 1, wskutek styku zębów w punkcie B, nadaje kołu 2 chwilową pędkość ω 2. 1 ω 1 B ω 2 O 1 2

23 KT 1 1 O 1 z1 b1 N 1 V 1 B C V 2 KT 2 N 2 Równocześnie zgodnie z zasadami kinematyki b2 otzymujemy w punkcie B chwilowe pędkości 2 obwodowe V 1 i V 2. z2

24 KT 1 1 Pędkości obwodowe V 1 i V 2 można ozłożyć na składowe styczne do boków zębów W 1 i W 2 oaz postopadłe do nich C 1 i C 2. O 1 z1 b1 H V 1 W 1 W 2 B C N 1 KT 2 E F D V 2 C C 1 2 N 2 z2 b2 2

25 KT 1 1 O 1 z1 b1 H V 1 W 1 W 2 B C N 1 KT 2 E F D V 2 C C 1 2 N 2 z2 b2 2 Rozpatzmy podobne do siebie tójkąty: ΔO 1 N 1 B będzie podobny do ΔBDH Δ N 2 B będzie podobny do ΔBEF

26 KT 1 1 O 1 z1 b1 H V 1 W 1 W 2 B C N 1 KT 2 E F D V 2 C C 1 2 N 2 z2 b2 2

27 Z podobieństwa tójkątów wynika, że stosunki podobnych boków muszą być takie same. C V z1 1 = O N O B 1 = b1 KT 1 1 O 1 C V z2 2 = O N O B 2 = b2 b1 z1 H V 1 W 1 W 2 B C N 1 KT 2 E F V 2 D C C 1 2 N 2 z2 b2 2

28 b z O B O N V C = = b z V C = b z O B N O V C = = b z V C = Ponieważ zgodnie z założeniem zęby powinny być w ciągłym styku pzeto musi być spełniony waunek: 1 C 2 C = Wyznaczmy watości składowych C:

29 W pzypadku gdy C 1 < C 2 wówczas ząb koła dugiego wypzedzałby ząb koła piewszego, a to jest absudem. KT 1 1 b1 O 1 w1 z1 W pzeciwnym wypadku, gdy C 1 > C 2, ząb koła piewszego wciskałby się w ząb koła dugiego, co ównież jest nonsensem. KT 2 H E F V 1 V 2 D C C 1 2 W 1 W 2 B N 2 b2 w2 z2 C N 1 2

30 Po zestawieniu wzoów: b b V V z z = otzymamy: 1 C 2 C = b z V C = b z V C =

31 Chwilowe pędkości obwodowe V 1 i V 2 w punkcie B: V V = ω = ω 1 1 b1 2 2 b2 KT 1 1 O 1 b1 w1 z1 V Po podstawieniu uzyskuje się: 1 z1 = V 2 b1 b 2 z 2 KT 2 V 2 V 1 B N 2 b2 w2 z2 C N 1 2 ω 1 z1 b1 b1 = ω 2 z2 b2 b2

32 Wyażenie: ω = ω 1 z1 2 z2 pzekształcamy do postaci ω ω 1 2 = z z 2 1 = i gdzie i pzełożenie kinematyczne

33 1 Rozpatzmy podobne do siebie tójkąty KT 1 1 b1 O 1 w1 z1 i ΔO 1 N 1 C V 2 V 1 B C N 1 Δ N 2 C. KT 2 N 2 b2 w2 z2 2 2

34 1 KT 1 1 O 1 w1 z1 b1 Ponieważ z1 i z2 są bokami podobnymi do siebie tójkątów pzeto możemy napisać: KT 2 V 2 V 1 B N 2 b2 w2 z2 C N 1 2 i = ω ω 1 2 = z z 2 1 = OC OC 2 1 = 2 1 2

35 Wynika stąd, że linia łącząca śednice kół zębatych O 1 i została podzielona pzez punkt C popocjonalnie do pędkości kątowych ω 1 i ω 2. Stosunek ω 1 /ω 2 wyaża zaś pzełożenie kinematyczne pzekładni, a zatem można sfomułować już podstawową zasadę zazębienia, tzw. zasadę Willisa.

36 Jeżeli pzełożenie pzekładni ma pozostać niezmienne, to stosunek pomieni kół tocznych 1 do 2 ównież musi pozostawać niezmienny, a więc pzy stałych obotach osi kół O 1 i, punkt C musi pozostać stale w tym samym miejscu. KT 2 KT 1 1 b1 B N 2 b2 w2 z2 O 1 1 C 2 w1 z1 N 1 2

37 Punkt styczności kół tocznych C nosi nazwę centalnego punktu zazębienia bienia lub bieguna zazębienia bienia. KT 1 1 b1 O 1 1 w1 z1 Punkt C wynika z pzecięcia odcinka z linią łączącą śodek kół O 1 wobec czego udowodniliśmy twiedzenie postawione na początku. KT 2 B N 2 b2 w2 z2 C 2 N 1 2 linia łącząca śednice kół zębatych O 1 i została podzielona pzez punkt C popocjonalnie do pędkości kątowych ω 1 i ω 2.

38 LINIA PRZYPORU Linią pzypou (linia zazębienia) nazywamy miejsce geometyczne wszystkich punktów styku (pzypou) zębów podczas zazębiania.

39 ω 1 O 1 E 1 ω 2 Zęby te stykają się ze sobą po az piewszy w punkcie E 1, gdzie stopa zęba koła 1 (napędzającego) spotyka się po az piewszy z wiezchołkiem zęba koła 2 (napędzanego).

40 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

41 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

42 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

43 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

44 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 C ω 2

45 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

46 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

47 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

48 Następnie punkt ten pzesuwa się zajmując położenia pośednie. ω 1 O 1 ω 2

49 Ostatnim punktem pzypou jest punkt E 2, gdzie wiezchołek zęba koła 1 ozstaje się ze stopą zęba koła 2. ω 1 O 1 E 2 ω 2

50 ω 1 O 1 C E 1 E 2 linia pzypou ω 2 Tajektoia tego punktu nazywa się linią pzypou. Odcinek linii pzypou E 1 E 2 nazywa się odcinkiem pzypou.

51 Kąt t pzypou Kąt zawaty między wspólną nomalną do zaysów zębów w punkcie styku zębów B a styczną do kół tocznych nazywa się kątem pzypou α. KT1 styczna do kół tocznych O 1 wspólna nomalna do zaysów C α B KT2 linia pzypou

52 Jeżeli linia pzypou jest kzywoliniowa to kąt pzypou jest zmienny. O 1 linia pzypou α B α A B A C wspólna nomalna do zaysów

53 Jeżeli linia pzypou jest postą to wyznacza ona ównież kieunek wspólnej nomalnej do zaysów, a zatem kąt pzypou jest stały α = const. linia pzypou O 1 C E 1 α = const. E 2 wspólna nomalna do zaysów

54 Dla pawidłowej pacy pzekładni linia zaysu boku zęba musi zapewniać: 1. stałość pzełożenia enia 2. ciągłość zazębienia Z piewszym waunkiem związana jest tzw. główna zasada zazębienia (zasada Willisa). Z dugim waunkiem związana jest tzw. liczba pzypou.

55 LICZBA PRZYPORU (wskaźnik pzypou, stopień pokycia) Z waunku ciągłości zazębienia niezbędne jest aby jedna paa zębów wychodząc z zazębienia została zastąpiona pzez następną paę zębów. O tym decyduje tzw. liczba pzypou (wskaźnik pzypou, stopień pokycia).

56 ω 1 O 1 KT1 p ) p ) A 2 E 1 A 1 B2 B 1 E 2 KT2 ω 2 W czasie, gdy punkt pzypou pzejdzie z punktu E 1 do punktu E 2, to punkt A 1, znajdujący się na kole tocznym koła 1, pzewęduje w tym czasie w położenie A 2. Natomiast punkt B 1, znajdujący się na kole tocznym koła 2, pzewęduje w tym czasie w położenie B 2.

57 Każdej długości odcinka pzypou E 1, E 2 odpowiada łuk zazębień A 1 A 2 i B 1 B 2 miezony na okęgach kół tocznych. ω 1 O 1 KT1 p ) p ) A 2 E 1 A 1 B2 B 1 E 2 KT2 ω 2

58 A 1 A 2 = B 1 B 2 = l KT1 p ) A 2 ω 1 O 1 l ) E 1 A 1 B2 B 1 E 2 KT2 ω 2

59 Aby każda paa zębów została w czasie pacy zastąpiona pzez następną paę zębów w sposób ciągły to łuk zazębienia l musi być większy od podziałki tocznej p miezonej na kole tocznym. ω 1 O 1 KT1 p ) p ) A 2 l ) l ) E 1 A 1 B2 B 1 E 2 KT2 ω 2

60 Liczba pzypou ε (stopień pokycia, wskaźnik pzypou) jest to stosunek łuku zazębienia l do podziałki tocznej p: ) l ε = ) p Liczba pzypou okeśla śednią liczbę pa zębów ównocześnie współpacujących.

61 Jeżeli liczba pzypou ε =1.5, wówczas każda paa zębów pacuje pzez 1/3 łuku zazębienia samotnie, a na początku i końcu łuku zazębienia współpacują dwie pay zębów, ównież pzez 1/3 łuku zazębienia. liczba pa zębów łuk zazębienia

62 Uogólniając: jeżeli 1 < ε < 2, wówczas odcinek czasu, pzez któy pacuje tylko jedna paa zębów wynosi (2-ε), a odcinek czasu, w któym pacują dwie pay zębów (ε-1). liczba pa zębów 2 1 ε -1 2-ε ε -1 łuk zazębienia

63 Natomiast: jeżeli 2 < ε < 3, wówczas odcinek czasu, pzez któy pacuje tylko jedna paa zębów wynosi (3-ε), a odcinek czasu, w któym pacują dwie pay zębów (ε-2). liczba pa zębów ε -2 3-ε ε -2 łuk zazębienia

64 Im większa jest liczba pzypou ε tym kozystniejsza (ówniejsza) jest paca pzekładni.

65 POŚLIZG ZĘBÓWZ Zjawisko opisane óżnymi pędkościami stycznymi nazywa się poślizgiem. KT 1 1 b1 O 1 z1 Jeżeli C 1 =C 2 to W 1 W 2 Tylko w punkcie C W 1 =W 2 =0 H V 2 V 1 W 1 W 2 B C N 1 KT 2 E F D C C 1 2 N 2 z2 b2 2

66 Współpacujące odcinki zaysów są óżne E 1 A 1 wielkość dogi poślizgu wyniesie E 1 A 1 E 1 B 1. E 1 B 1, to O 1 KT1 A 2 E 1 A 1 B 2 B 1 KT2 E 2

67 Głowa zęba koła 1 ślizga się po stopie zęba koła współpacującego 2 pzy czym odcinek czynnej wysokości stopy E 1 A 1 jest mniejszy od czynnej wysokości głowy E 1 B 1 zęba współpacującego, a zatem stopa zęba z zużywa się silniej niż jego głowag owa. O 1 KT1 A 2 E 1 A 1 B 2 B 1 KT2 E 2

68 Siły y występuj pujące w zazębieniu siła międzyzębna linia pzypou KP 1 C B KP 2 Siła wynikająca z oddziaływania jednego zęba na dugi zawsze działa wzdłuż wspólnej nomalnej do zaysów w punkcie ich styku.

69 O 1 linia pzypou P OB P OA P RA P NA A C P RB B PNB W pzypadku kzywoliniowej linii pzypou, siła międzyzębna P N zmienia kieunek oddziaływania, zaś jej składowe: obwodowa P O oaz pomieniowa P R zmieniają swoje watości.

70 O 1 linia pzypou P OB P RB PNB B C W pzypadku postej linii pzypou, zaówno siła międzyzębna P N jak i jej składowe: obwodowa P O oaz pomieniowa P R maja te same watości i kieunki.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym. Wykład 3. Zasada zachowania momentu pędu. Dynamika punktu mateialnego i były sztywnej. Ruch obotowy i postępowy Większość ciał w pzyodzie to nie punkty mateialne ale ozciągłe ciała sztywne tj. obiekty,

Bardziej szczegółowo

GEOMETRIA PŁASZCZYZNY

GEOMETRIA PŁASZCZYZNY GEOMETRIA PŁASZCZYZNY. Oblicz pole tapezu ównoamiennego, któego podstawy mają długość cm i 0 cm, a pzekątne są do siebie postopadłe.. Dany jest kwadat ABCD. Punkty E i F są śodkami boków BC i CD. Wiedząc,

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstay Konstukcji Maszyn Wykład 8 Pzekładnie zębate część D inŝ. Jacek zanigoski Klasyfikacja pzekładni zębatych. Ze zględu na miejsce zazębienia O zazębieniu zenętznym O zazębieniu enętznym Klasyfikacja

Bardziej szczegółowo

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi

Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej

Bardziej szczegółowo

9. 1. KOŁO. Odcinki w okręgu i kole

9. 1. KOŁO. Odcinki w okręgu i kole 9.. KOŁO Odcinki w okęgu i kole Cięciwa okęgu (koła) odcinek łączący dwa dowolne punkty okęgu d Śednica okęgu (koła) odcinek łączący dwa dowolne punkty okęgu pzechodzący pzez śodek okęgu (koła) Pomień

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

Oddziaływania fundamentalne

Oddziaływania fundamentalne Oddziaływania fundamentalne Siła gawitacji (siła powszechnego ciążenia, oddziaływanie gawitacyjne) powoduje spadanie ciał i ządzi uchem ciał niebieskich Księżyc Ziemia Słońce Newton Dotyczy ciał posiadających

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000

Bardziej szczegółowo

PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. fig.1 F16H 55/17 E21C 31/00 F04C 2/24 RZECZPOSPOLITA POLSKA

PL B1 (12) OPIS PATENTOWY (19) PL (11) (13) B1. fig.1 F16H 55/17 E21C 31/00 F04C 2/24 RZECZPOSPOLITA POLSKA RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 181581 (21 ) Numer zgłoszenia: 317495 Urząd Patentowy (22) Data zgłoszenia: 12.12.1996 Rzeczypospolitej Polskiej (13) B1 (51) Int.Cl.7 F16H 55/17

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Modyfikacja zarysu zębaz

Modyfikacja zarysu zębaz Modyfikacja zarysu zębaz METODY OBRÓBKI BKI KÓŁK ZĘBATYCH W obróbce zębów kół zębatych wyróżnia się dwie metody: metoda kształtowa. metoda obwiedniowa. metoda kształtowa metoda obwiedniowa W metodzie kształtowej

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 4 Janusz Andzejewski Pole magnetyczne Janusz Andzejewski 2 Pole gawitacyjne γ Pole elektyczne E Definicja wektoa B = γ E = Indukcja magnetyczna pola B: F B F G m 0 F E q 0 qv B = siła Loentza

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN

Bardziej szczegółowo

IV.2. Efekt Coriolisa.

IV.2. Efekt Coriolisa. IV.. Efekt oiolisa. Janusz B. Kępka Ruch absolutny i względny Załóżmy, że na wiującej taczy z pędkością kątową ω = constant ciało o masie m pzemieszcza się ze stałą pędkością = constant od punktu 0 wzdłuż

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

Odpowiednio [4] zużycie liniowe zębów koła ślimakowego w ciągu jednego obrotu oblicza się według wzoru

Odpowiednio [4] zużycie liniowe zębów koła ślimakowego w ciągu jednego obrotu oblicza się według wzoru Postępy Nauki i Tecniki n 5, 0 Mion Czeniec, Jezy Kiełbiński, Jui Czeniec METODA NA OSZACOWANIE WPŁYWU ZUŻYCIA NA WYTRZYMAŁOŚĆ STYKOWĄ ORAZ TRWAŁOŚĆ PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA Steszczenie.

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Atom (cząsteczka niepolarna) w polu elektrycznym

Atom (cząsteczka niepolarna) w polu elektrycznym Dieektyki Dieektyki substancje, w któych nie występują swobodne nośniki ładunku eektycznego (izoatoy). Może być w nich wytwozone i utzymane bez stat enegii poe eektyczne. dieektyk Faaday Wpowadzenie do

Bardziej szczegółowo

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA

WYZNACZANIE MOMENTU BEZWŁADNOSCI KRĄŻKA Ćwiczenie -7 WYZNACZANE OENTU BEZWŁADNOSC KRĄŻKA. Cel ćwiczenia: zapoznanie się z teoią momentu bezwładności. Wyznaczenie momentu bezwładności były względem osi obotu z siłą tacia i bez tej siły, wyznaczenie

Bardziej szczegółowo

20 ELEKTROSTATYKA. PRAWO COULOMBA.

20 ELEKTROSTATYKA. PRAWO COULOMBA. Włodzimiez Wolczyński Pawo Coulomba 20 ELEKTROSTATYKA. PRAWO COULOMBA. POLE CENTRALNE I JEDNORODNE Q q = k- stała, dla póżni = 9 10 = 1 4 = 8,9 10 -stała dielektyczna póżni ε względna stała dielektyczna

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1 . Rozkład prędkości w zazębieniu 3 4 3. Zarys cykloidalny i ewolwentowy

Bardziej szczegółowo

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1)

Mechanika ogólna. Łuki, sklepienia. Zalety łuków (2) Zalety łuków (1) Geometria łuku (1) Geometria łuku (2) Kształt osi łuku (2) Kształt osi łuku (1) Łuki, sklepienia Mechanika ogólna Wykład n 12 Pęty o osi zakzywionej. Łuki. Łuk: pęt o osi zakzywionej (w stanie nieodkształconym) w płaszczyźnie działania sił i podpaty na końcach w taki sposób, że podpoy

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z

θ = s r, gdzie s oznacza długość łuku okręgu o promieniu r odpowiadającą kątowi 2. Rys Obrót ciała wokół osi z IX. OBROTY 9.1. Zmienne obotowe W celu opisania uchu obotowego ciała wokół ustalonej osi (zwanej osią obotu) należy wybać linię postopadłą do osi obotu, któa jest związana z ciałem i któa obaca się waz

Bardziej szczegółowo

Wykład FIZYKA I. 8. Grawitacja. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 8. Grawitacja.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 8. Gawitacja D hab. inż. Władysław Atu Woźniak Instytut Fizyki Politechniki Wocławskiej http://www.if.pw.woc.pl/~wozniak/fizyka1.html CIĄŻENIE POWSZECHNE (GRAWITACJA) Wzajemne pzyciąganie

Bardziej szczegółowo

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym.

00502 Podstawy kinematyki D Część 2 Iloczyn wektorowy i skalarny. Wektorowy opis ruchu. Względność ruchu. Prędkość w ruchu prostoliniowym. 1 00502 Kinematyka D Dane osobowe właściciela akusza 00502 Podstawy kinematyki D Część 2 Iloczyn wektoowy i skalany. Wektoowy opis uchu. Względność uchu. Pędkość w uchu postoliniowym. Instukcja dla zdającego

Bardziej szczegółowo

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką

Bardziej szczegółowo

Opis ćwiczeń na laboratorium obiektów ruchomych

Opis ćwiczeń na laboratorium obiektów ruchomych Gdańsk 3.0.007 Opis ćwiczeń na laboatoium obiektów uchomych Implementacja algoytmu steowania obotem w śodowisku symulacyjnym gy obotów w piłkę nożną stwozonym w Katedze Systemów Automatyki Politechniki

Bardziej szczegółowo

WPROWADZENIE. Czym jest fizyka?

WPROWADZENIE. Czym jest fizyka? WPROWADZENIE Czym jest fizyka? Fizyka odgywa dziś olę tego co dawniej nazywano filozofią pzyody i z czego zodziły się współczesne nauki pzyodnicze. Można powiedzieć, że fizyka stanowi system podstawowych

Bardziej szczegółowo

Ruch jednostajny po okręgu

Ruch jednostajny po okręgu Ruch jednostajny po okęgu W uchu jednostajnym po okęgu pędkość punktu mateialnego jest stała co do watości ale zmienia się jej kieunek. Kieunek pędkości jest zawsze styczny do okęgu będącego toem. Watość

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton : Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);

Bardziej szczegółowo

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ

PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU ol. 7 nr Archiwum Technologii Maszyn i Automatyzacji 007 LESZEK SKOCZYLAS PRĘDKOŚĆ POŚLIZGU W ZAZĘBIENIU PRZEKŁADNI ŚLIMAKOWEJ W artykule przedstawiono sposób

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski Wykład 5: Dynamika d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pzyczyny uchu - zasady dynamiki dla punktu mateialnego Jeśli ciało znajduje się we właściwym miejscu,

Bardziej szczegółowo

Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia)

Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia) Materiały pomocnicze do ćwiczenia laboratoryjnego z korekcji kół zębatych (uzębienia i zazębienia) 1. WPROWADZENIE Koła zębate znajdują zastosowanie w rozlicznych mechanizmach, począwszy od przemysłu zegarmistrzowskiego

Bardziej szczegółowo

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE Publikacja współfinansowana ze śodków Unii Euopejskiej w amach Euopejskiego Funduszu Społecznego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z FIZYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE d Janusz Chzanowski

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn 0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi

Bardziej szczegółowo

cz. 1. dr inż. Zbigniew Szklarski

cz. 1. dr inż. Zbigniew Szklarski Wykład 10: Gawitacja cz. 1. d inż. Zbiniew Szklaski szkla@ah.edu.pl http://laye.uci.ah.edu.pl/z.szklaski/ Doa do pawa powszechneo ciążenia Ruch obitalny planet wokół Słońca jak i dlaczeo? Reulane, wieloletnie

Bardziej szczegółowo

OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH

OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH CZOŁOWE OWE PRZEKŁADNIE WALCOWE O ZĘBACH Z BACH ŚRUBOWYCH Klasyfikacja przekładni zębatych w zależności od kinematyki zazębień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe)

Bardziej szczegółowo

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu

9. PLANIMETRIA. Cięciwa okręgu (koła) odcinek łączący dwa dowolne punkty okręgu 9. PLANIMETIA 9.. Okąg i koło ) Odinki w okęgu i kole S Cięiw okęgu (koł) odinek łąząy dw dowolne punkty okęgu d S Śedni okęgu (koł) odinek łąząy dw dowolne punkty okęgu pzeodząy pzez śodek okęgu (koł)

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 14

RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej

Bardziej szczegółowo

ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI

ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI ĆWICZEIE 6 POMIAR MOMETU BEZWŁADOŚCI. SPRAWDZEIE DRUGIEJ ZASADY DYAMIKI DLA RUCHU OBROTOWEGO. BADAIE ADDYTYWOŚCI MOMETU BEZWłADOŚCI Wpowadzenie Była sztywna to układ punktów mateialnych o stałych odległościach

Bardziej szczegółowo

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne

Koła stożkowe o zębach skośnych i krzywoliniowych oraz odpowiadające im zastępcze koła walcowe wytrzymałościowo równoważne Spis treści PRZEDMOWA... 9 1. OGÓLNA CHARAKTERYSTYKA I KLASYFIKACJA PRZEKŁADNI ZĘBATYCH... 11 2. ZASTOSOWANIE I WYMAGANIA STAWIANE PRZEKŁADNIOM ZĘBATYM... 22 3. GEOMETRIA I KINEMATYKA PRZEKŁADNI WALCOWYCH

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π

DODATEK 6. Pole elektryczne nieskończenie długiego walca z równomiernie rozłożonym w nim ładunkiem objętościowym. Φ = = = = = π DODATEK 6 Pole elektycne nieskońcenie długiego walca ównomienie ołożonym w nim ładunkiem objętościowym Nieskońcenie długi walec o pomieniu jest ównomienie naładowany ładunkiem objętościowym o stałej gęstości

Bardziej szczegółowo

Składowe przedmiotu MECHANIKA I MECHATRONIKA. mechanika techniczna podstawy konstrukcji maszyn mechatronika

Składowe przedmiotu MECHANIKA I MECHATRONIKA. mechanika techniczna podstawy konstrukcji maszyn mechatronika Składowe pzedmiotu MECHANIKA I MECHATRONIKA mechanika techniczna podstawy konstukcji maszyn mechatonika mechanika techniczna mechanika ogólna (teoetyczna): kinematyka (badanie uchu bez wnikania w jego

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

DZIAŁANIE MECHANIZMÓW BRONI AUTOMATYCZNEJ Z ODPROWADZENIEM GAZÓW PO ZATRZYMANIU TŁOKA GAZOWEGO

DZIAŁANIE MECHANIZMÓW BRONI AUTOMATYCZNEJ Z ODPROWADZENIEM GAZÓW PO ZATRZYMANIU TŁOKA GAZOWEGO mg inż. ałgozata PAC pof. d hab. inż. Stanisław TORECKI Wojskowa Akademia Techniczna DZIAŁANIE ECHANIZÓW BRONI AUTOATYCZNEJ Z ODPROWADZENIE GAZÓW PO ZATRZYANIU TŁOKA GAZOWEGO Steszczenie: W efeacie pzedstawiono

Bardziej szczegółowo

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o:

Na skutek takiego przemieszcznia ładunku, energia potencjalna układu pole-ładunek zmienia się o: E 0 Na ładunek 0 znajdujący się w polu elektycznym o natężeniu E działa siła elektostatyczna: F E 0 Paca na pzemieszczenie ładunku 0 o ds wykonana pzez pole elektyczne: dw Fds 0E ds Na skutek takiego pzemieszcznia

Bardziej szczegółowo

Podstawowe konstrukcje tranzystorów bipolarnych

Podstawowe konstrukcje tranzystorów bipolarnych Tanzystoy Podstawowe konstukcje tanzystoów bipolanych Zjawiska fizyczne występujące w tanzystoach bipolanych, a w związku z tym właściwości elektyczne tych tanzystoów, zaleŝą od ich konstukcji i technologii

Bardziej szczegółowo

Prędkość i przyspieszenie punktu bryły w ruchu kulistym

Prędkość i przyspieszenie punktu bryły w ruchu kulistym Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z

Bardziej szczegółowo

15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie

15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie 15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH 15.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie na stanowisku podstawowyc zależności caakteyzującyc funkcjonowanie mecanizmu amulcowego w szczególności

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie UNIWERSYT E ZACHODNIOPOMOR T T E CH LOGICZNY W SZCZECINIE NO SKI KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN ZAKŁAD PODSTAW KONSTRUKCJI MASZYN

Bardziej szczegółowo

Przypadki toczenia okręgu

Przypadki toczenia okręgu ul. Konarskiego 2, 30-049 Kraków Tel. 12 633 13 83 lub 12 633 02 47 Przypadki toczenia okręgu Arkadiusz Biel Kraków 2012 Motywem do napisania pracy była obserwacja przyczepionej do szprychy roweru kolorowej

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

PRĘDKOŚCI KOSMICZNE OPRACOWANIE PRĘDKOŚCI KOSMICZNE OPRACOWANIE I, II, III pędkość komiczna www.iwiedza.net Obecnie, żyjąc w XXI wieku, wydaje ię nomalne, że człowiek potafi polecieć w komo, opuścić Ziemię oaz wylądować na Kiężycu. Poza

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

ogólna charakterystyka

ogólna charakterystyka PRZEKŁADNIE ogólna charakterystyka Większość maszyn nie może być napędzana bezpośrednio silnikiem i wymaga ogniwa pośredniczącego w postaci przekładni. Przekładnie są to mechanizmy służące do przenoszenia

Bardziej szczegółowo

Koła zębate. T. 1, Konstrukcja / Kazimierz Ochęduszko. wyd. 8, dodr. Warszawa, Spis treści

Koła zębate. T. 1, Konstrukcja / Kazimierz Ochęduszko. wyd. 8, dodr. Warszawa, Spis treści Koła zębate. T. 1, Konstrukcja / Kazimierz Ochęduszko. wyd. 8, dodr. Warszawa, 2012 Spis treści 0. Wiadomości wstępne 25 1. Pojęcia podstawowe 25 2. Znamionowe cechy przekładni mechanicznych 25 3. Klasyfikacja

Bardziej szczegółowo

3. Wstępny dobór parametrów przekładni stałej

3. Wstępny dobór parametrów przekładni stałej 4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

METEMATYCZNY MODEL OCENY

METEMATYCZNY MODEL OCENY I N S T Y T U T A N A L I Z R E I O N A L N Y C H w K i e l c a c h METEMATYCZNY MODEL OCENY EFEKTYNOŚCI NAUCZNIA NA SZCZEBLU IMNAZJALNYM I ODSTAOYM METODĄ STANDARYZACJI YNIKÓ OÓLNYCH Auto: D Bogdan Stępień

Bardziej szczegółowo

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zaządzania Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n 4 WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH Cel ćwiczenia:

Bardziej szczegółowo

Moment pędu w geometrii Schwarzshilda

Moment pędu w geometrii Schwarzshilda Moent pędu w geoetii Schwazshilda Zasada aksyalnego stazenia się : Doga po jakiej pousza się cząstka swobodna poiędzy dwoa zdazeniai w czasopzestzeni jest taka aby czas ziezony w układzie cząstki był aksyalny.

Bardziej szczegółowo

Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017.

Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017. Przekładnie zębate : zasady działania : obliczenia geometryczne i wytrzymałościowe / Antoni Skoć, Eugeniusz Świtoński. Warszawa, 2017 Spis treści Przedmowa XV 1. Znaczenie przekładni zębatych w napędach

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

Podstawy Konstrukcji Urządzeń Precyzyjnych

Podstawy Konstrukcji Urządzeń Precyzyjnych Studia Inżynierskie Dzienne (I stopnia) Wydział Mechatroniki Politechniki Warszawskiej Podstawy Konstrukcji Urządzeń Precyzyjnych Wykład sem. 4 Przekładnie mechaniczne 2 Sprzęgła Opracował: dr inż. Wiesław

Bardziej szczegółowo

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI

KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI KATEDRA TECHNOLOGII MASZYN I AUTOMATYZACJI PRODUKCJI TEMAT ĆWICZENIA: ĆWICZENIE NR 3 POMIAR KÓŁ ZĘBATYCH WALCOWYCH ZADANIA DO WYKONANIA: 1. Zidentyfikować koło zębate przeznaczone do pomiaru i określić

Bardziej szczegółowo

Zastosowanie zasad dynamiki Newtona.

Zastosowanie zasad dynamiki Newtona. Wykład z fizyki. Piot Posmykiewicz 33 W Y K Ł A D IV Zastosowanie zasad dynamiki Newtona. W wykładzie tym zostanie omówione zastosowanie zasad dynamiki w zagadnieniach związanych z taciem i uchem po okęgu.

Bardziej szczegółowo

Projektowanie walcowych przekładni zębatych o zmieniającym się przełożeniu. Igor Zarębski Promotor: dr hab. inż. Tadeusz Sałaciński

Projektowanie walcowych przekładni zębatych o zmieniającym się przełożeniu. Igor Zarębski Promotor: dr hab. inż. Tadeusz Sałaciński Projektowanie walcowych przekładni zębatych o zmieniającym się przełożeniu Igor Zarębski Promotor: dr hab. inż. Tadeusz Sałaciński Zarys historyczny Idea przekładni zębatych o zmiennym przełożeniu, opartych

Bardziej szczegółowo

Dobór zmiennych do modelu ekonometrycznego

Dobór zmiennych do modelu ekonometrycznego Dobó zmiennych do modelu ekonometycznego Metody dobou zmiennych do modelu ekonometycznego opate na teście F Model zedukowany ya 0 +a x+a x+.+a x Model pełny ya 0 +a x+a x+.+a x +a + x + + +a k x k Częściowy

Bardziej szczegółowo

Nierelatywistyczne równania ruchu = zasady dynamiki Newtona

Nierelatywistyczne równania ruchu = zasady dynamiki Newtona DYNAMIKA: siły ównania uchu uch Nieelatywistyczne ównania uchu zasady dynaiki Newtona Pojęcia podstawowe dla punktu ateialnego Masa - iaa bezwładności Pęd iaa ilości uchu v v p v p v v v Siła wywołuje

Bardziej szczegółowo

Symulacja ruchu układu korbowo-tłokowego

Symulacja ruchu układu korbowo-tłokowego Symulacja uchu układu kobowo-tłokowego Zbigniew Budniak Steszczenie W atykule zapezentowano wykozystanie możliwości współczesnych systemów CAD/CAE do modelowania i analizy kinematycznej układu kobowo-tłokowego

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 2

Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 2 LEKCJA 2 Pzykład: Dylemat Cykoa (albo Poke Dogowy) Dwie osoby wsiadają w samochody, ozpędzają się i z dużą pędkością jadą na siebie - ten kto piewszy zahamuje lub zjedzie z tasy jest "cykoem" i pzegywa.

Bardziej szczegółowo

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT

TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT TRANSCOMP XIV INTERNATIONAL CONFERENCE COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT Andzej ZNISZCZYŃSKI 1 SpęŜaka wypoowa, SpęŜaka otacyjna, Luzy konstukcyjne MODELOWANIE LUZÓW KONSTRUKCYJNYCH

Bardziej szczegółowo

POMIAR PRĘDKOŚCI OBROTOWEJ

POMIAR PRĘDKOŚCI OBROTOWEJ Laboatoium Podstaw mienictwa - Pomia pędkości obotowej POMIAR PRĘDKOŚCI OBROTOWEJ 1. WPROWADZENIE Pędkość obotowa chaakteyzuje uch obotowy. W uchu obotowym punktu P (ys. 1) usytuowanego na kawędzi taczy

Bardziej szczegółowo

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków

11. 3.BRYŁY OBROTOWE. Walec bryła obrotowa powstała w wyniku obrotu prostokąta dokoła prostej zawierającej jeden z jego boków ..BRYŁY OBROTOWE Wae była obotowa powstała w wyniku obotu postokąta dokoła postej zawieająej jeden z jego boków pomień podstawy waa wysokość waa twoząa waa Pzekój osiowy waa postokąt o boka i Podstawa

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo