Mechanika i Budowa Maszyn

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mechanika i Budowa Maszyn"

Transkrypt

1 Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski

2 Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 2 z 16

3 1 Założenia Rys. 1 Schemat podparcia i obciążenia beli dwuprzegubowej. Belka przedstawiona na Rys. 1 ma dwa przeguby. Lewy koniec belki jest utwierdzony, a pozostałe przęsła belki są podparte na podporach przesuwnych. Siły zewnętrzne stanowią obciążenie belki. Wartości sił zewnętrznych podaje Tablica 1. Tablica 1 Wartości sił zewnętrznych. 15 kn 20 kn 40 knm 3 kn/m 60 Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 3 z 16

4 2 Wyznaczenie wielkości podporowych Rys. 2 Przewidywane reakcje podporowe belki z Rys. 1. Przewiduje się pięć reakcji podporowych zgodnie z Rys. 2:,, dla utwierdzenia, dla podpory oraz dla podpory. Zagadnienie jest statycznie wyznaczalne, jeżeli wielkości podporowe można wyznaczyć za pomocą równań równowagi. Dla zagadnienia płaskiego wymagane są trzy równania równowagi (1) ze względu na trzy stopnie swobody: Suma rzutów sił na oś, suma rzutów sił na oś oraz suma momentów sił względem dowolnie wybranego punktu. (1) (2) Przy pięciu niewiadomych układ równań (1) wymaga dwóch dodatkowych równań dla zapewnienia statycznej wyznaczalności. Mogą to być równania momentów sił względem przegubów, ponieważ każdy przegub powoduje zerowanie momentu zginającego. Dla Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 4 z 16

5 przegubu i przegubu są to warunki (2). Ogólnym równaniom równowagi (1) i (2) odpowiadają równania szczególne (3), (4), (5) oraz (6) i (7). (3) (4) (5) (6) (7) Równania szczególne (3), (4), (5) oraz (6) i (7) są dość trudne do rozwiązania metodą klasyczną przez wyłączanie i podstawianie zmiennych. Można je dość prosto rozwiązać metodą macierzową, z wykorzystaniem arkusza kalkulacyjnego, jednak trzeba je przekształcić do postaci macierzowej. W pierwszej kolejności równania szczególne (3), (4), (5) oraz (6) i (7) uzupełniamy elementami zerowymi, dla zmiennych które w nich nie występują, otrzymując układ równań (8). (8) Następnie zapisujemy układ równań (8) w postaci macierzowej (9). (9) Układ równań (9) zapisuje się krócej w postaci (10), gdzie jest macierzą współczynników układu równań (9), jest wektorem zmiennych układu równań (9), a jest wektorem wyrazów wolnych układu równań (9). Rozwiązanie (11) układu równań (9) uzyskuje się mnożąc lewostronne równanie macierzowe (10) przez macierz odwrotną. (10) (11) Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 5 z 16

6 Dla realnego rozwiązania zadania, bez stosowania rachunku macierzowego, dzieli się belkę w przegubach na trzy przęsła: przęsło, przęsło oraz przęsło. Przęsło po uzewnętrznieniu sił wewnętrznych w przegubie wymaga pięciu równań równowagi, zatem nie można wyznaczyć wielkości podporowych za pomocą trzech równań równowagi (1). Przęsło po uzewnętrznieniu sił wewnętrznych w przegubie i przegubie wymaga pięciu równań równowagi, zatem nie można wyznaczyć wielkości podporowych za pomocą trzech równań równowagi (1). Można wprowadzić dwa warunki zerowania momentów zginających w przegubach i przęsło staje się statycznie wyznaczalne. Przęsło po uzewnętrznieniu sił wewnętrznych w przegubie wymaga trzech równań równowagi, zatem można wyznaczyć wielkości podporowe za pomocą trzech równań równowagi (1), więc od przęsła można rozpocząć wyznaczanie wielkości podporowych. 2.1 Wyznaczenie wielkości podporowych dla przęsła DE. Przęsło jest obciążone obciążeniem ciągłym q na długości 2 m oraz siłą skupioną F 2 Rys. 3 Obciążenie zewnętrzne, reakcja podporowa oraz siły w przegubie D. nachyloną pod kątem ". Równania równowagi przyjmują postać (12), (13) oraz (14). (12) (13) Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 6 z 16

7 (14) Wyznaczenie siły wewnętrznej. Z równania równowagi (12) ustala się wzór (15) dla wyznaczenia siły wewnętrznej. (15) Podstawiając dane do wzoru (15) otrzymuje się: Wyznaczenie reakcji podporowej. Z równania równowagi (14) ustala się wzór (16) dla wyznaczenia reakcji podporowej. Podstawiając dane do wzoru (16) otrzymuje się: (16) Wyznaczenie siły wewnętrznej. Z równania równowagi (13) ustala się wzór (17) dla wyznaczenia siły wewnętrznej. (17) Podstawiając dane do wzoru (17) otrzymuje się: Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 7 z 16

8 2.2 Wyznaczenie wielkości podporowych dla przęsła BCD. Obciążenie oraz wielkości podporowe dla przęsła przedstawiono na Rys. 4. Przegub jest obciążony siłami wewnętrznymi oraz, których wielkość została wyznaczona w rozdziale 2.1. Przegub jest obciążony siłami wewnętrznymi oraz, Rys. 4 Obciążenie zewnętrzne, reakcja podporowa oraz siły w przegubie B. których wielkość jest nieznana. Podpora wprowadza nieznaną reakcję. Tak więc, do wyznaczenia pozostałych wielkości podporowych wystarczą trzy równania równowagi (1). Szczególne równania równowagi dla przęsła przyjmują postać (18), (19) oraz (20). Równanie (20) bilansuje momenty sił względem przegubu. (18) (19) (20) Wyznaczenie siły wewnętrznej. Z równania (18) wyznacza się wzór (21), z którego wylicza się wartość siły wewnętrznej. Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 8 z 16

9 (21) Podstawiając do wzoru (21) wartość otrzymuje się: Wyznaczenie reakcji podporowej. Po przekształceniu równania (20) otrzymuje się wzór (22) dla wyliczenia reakcji podporowej. (22) Podstawiając do (22) dane otrzymuje się: Wyznaczenie siły wewnętrznej. Przekształcając równanie (19) otrzymuje się wzór (23) dla wyliczenia siły wewnętrznej. (23) Podstawiając znane wartości do równania (23) otrzymuje się: 2.3 Wyznaczenie wielkości podporowych przęsła AB. Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 9 z 16

10 Przęsło, przedstawione na Rys. 5, jest belką utwierdzoną lewostronnie. W połowie długości przęsło jest obciążone siłą skupioną, skierowaną pionowo w dół. Wolny koniec przęsła obciążony jest siłą wewnętrzną, przeniesioną przez przegub z przęsła. Zatem, przęsło jest obciążone trzema nieznanymi wielkościami podporowymi w utwierdzeniu, wyznaczanymi z równań równowagi (1), które po Rys. 5 Obciążenie zewnętrzne, siła wewnętrzna oraz reakcje w utwierdzeniu dla przęsła. uszczegółowieniu przyjmują postać (24), (25) oraz (26). (24) (25) (26) Wyznaczenie reakcji. Z równania równowagi (24) wyprowadza się wzór (27), z którego wylicza się reakcję. (27) Podstawiając znaną wielkość, otrzymuje się: Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 10 z 16

11 2.3.2 Wyznaczenie reakcji Z równania równowagi (25) wyprowadza się wzór (28) dla wyliczenia reakcji. (28) Podstawiając znane wartości oraz do (28), otrzymuje się: Ujemna wartość reakcji oznacza, że wstępnie założony kierunek reakcji jest błędny. Zatem reakcja w rzeczywistości jest skierowana w dół, co zostało oznaczone na Rys. 5 przez ujęcie w nawiasy dotychczasowego i dorysowanie prawidłowego zwrotu wektora reakcji Wyznaczenie momentu utwierdzenia. Z równania (26) wyprowadza się wzór (29) dla obliczenia momentu utwierdzenia. (29) Podstawiając znane wartości oraz do wzoru (29), otrzymuje się: Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 11 z 16

12 3 Wyznaczenie sił wewnętrznych w belce. Zagadnienie płaskie, jak dla belki z Rys. 2, sprowadza się do wyznaczenia rozkładu sił osiowych wzdłuż osi, rozkładu sił poprzecznych działających wzdłuż osi oraz rozkładu momentów zginających skierowanych wzdłuż osi. Po wyznaczeniu wszystkich wielkości podporowych stan obciążenia belki przedstawionej na Rys. 1, przedstawiono na Rys. 6. Rys. 6 Obciążenia zewnętrzne oraz wielkości podporowe dla belki utwierdzonej z dwuprzegubowej. Dla wyznaczenia sił wewnętrznych przyjmuje się układ współrzędnych, którego początek umieszczono w punkcie, jak pokazano na Rys Rozkład sił osiowych. Siła osiowa pojawia się w przekroju belki i jest równa reakcji, a zastaje zredukowana do zera przez składową poziomą siły. Na całej długości występowania siły osiowej jej charakter się nie zmienia, zatem belka jest wzdłużnie ściskana. W takim przypadku siła osiowa przyjmuje wartość ujemną (ściskającą). Rozkład siły osiowej ma dwa przedziały, co przedstawiono na Rys. 7, a wartości są następujące: Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 12 z 16

13 Rys. 7 Rozkład siły osiowej. 3.2 Rozkład sił poprzecznych. Rozkład sił poprzecznych, przedstawiony na Rys. 8, ma cztery przedziały zmienności. Rozpoczyna się w przekroju wartością reakcji i rozciąga się do punktu przyłożenia siły zewnętrznej. Siła powiększa siłę poprzeczną do wartości, która się nie zmienia aż do podpory. Działająca w podporze reakcja obciążeniem ciągłym o intensywności zmienia wielkość siły poprzecznej do wartości. Od podpory aż do punktu przyłożenia siły belka jest obciążona, co na długości 6 m powoduje zmianę siły poprzecznej do wartości. W miejscu przyłożenia siły, nachylonej pod kątem, składowa poprzeczna zmienia rozkład siły poprzecznej do wartości. Wartość siły poprzecznej jest zgodna z wartością reakcji, która ostatecznie na końcu belki redukuje rozkład sił poprzecznych do zera. Równania opisujące zmienność sił poprzecznych w poszczególnych przedziałach są następujące: Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 13 z 16

14 Rys. 8 Rozkład sił poprzecznych w belce utworzony pod wpływem sił zewnętrznych i reakcji. 3.3 Rozkład momentów zginających. Rozkład momentów zginających ma pięć przedziałów zmienności, przedstawionych na Rys. 9. Rozpoczyna się w przekroju wartością momentu utwierdzenia. W pierwszym przedziale moment zginający maleje liniowo do wartości. W drugim przedziale moment zginający maleje liniowo do wartości do wartości rośnie skokowo do wartości. W trzecim przedziale moment zginający, a następnie maleje liniowo. W czwartym przedziale występuje obciążenie ciągłe o natężeniu wartości, co powoduje paraboliczny wzrost momentu zginającego do. W piątym przedziale moment zginający maleje liniowo do zera w podporze. W przegubach belki oczywiście moment zginający przyjmuje wartość zero, czyli dla przegubu oraz dla przegubu. Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 14 z 16

15 Rys. 9 Wielkości podporowe, obciążenia oraz rozkład momentu zginającego. Zmienność momentu zginającego opisują poniższe równania określone przedziałami. Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 15 z 16

16 4 Podsumowanie Siła osiowa powoduje osiowe ściskanie belki. Obciążenie ściskające może spowodować lokalną utratę stateczności zwaną wyboczeniem. Przęsło ma 8 m długości, co może być przyczyną przekroczenia smukłości krytycznej. Fakt lewostronnego utwierdzenia przęsła korzystnie poprawia odporność na wyboczenie przęsła. Przęsło także ma 8 m długości, co również może być przyczyną przekroczenia smukłości krytycznej. Podpora usztywnia przęsło w połowie jego długości, co korzystnie poprawia odporność na wyboczenie przęsła. Siła poprzeczna powoduje poprzeczne ścinanie przekroju belki, wywołując naprężenia ścinające w całym jej przekroju. Największa wartość siły ścinającej występuje w II przedziale zmienności. Sposób przyłożenia siły początku przedziału oraz sposób podparcia belki w podporze na końcu przedziału II może decydować o prawdopodobieństwie uszkodzenia belki przez jej ścięcie. Moment zginający rozłożony wzdłuż całej belki przyjmuje największą wartość w przedziale I, w przekroju, która wynosi. Tak więc, miejscem najbardziej narażonym na uszkodzenie od zginania jest właśnie przekrój. Jednak na początku przedziału II moment zginający ma jeszcze dość znaczną wartość, co w połączeniu z naprężeniami ścinającymi na początku II przedziału może także stanowić miejsce krytyczne podatne na uszkodzenie. na Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Stronica 16 z 16

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

1. ANALIZA BELEK I RAM PŁASKICH

1. ANALIZA BELEK I RAM PŁASKICH 5/6 1. NIZ BEEK I RM PŁSKICH 1 1. NIZ BEEK I RM PŁSKICH 1.1 naliza kinematyczna podstawowe definicje Podstawowym pojęciem stosowanym w analizie kinematycznej belek i ram płaskich jest tarcza sztywna. Jest

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Wyznaczenie reakcji w Belkach Gerbera

Wyznaczenie reakcji w Belkach Gerbera Wyznaczenie reakcji w elkach erbera Sposób obliczania: by policzyć elkę erbera w najprostszy sposób dzielimy ją w przegubach uzyskując pojedyncze belki by móc policzyć konstrukcję, belki powstałe po podziale

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie.

BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie. Są to belki ciągłe przegubowe i należą do układów statycznie wyznaczalnych (zatem n s = 0). Przykładowy schemat: A ELKI GERERA V V Wyznaczenie stopnia statycznej niewyznaczalności układu: n s = R P 3 gdzie:

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

WIERZBICKI JĘDRZEJ. 4 (ns)

WIERZBICKI JĘDRZEJ. 4 (ns) WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć

Bardziej szczegółowo

Moduł. Profile stalowe

Moduł. Profile stalowe Moduł Profile stalowe 400-1 Spis treści 400. PROFILE STALOWE...3 400.1. WIADOMOŚCI OGÓLNE...3 400.1.1. Opis programu...3 400.1.2. Zakres programu...3 400.1. 3. Opis podstawowych funkcji programu...4 400.2.

Bardziej szczegółowo

NOŚNOŚĆ GRANICZNA

NOŚNOŚĆ GRANICZNA 4. NOŚNOŚĆ GRANICZNA 4. 4. NOŚNOŚĆ GRANICZNA 4.. Wstęp Nośność graniczna wartość obciążenia, przy którym konstrukcja traci zdoność do jego przenoszenia i staje się układem geometrycznie zmiennym. Zastosowanie

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości

Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości Mechanika i Budowa Maszyn Materiały pomocnicze do laboratorium Przykład obliczeniowy geometrii mas i analiza wytrzymałości Środek ciężkości Moment bezwładności Wskaźnik wytrzymałości na zginanie Naprężenia

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali

Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Poradnik Inżyniera Nr 18 Aktualizacja: 09/2016 Analiza stanu przemieszczenia oraz wymiarowanie grupy pali Program: Plik powiązany: Grupa pali Demo_manual_18.gsp Celem niniejszego przewodnika jest przedstawienie

Bardziej szczegółowo

Wykład 6: Linie wpływu reakcji i sił wewnętrznych w belkach gerbera. Obciążanie linii wpływu. dr inż. Hanna Weber

Wykład 6: Linie wpływu reakcji i sił wewnętrznych w belkach gerbera. Obciążanie linii wpływu. dr inż. Hanna Weber Wykład 6: Linie wpływu reakcji i sił wewnętrznych w belkach gerbera. Obciążanie linii wpływu. Zadanie. Dla przedstawionej belki wrysować linie wpływu momentów podporowych, sił wewnętrznych w zadanych przekrojach

Bardziej szczegółowo

Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku..

Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku.. rzykład 10.. Łuk obciążony ciężarem przęsła. Rysunek przedstawia łuk trójprzegubowy, którego oś ma kształt części półokręgu. Łuk obciążony jest ciężarem własnym. Zakładamy, że prawe przęsło łuku jest nieporównanie

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH

WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE,

Bardziej szczegółowo

8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH

8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH Część 1 8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH 1 8. 8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH 8.1. Analiza kinematyczna płaskiego układu tarcz sztywnych. Układy statycznie

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III KATEDRA MECHANIKI MATERIAŁÓW POLITECHNIKA ŁÓDZKA DEPARTMENT OF MECHANICS OF MATERIALS TECHNICAL UNIVERSITY OF ŁÓDŹ Al.Politechniki 6, 93-590 Łódź, Poland, Tel/Fax (48) (42) 631 35 51 Mechanika Budowli

Bardziej szczegółowo

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki Belka Gerbera Poradnik krok po kroku mgr inż. Krzysztof Wierzbicki Odrobina teorii Belki Gerbera: - układy jednowymiarowe (wiodąca cecha geometryczna: długość) -belki o liczbie reakcji >3 - występują w

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 3 Badanie reakcji w układzie belkowym 1 Cel ćwiczenia Celem ćwiczenia jest poznanie metody wyznaczania reakcji

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

Raport wymiarowania stali do programu Rama3D/2D:

Raport wymiarowania stali do programu Rama3D/2D: 2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych

Bardziej szczegółowo

Temat: Mimośrodowe ściskanie i rozciąganie

Temat: Mimośrodowe ściskanie i rozciąganie Wytrzymałość Materiałów II 2016 1 Przykładowe tematy egzaminacyjne kursu Wytrzymałość Materiałów II Temat: Mimośrodowe ściskanie i rozciąganie 1. Dany jest pręt obciążony mimośrodowo siłą P. Oblicz naprężenia

Bardziej szczegółowo

1. Projekt techniczny Podciągu

1. Projekt techniczny Podciągu 1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami

Bardziej szczegółowo

Stropy TERIVA - Projektowanie i wykonywanie

Stropy TERIVA - Projektowanie i wykonywanie Stropy TERIVA obciążone równomiernie sprawdza się przez porównanie obciążeń działających na strop z podanymi w tablicy 4. Jeżeli na strop działa inny układ obciążeń lub jeżeli strop pracuje w innym układzie

Bardziej szczegółowo

Moduł. Belka stalowa

Moduł. Belka stalowa Moduł Belka stalowa 410-1 Spis treści 410. BELKA STALOWA...3 410.1. WIADOMOŚCI OGÓLNE...3 410.1.1. Opis programu...3 410.1.2. Zakres programu...3 410.1.3. O pis podstawowych funkcji programu...3 410.1.3.1.

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

ZałoŜenia przyjmowane przy obliczaniu obciąŝeń wewnętrznych belek

ZałoŜenia przyjmowane przy obliczaniu obciąŝeń wewnętrznych belek Wprowadzenie nr 2* do ćwiczeń z przedmiotu Wytrzymałość materiałów dla studentów II roku studiów dziennych I stopnia w kierunku Energetyka na wydz. Energetyki i Paliw w semestrze zimowym 2012/2013 1.Zakres

Bardziej szczegółowo

Zbrojenie konstrukcyjne strzemionami dwuciętymi 6 co 400 mm na całej długości przęsła

Zbrojenie konstrukcyjne strzemionami dwuciętymi 6 co 400 mm na całej długości przęsła Zginanie: (przekrój c-c) Moment podporowy obliczeniowy M Sd = (-)130.71 knm Zbrojenie potrzebne górne s1 = 4.90 cm 2. Przyjęto 3 16 o s = 6.03 cm 2 ( = 0.36%) Warunek nośności na zginanie: M Sd = (-)130.71

Bardziej szczegółowo

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności I. Pojęcie funkcji definicja różne sposoby opisu funkcji określenie dziedziny, zbioru wartości, miejsc zerowych. Należy

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Moduł. Blachownica stalowa

Moduł. Blachownica stalowa Moduł Blachownica stalowa 412-1 Spis treści 412. BLACHOWNICA STALOWA...3 412.1. WIADOMOŚCI OGÓLNE...3 412.1.1. Opis programu...3 412.1.2. Zakres programu...3 412.1.3. O pis podstawowych funkcji programu...4

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

zredukować w układzie NQ, więc poza siłami P 1 i P 2 trzeba rozłożyć na składowe równoległą i prostopadłą do odcinka CD wypadkową od q1 10

zredukować w układzie NQ, więc poza siłami P 1 i P 2 trzeba rozłożyć na składowe równoległą i prostopadłą do odcinka CD wypadkową od q1 10 Rozwiązać podaną ramę (wykresy M Q N ) q 1 =5 D P 2 = x 3 D q 2 = y 3 40 P 1 =20 2 α B C x 3 /y 3 =2/1 2 c=2/ 5 A E F P 3 = s=1/ 5 Wq 1 =5*2 5 = 5 P 4 = 2 2 2 2 Po prawej stronie tematu narysowano w którą

Bardziej szczegółowo

Spis treści. Przedmowa... Podstawowe oznaczenia Charakterystyka ogólna dźwignic i torów jezdnych... 1

Spis treści. Przedmowa... Podstawowe oznaczenia Charakterystyka ogólna dźwignic i torów jezdnych... 1 Przedmowa Podstawowe oznaczenia 1 Charakterystyka ogólna dźwignic i torów jezdnych 1 11 Uwagi ogólne 1 12 Charakterystyka ogólna dźwignic 1 121 Suwnice pomostowe 2 122 Wciągniki jednoszynowe 11 13 Klasyfikacja

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 3 Badanie reakcji podporowych w konstrukcjach płaskich Cel ćwiczenia Celem ćwiczenia jest porównanie wartości

Bardziej szczegółowo

Wyznaczenie reakcji belki statycznie niewyznaczalnej

Wyznaczenie reakcji belki statycznie niewyznaczalnej Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne

Bardziej szczegółowo

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

405-Belka stalowa Eurokod PN-EN. Moduł 405-1

405-Belka stalowa Eurokod PN-EN. Moduł 405-1 Moduł Belka stalowa Eurokod PN-EN 405-1 Spis treści 405. BELKA STALOWA EUROKOD PN-EN... 3 405.1. WIADOMOŚCI OGÓLNE... 3 405.1.1. Opis programu... 3 405.1.2. Zakres programu... 3 405.1.3. Typy przekrojów...

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA 1. ZałoŜenia obliczeniowe

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA 1. ZałoŜenia obliczeniowe OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE MOSTU NAD RZEKĄ ORLA. ZałoŜenia obliczeniowe.. Własciwości fizyczne i mechaniczne materiałów R - wytrzymałość obliczeniowa elementów pracujących na rozciąganie i sciskanie

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki Informacje ogólne Podpora ograniczająca obrót pasa ściskanego słupa (albo ramy) może znacząco podnieść wielkość mnożnika obciążenia,

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW Poziom I-II ieg schodowy SZKIC SCHODÓW 23 0 175 1,5 175 32 29,2 17,5 10x 17,5/29,2 1,5 GEOMETRI SCHODÓW 30 130 413 24 Wymiary schodów : Długość dolnego spocznika l s,d = 1,50 m Grubość płyty spocznika

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo