Zasady dynamiki Isaak Newton (1686 r.)

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zasady dynamiki Isaak Newton (1686 r.)"

Transkrypt

1 Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają na nie żadne siły zewnętrzne, lub działające siły się równoważą. II (równanie ruchu) Przyspieszenie ciała jest proporcjonalne do przyłożonej siły. F = m a = d p Dla ruchu obrotowego: M = I ε = d L III (zasada akcji i reakcji) Względem każdego działania (akcji) siły istnieje równe co do wartości i przeciwnie zwrócone przeciwdziałanie (reakcja) siły.

2 Układy inercjalne. Zasada bezwładności Zasada względności Galileusza. Układ odniesienia, o którym mówi 1. zasada dynamiki, nazywa się układem inercjalnym. Istnieje nieskończenie wiele układów inercjalnych, poruszających się względem siebie ruchem jednostajnym prostoliniowym. Z wcześniejszych rozważań: a = a a 0 + ω 2 r 2( ω v ) ε r Dla układu inercjalnego: ω = 0, ε = 0, a 0 = 0. Wniosek: a = a F = F Siła jest niezmiennicza względem transformacji Galileusza, tzn. jest jednakowa we wszystkich układach inercjalnych. We wszystkich inercjalnych układach odniesienia, w tych samych warunkach, zjawiska mechaniczne przebiegają jednakowo.

3 Masa bezwładna Masa bezwładna jest miarą bezwładności ciała, tzn. oporu, jaki ciało stawia sile, zmieniającej stan jego ruchu (w odróżnieniu do masy grawitacyjnej opisującej oddziaływania grawitacyjne między ciałami). Dla dyskretnego rozkładu N punktowych mas m i : M = i=1 m i Dla rozkładu ciągłęgo o gęstości ρ( r): M = dm dm = ρ( r)dv M = ρ( r)dv V

4 Środek masy Środek masy dyskretnego układu N punktowych mas m i : r CM = 1 M m i r i i=1 Środek masy bryły sztywnej o ciągłej gęstości ρ( r): r CM = 1 rdm = 1 ρ( r) rdv M M V V

5 Pęd Dla punktu materialnego: p = m v Dla układu punktów materialnych p = p i = m i v i i=1 i=1 v CM = d r CM = 1 M i=1 m i d r i = 1 M m i v i i=1 p = M v CM II zasada dynamiki dla ruchu postępowego F = d p, m = const F = d d v (m v) = m = m a F jest wypadkową sił zewnętrznych. Wypadkowa sił zewnętrznych, działających między częściami składowymi układu, wynosi zero, gdyż znoszą się one na mocy III zasady dynamiki.

6 Moment bezwładności Moment bezwładności I dla punktu materialnego leżącego w odległości r od osi obrotu: I = mr 2 Moment bezwładności (rozkład dyskretny) I = m i ri 2 i=1 Moment bezwładności (rozkład ciągły) I = r 2 dm V Masa bezwładna i moment bezwładności są wielkościami addytywnymi.

7 Moment siły Dla punktu materialnego, leżącego w odległości r od nieruchomej osi obrotu, na który działa siła F Dla bryły sztywnej M = r F M i = r i F = r i m i a i sin α i i z = = m i r 2 i a i sin α i i z = I i ε i z = I i ε r i M = i M i = ε I i = I ε i

8 Moment pędu Dla punktu materialnego o pędzie p, leżącego w odległości r od nieruchomej osi obrotu L = r p Dla bryły sztywnej L i = r i p = r i m i v i sin α i i z = = m i r 2 i v i sin α i i z = I i ω i z = I i ω r i L = L i = ω i I i = I ω i II zasada dynamiki dla ruchu obrotowego dl = I d ω = I ε = M M = d L

9 Zasady zachowania Zasada zachowania pędu F = 0 d p Zasada zachowania momentu pędu = 0 p = const M = 0 d L = 0 L = const

10 Przykład: ruch ciał o zmiennej masie dm v( t) s m( t) w v(t) - prędkość rakiety m(t) - masa rakiety m s (t) - masa spalonego paliwa (masa gazów wylotowych) p(t) = m(t) v(t) w - prędkość strumienia gazów wylotowych względem rakiety µ = dm > 0 - szybkość spalania paliwa F - siły zewnętrzne d p - zmiana pędu w czasie p(t + ) = (m(t) + dm) ( v(t) + d v) + dm s ( v(t) + w) dm s = dm dmd v m(t)d v d p = m(t)d v + dm s w = m(t)d v dm w równanie Mieszczerskiego (1897 r.) F = m(t) d v dm w

11 Przykład: precesja bąka (ruch precesyjny) Ruch wirowy osi symetrii obracającej się bryły sztywnej wokół kierunku pola grawitacyjnego L - moment pędu bryły sztywnej w ruchu obrotowym wokół osi symetrii I - moment bezwładności bryły sztywnej w ruchu obrotowym wokół osi symetrii ω - prędkość kątowa bryły sztywnej w ruchu obrotowym wokół osi symetrii ω p - prędkość kątowa precesji r - położenie środka masy dl = M = r m g dl = mgr sin α dl = L sin αdϕ dl L sin α dϕ = L sin αdϕ = mgr sin α ω p = dϕ = mgr L = mgr Iω

12 Układy nieinercjalne Układ odniesienia, w którym nie jest spełniona I zasada dynamiki, nazywa się układem nieinercjalnym (np. poruszający się z przyspieszeniem względem dowolnego układu inercjalnego). W układach nieinercjalnych nie jest również spełniona II zasada dynamiki, ponieważ występują w nich siły pozorne, których nie można przypisać oddziaływaniu określonych ciał. a = a a 0 + ω 2 r 2( ω v ) ε r siła d Alemberta (bezwładności) siła Coriolisa {}}{{}}{ m a = m a m a 0 + mω }{{ 2 r } 2m( ω v ) m( ε r ) }{{} siła odśrodkowa siła Eulera F = F + F bezw + F odsr + F C + F E

13 Przykład: siła Coriolisa Wschodnie odchylenie ciał swobodnie spadających. Na półkuli północnej wschodnie odchylenie pocisków balistycznych poruszających się na północ, zachodnie odchylenie dla poruszających się na południe (i odwrotnie na półkuli południowej). Rozety zakreślane przez ciężarek wahadła Faucaulta (dla różnych warunków początkowych ruchu wahadła). Różne kierunki pasatów (wiatrów wiejących od zwrotnika ku równikowi): NE na półkuli północnej (a), SE na południowej (b).

14 Praca, siły zachowawcze, energia potencjalna n n W ab W i = = F i r i i=0 i=0 b b W ab = dw = a a F ( r) d r Jeżeli praca wykonana przez siłę przy przemieszczaniu ciała po dowolnej drodze zamkniętej wynosi zero, taką siłę nazywamy zachowawczą. W polu siły zachowawczej praca nie zależy od drogi, tylko od punktu początkowego i końcowego. Energia potencjalna: praca wykonana przeciwko sile zachowawczej i zmagazynowana w ciele. dla przypadku jednowymiarowego: F (x) = de p dx

15 Przykład: energia potencjalna w jednorodnym polu sił ciężkości x dw = F d r = mgdx g m F=-P F dr r dx x W = x 0 mgdx = mgx = E p Wartość pracy nie zależy od drogi, tylko od różnicy wysokości x. P=mg dw=f dr = mgdx

16 Energia kinetyczna. Zasada zachowania energii Praca wykonana przez siłę zachowawczą jest równa zmianie energii kinetycznej. W = b a F d r = b a v = m v d v = v 0 m a d r = mv 2 2 Całkowita energia mechaniczna v v 0 b a m d v d r b = m = mv2 2 E = E k + E p mv2 0 2 a d r d v = = E k E k0 Zasada zachowania energii mechanicznej: w polu siły zachowawczej całkowita energia mechaniczna pozostaje stała.

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO

R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO R o z d z i a ł 4 MECHANIKA CIAŁA SZTYWNEGO 4.1. Bryła sztywna W dotychczasowych rozważaniach traktowaliśmy wszystkie otaczające nas ciała jako punkty materialne lub zbiory punktów materialnych. Jest to

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Oddziaływania te mogą być różne i dlatego można podzieli je np. na: DYNAMIKA Oddziaływanie między ciałami można ilościowo opisywać posługując się pojęciem siły. Działanie siły na jakieś ciało przejawia się albo w zmianie stanu ruchu tego ciała (zmianie prędkości), albo

Bardziej szczegółowo

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa

12 RUCH OBROTOWY BRYŁY SZTYWNEJ I. a=εr. 2 t. Włodzimierz Wolczyński. Przyspieszenie kątowe. ε przyspieszenie kątowe [ ω prędkość kątowa Włodzimierz Wolczyński Przyspieszenie kątowe 1 RUCH OROTOWY RYŁY SZTYWNEJ I = = ε przyspieszenie kątowe [ ] ω prędkość kątowa = = T okres, = - częstotliwość s=αr v=ωr a=εr droga = kąt x promień prędkość

Bardziej szczegółowo

Zasada zachowania energii

Zasada zachowania energii Zasada zachowania energii Praca i energia Praca Najprostszy przypadek: Stała siła działa na ciało P powodując jego przesunięcie wzdłuż kierunku działania siły o. Praca jaką wykona przy tym siła W przypadku

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia

Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Opis poszczególnych przedmiotów (Sylabus) Fizyka, studia pierwszego stopnia Nazwa Przedmiotu: Mechanika klasyczna i relatywistyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: rok studiów,

Bardziej szczegółowo

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu

2.1 Kinematyka punktu materialnego Pojęcie ruchu. Punkt materialny. Równania ruchu Rozdział 2 Ruch i energia 2.1 Kinematyka punktu materialnego 2.1.1 Pojęcie ruchu. Punkt materialny. Równania ruchu Kinematyka jest działem mechaniki opisującym ruch ciał bez podawania jego przyczyn. Przez

Bardziej szczegółowo

Oddziaływanie grawitacyjne

Oddziaływanie grawitacyjne Oddziaływanie grawitacyjne Przykład Obliczmy stosunek przyspieszenia dośrodkowego Księżyca w kierunku Ziemi do przyspieszenia grawitacyjnego przy powierzchni Ziemi. Przyspieszenie dośrodkowe w ruchu jednostajnym

Bardziej szczegółowo

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad: III. DYAMIKA 7. Dynamika ruchu postępowego Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki ewtona. Przykładowe sformułowania tych zasad: I. Istnieje taki układ

Bardziej szczegółowo

Plan wynikowy (propozycja 61 godzin)

Plan wynikowy (propozycja 61 godzin) 1 Plan wynikowy (propozycja 61 godzin) Kinematyka (19 godzin) *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji realizowanych w ramach danego zagadnienia.

Bardziej szczegółowo

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora)

Kinematyka. zmiennym(przeprowadza złożone. kalkulatora) Kinematyka Ocena podaje przykłady zjawisk fizycznych występujących w przyrodzie wyjaśnia, w jaki sposób fizyk zdobywa wiedzę o zjawiskach fizycznych wymienia przyczyny wprowadzenia Międzynarodowego Układu

Bardziej szczegółowo

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu.

(t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka w kolejnych przedziałach czasu. 1 1 x (m/s) 4 0 4 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 t (s) a) Narysuj wykres a x (t) w przedziale (0 s 16 s). b) Uzupełnij tabelę, wpisując w drugiej kolumnie rodzaj ruchu, jakim poruszała się mrówka

Bardziej szczegółowo

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady. Zadanie bloczek Przez zamocowany bloczek o masie m przerzucono nierozciągliwą nitkę na której zawieszono dwa obciąŝniki o masach odpowiednio m i m. Oblicz przyspieszenie z jakim będą poruszać się obciąŝniki.

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka

Wymagania edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka 1 edukacyjne do nowej podstawy programowej z fizyki realizowanej w zakresie rozszerzonym Kinematyka *W nawiasie podano alternatywny temat lekcji (jeśli nazwa zagadnienia jest długa) bądź tematy lekcji

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan Dynamika układów mechanicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów mechanicznych opisują ruch ciał sztywnych obserwowany względem przyjętego układu odniesienia Ruch ciała w przestrzeni

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1

Imię i nazwisko ucznia Data... Klasa... Ruch i siły wer. 1 Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Znajdź

Bardziej szczegółowo

Fizyka 1. zbiór zadań do gimnazjum. Zadania dla wszystkich FIZYKA 1. do gimnazjum

Fizyka 1. zbiór zadań do gimnazjum. Zadania dla wszystkich FIZYKA 1. do gimnazjum Fizyka 1 Zadania dla wszystkich zbiór zadań do gimnazjum Zbiór zawiera zadania z działów: siły, ruch, siły i ruch oraz energia, omówionych w podręcznikach Fizyki z plusem. Jest praktyczną pomocą również

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

Krystyna Gronostaj, Magdalena Bacior Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 1 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH. Kraków, luty, 2016

Krystyna Gronostaj, Magdalena Bacior Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 1 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH. Kraków, luty, 2016 Do użytku wewnętrznego Krystyna Gronostaj, Magdalena Bacior Zakład Fizyki, Uniwersytet Rolniczy ĆWICZENIE 1 WYZNACZANIE GĘSTOŚCI CIAŁ STAŁYCH Kraków, luty, 016 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA... 1. ZASADY

Bardziej szczegółowo

SZCZEGÓŁOWE CELE EDUKACYJNE

SZCZEGÓŁOWE CELE EDUKACYJNE Program nauczania: Fizyka z plusem, numer dopuszczenia: DKW 4014-58/01 Plan realizacji materiału nauczania fizyki w klasie I wraz z określeniem wymagań edukacyjnych DZIAŁ PRO- GRA- MOWY Pomiary i Siły

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Siły oporu prędkość graniczna w spadku swobodnym

Siły oporu prędkość graniczna w spadku swobodnym FZYKA Wykład echanika: Pojęcia podstawowe dynamika i punktu histoia mateialnego (V) Siły opou pędkość ganiczna w spadku swobodnym Układy Pojęcia nieinecjalne podstawowe () i histoia Siły w układach nieinecjalnych

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 7

Fizyka 1 (mechanika) AF14. Wykład 7 Fizyka 1 (mechanika) 1100-1AF14 Wykład 7 Jerzy Łusakowski 21.11.2016 Plan wykładu Praca i energia Siła a energia potencjalna Prędkość i przyspieszenie kątowe Moment siły i moment pędu Praca i energia Praca

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

Mechanika bryły sztywnej

Mechanika bryły sztywnej WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA INNOWACYJNY PROGRAM NAUCZANIA FIZYKI W SZKOŁACH PONADGIMNAZJALNYCH Moduł dydaktyczny: fizyka - informatyka Mechanika bryły sztywnej Elżbieta Kawecka

Bardziej szczegółowo

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska)

KLASA I PROGRAM NAUCZANIA DLA GIMNAZJUM TO JEST FIZYKA M.BRAUN, W. ŚLIWA (M. Małkowska) KLASA I PROGRAM NAUZANIA LA GIMNAZJUM TO JEST FIZYKA M.RAUN, W. ŚLIWA (M. Małkowska) Kursywą oznaczono treści dodatkowe Temat lekcji ele operacyjne - uczeń: Kategoria celów podstawowe Wymagania ponadpodstawowe

Bardziej szczegółowo

Zakład Dydaktyki Fizyki UMK

Zakład Dydaktyki Fizyki UMK Toruński poręcznik do fizyki I. Mechanika Materiały dydaktyczne Krysztof Rochowicz Zadania przykładowe Dr Krzysztof Rochowicz Zakład Dydaktyki Fizyki UMK Toruń, czerwiec 2012 1. Samochód jadący z prędkością

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Mechanika. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Studia pierwszego stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Mechanika. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Studia pierwszego stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Mechanika. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok studiów I/ semestr 5. LICZBA PUNKTÓW ECTS:

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Klucz odpowiedzi. Fizyka

Klucz odpowiedzi. Fizyka Klucz odpowiedzi. Fizyka Zadanie Oczekiwana odpowiedź Liczba punktów za czynność zadanie 1.1. Δs = 2π(R r) Δs = 2 3,14 (0,35 0,31) m Δs = 0,25 m. 1 p. za zauważenie, że różnica dróg to różnica obwodów,

Bardziej szczegółowo

Mechanika. Wykład 7. Paweł Staszel

Mechanika. Wykład 7. Paweł Staszel Mechanika Wykład 7 Paweł Staszel 1 Dynamika bryły sztywnej Bryłą (ciałem) sztywnym nazywamy zbiór cząstek zachowujących stałe odległości między sobą. Pomijamy więc zjawiska związane z powstawaniem odkształceń

Bardziej szczegółowo

I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych.

I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych. I.Pojęcie ruchu w historii filozofii i w naukach przyrodniczych. Ruch jest to zjawisko występujące w przyrodzie, polegające na zmianie położenia przez ciało względem danego punktu. 1. Rozwój poglądów na

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II. Zadanie 28. Kołowrót SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU II Zadanie 8. Kołowrót Numer dania Narysowanie sił działających na układ. czynność danie N N Q 8. Zapisanie równania ruchu obrotowego kołowrotu.

Bardziej szczegółowo

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.

Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego. Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO R o z d z i a ł KINEMATYKA PUNKTU MATERIALNEGO Kinematyka zajmuje się opisem ruchu ciał bez uwzględniania ich masy i bez rozpatrywania przyczyn, które ten ruch spowodowały. Przez punkt materialny rozumiemy

Bardziej szczegółowo

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym

Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu

Bardziej szczegółowo

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności.

Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Fizyka elementarna materiały dla studentów. Części 9, 10 i 11. Moment pędu. Moment bezwładności. Przygotowane częściowo na podstawie materiałów z roku akademickiego 2007/8. Literatura (wspólna dla wszystkich

Bardziej szczegółowo

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość"

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu Era inżyniera - pewna lokata na przyszłość Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość" 1. Informacje ogólne Kierunek studiów: Profil kształcenia: Forma

Bardziej szczegółowo

3. Zadanie nr 21 z rozdziału 7. książki HRW

3. Zadanie nr 21 z rozdziału 7. książki HRW Lista 3. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. Inż. Środ.; kierunek Inż. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I C ZĘŚĆ I I I Podręcznik dla nauczycieli klas III liceum ogólnokształcącego i

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM

9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM 9. PRZYPADEK OGÓLNY - RUCH W UKŁADZIE NIEINERCJALNYM Co to są kłady inercjalne i nieinercjalne? Układ inercjalny wyróŝnia się tym, Ŝe jeśli ciało w nim spoczywa lb porsza się rchem jednostajnym prostoliniowym,

Bardziej szczegółowo

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony

Zasady oceniania do programu nauczania Z fizyką w przyszłość. Zakres rozszerzony Zasady oceniania do programu nauczania Z fizyką w przyszłość Zakres rozszerzony Zasady ogólne: 1. Wymagania na każdy stopień wyższy niż dopuszczający obejmują również wymagania na stopień poprzedni. 2.

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY

MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII

Bardziej szczegółowo

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY

FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 FIZYKA Z ASTRONOMIĄ POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY

KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY ... pieczątka nagłówkowa szkoły... kod pracy ucznia KONKURS FIZYCZNY DLA UCZNIÓW GIMNAZJUM ETAP SZKOLNY Drogi Uczniu, witaj na I etapie Konkursu Fizycznego. Przeczytaj uważnie instrukcję i postaraj się

Bardziej szczegółowo

SPIS TREŚCI. Przedmowa... 13 1. PODSTAWY MECHANIKI... 21 2. STATYKA... 46

SPIS TREŚCI. Przedmowa... 13 1. PODSTAWY MECHANIKI... 21 2. STATYKA... 46 SPIS TREŚCI Przedmowa... 13 1. PODSTAWY MECHANIKI... 21 1.1. Pojęcia podstawowe... 21 1.2. Zasada d Alemberta... 28 1.3. Zasada prac przygotowanych... 32 1.4. Przyrost funkcji i wariacja funkcji... 34

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Bryła sztywna Przewodnik do rozwiązywania typowych zadań Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,

Bardziej szczegółowo

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na

Bardziej szczegółowo

EGZAMIN MATURALNY 2010 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2010 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 010 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Klucz punktowania odpowiedzi MAJ 010 Egzamin maturalny z fizyki i astronomii Zadanie 1. Przypisanie

Bardziej szczegółowo

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt)

Kołowrót -11pkt. 1. Zadanie 22. Wahadło balistyczne (10 pkt) Kołowrót -11pkt. Kołowrót w kształcie walca, którego masa wynosi 10 kg, zamocowany jest nad studnią (rys.). Na kołowrocie nawinięta jest nieważka i nierozciągliwa linka, której górny koniec przymocowany

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

PAiTM - zima 2014/2015

PAiTM - zima 2014/2015 PAiTM - zima 204/205 Wyznaczanie przyspieszeń mechanizmu płaskiego metodą planu przyspieszeń (metoda wykreślna) Dane: geometria mechanizmu (wymiary elementów, ich położenie i orientacja) oraz stała prędkość

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Test powtórzeniowy nr 1

Test powtórzeniowy nr 1 Test powtórzeniowy nr 1 Grupa C... imię i nazwisko ucznia...... data klasa W zadaniach 1. 19. wstaw krzyżyk w kwadracik obok wybranej odpowiedzi. Informacja do zadań 1. 5. Wykres przedstawia zależność

Bardziej szczegółowo

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE!

ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! Imię i nazwisko: Kl. Termin oddania: Liczba uzyskanych punktów: /50 Ocena: ZESTAW POWTÓRKOWY (1) KINEMATYKA POWTÓRKI PRZED EGZAMINEM ZADANIA WYKONUJ SAMODZIELNIE! 1. /(0-2) Przelicz jednostki szybkości:

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

1. K 5 Ruch postępowy i obrotowy ciała sztywnego

1. K 5 Ruch postępowy i obrotowy ciała sztywnego 1. K 5 Ruch postępowy i obrotowy ciała sztywnego Zadanie 1 Koło napędowe o promieniu r 1 =1m przekładni ciernej wprawia w ruch koło o promieniu r =0,5m z przyspieszeniem 1 =0, t. Po jakim czasie prędkość

Bardziej szczegółowo

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym.

Klasa 1. Zadania domowe w ostatniej kolumnie znajdują się na stronie internetowej szkolnej. 1 godzina fizyki w tygodniu. 36 godzin w roku szkolnym. Rozkład materiału nauczania z fizyki. Numer programu: Gm Nr 2/07/2009 Gimnazjum klasa 1.! godzina fizyki w tygodniu. 36 godzin w ciągu roku. Klasa 1 Podręcznik: To jest fizyka. Autor: Marcin Braun, Weronika

Bardziej szczegółowo

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h)

Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Lista zadań nr 6 Środek masy, Moment bezwładności, Moment siły (2h) Środek ciężkości Zaad.6.1 Wyznacz środek masy układu pięciu mas o odpowiednich współrzędnych: m 1 (2,2), m 2 (2,5), m 3 (-4,2), m 4 (-3,-2),

Bardziej szczegółowo

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO.

KONCEPCJA TESTU. Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. JOLANTA SUCHAŃSKA. CEL POMIARU: KONCEPCJA TESTU Test sprawdza bieżące wiadomości i umiejętności z zakresu kinematyki i dynamiki w klasie I LO. 2. RODZAJ TESTU: Jest to test sprawdzający, wielostopniowy,

Bardziej szczegółowo

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY

14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY 14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych

Bardziej szczegółowo

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R.

OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. OBUDŹ W SOBIE MYŚL TECHNICZNĄ KATOWICE 2013R. Pytania mogą posłużyć do rozegrania I etapu konkursu rozgrywającego się w macierzystej szkole gimnazjalistów - kandydatów. Matematyka Zad. 1 Ze wzoru wynika,

Bardziej szczegółowo

Mieszkamy na Ziemi wirującej planecie.

Mieszkamy na Ziemi wirującej planecie. Mieszkamy na Ziemi wirującej planecie. Przez tysiąclecia, patrząc w niebo wyobrażaliśmy sobie, że Słońce, Księżyc i sfera niebieska obracają się wokół Ziemi. Taki obraz Wszechświata harmonizował z przekonaniem

Bardziej szczegółowo

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.

Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy. Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Twórcza szkoła dla twórczego ucznia Projekt współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego SCENARIUSZ LEKCJI PRZEDMIOT: FIZYKA TEMAT: Pierwsza zasada dynamiki Bezwładność ciała AUTOR SCENARIUSZA: mgr Krystyna Glanc OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Pierwsza zasada

Bardziej szczegółowo

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ

ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II

Bardziej szczegółowo

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE

ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE ODDZIAŁYWANIA W PRZYRODZIE ODDZIAŁYWANIA GRAWITACYJNE 1. Ruch planet dookoła Słońca Najjaśniejszą gwiazdą na niebie jest Słońce. W przeszłości debatowano na temat związku Ziemi i Słońca, a także innych

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy

Bardziej szczegółowo

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy

Bardziej szczegółowo

ROZWIĄZUJEMY ZADANIA Z FIZYKI

ROZWIĄZUJEMY ZADANIA Z FIZYKI ROZWIĄZUJEMY ZADANIA Z FIZYKI Rozwiązując zadnia otwarte PAMIĘTAJ o: wypisaniu danych i szukanych, zamianie jednostek na podstawowe, wypisaniu potrzebnych wzorów, w razie potrzeby przekształceniu wzorów,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy przedmiot podstawowy Rodzaj zajęć: Wykład, Ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez

Bardziej szczegółowo

Laboratorium Dynamiki Maszyn

Laboratorium Dynamiki Maszyn Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.

Bardziej szczegółowo