Z1/1. ANALIZA BELEK ZADANIE 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Z1/1. ANALIZA BELEK ZADANIE 1"

Transkrypt

1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu zginającego. Wszystkie wymiary są podane w metrach. Zadanie zostanie rozwiązanie z wykorzystaniem dokładnej postaci funkcji siły poprzecznej oraz momentu zginającego. Rys. Z1/1.1. elka złożona. Z1/1.2 naliza kinematyczna belki złożonej Rysunek Z1/1.2 przedstawia układ tarcz sztywnych, który jest modelem belki złożonej przedstawionej na rysunku Z1/ Rys. Z1/1.2. Układ tarcz sztywnych model belki złożonej. Układ tarcz sztywnych składa się z dwóch tarcz, które razem mają 6 stopni swobody. Układ jest podparty czterema prętami podporowymi oraz przegubem rzeczywistym, które to więzy odbierają =6 (Z1/1.1) stopni swobody. Został więc spełniony warunek konieczny geometrycznej niezmienności (1.4). Tarcza numer 1 jest podparta do tarczy podporowej za pomocą trzech prętów, których kierunki nie przecinają się w jednym punkcie. Tarcza ta jest więc geometrycznie zmienna i może stanowić podłoże dla tarczy numer 2. Rysunek Z1/1.3 przedstawia tarczę numer 2. Jak widać jest ona podparta do podłoża za pomocą przegubu rzeczywistego i pręta podporowego. Przegub rzeczywisty nie leży na kierunki pręta podporowego więc tarcza numer 2 jest także geometrycznie niezmienna. Skoro obie tarcze są geometrycznie niezmienne to i cały układ tarcz sztywnych jest geometrycznie niezmienny.

2 05/06 Z1/1. NLIZ LK ZNI Rys. Z1/1. 3. Tarcza numer 2. Z1/1.3 Wyznaczenie reakcji podporowych Rysunek Z1/1.4 przedstawia podział belki złożonej na belki proste wraz z założonymi zwrotami reakcji podporowych. H V 2 H 1 H V V V V Rys. Z1/1.4. Założone zwroty reakcji podporowych. ałe obciążenie czynne jest prostopadłe do osi belki więc poziome reakcje H oraz H są równe zero. Reakcję V możemy wyznaczyć z warunku M 2 =0 V 4,0 8,0 5,0 10,0 4, ,0=0 V =30,0kN. (Z1/1.2) Reakcja ma więc zwrot zgodny z założonym. Reakcję V możemy wyznaczyć z warunku M 2 =0 V 4,0 8,0 1,0 10,0 4, ,0=0 V =18,0kN. (Z1/1.3) Reakcja ma więc zwrot zgodny z założonym.

3 05/06 Z1/1. NLIZ LK ZNI 1 3 W celu sprawdzenia obliczeń zastosujemy warunek równowagi Y 2 =0 V V 8,0 10,0 4,0=30,0 18,0 10 4,0 8,0=0. (Z1/1.4) Reakcje działające na belkę numer 2 znajdują się więc w równowadze. Rysunek Z1/1.5 przedstawia belkę numer 2 w równowadze ,0 kn 4,0 1,0 Rys. Z1/1.5. elka numer 2 w równowadze. Reakcję V możemy wyznaczyć z warunku M 1 =0 V 6,0 V 8,0 12, ,0 6, ,0=0 V =52,0kN. (Z1/1.5) Reakcja ma więc zwrot zgodny z założonym. Reakcję V możemy wyznaczyć z warunku M 1 =0 V 6,0 V 2,0 12, ,0 6, ,0=0 V =11,0kN. (Z1/1.6) Reakcja ma więc zwrot zgodny z założonym. W celu sprawdzenia obliczeń zastosujemy warunek równowagi Y 1 =0 V V V ,0 6,0=11,0 52,0 18, ,0 6,0=0. (Z1/1.7)

4 05/06 Z1/1. NLIZ LK ZNI 1 4 Reakcje działające na belkę numer 1 znajdują się więc w równowadze. Rysunek Z1/1.6 przedstawia belkę numer 1 w równowadze. 1 11,0 kn 52,0 kn 6,0 2,0 Rys. Z1/1.6. elka numer 1 w równowadze. Rysunek Z1/1.7 przedstawia całą belkę złożoną w równowadze. 11,0 kn 52,0 kn 30,0 kn Rys. Z1/1.7. ała belka złożona w równowadze. Z1/1.4 Siły przekrojowe w przedziale Rysunek Z1/1.8 przedstawia równowagę części belki w przedziale. Na rysunku zaznaczone są założone dodatnie zwroty siły poprzecznej i momentu zginającego. Oczywiście siła normalna w przedziale wynosi zero. Siły i momenty sił działające zgodnie z przyjętymi zwrotami siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z minusem natomiast siły i momenty sił działające przeciwnie do przyjętych zwrotów siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z plusem. Siła poprzeczna wynosi T x =11, ,0 6,0 x x= 5,0 4,0 x2 11,0. (Z1/1.8) Wartości siły poprzecznej na początku i końcu przedziału wynoszą T 0,0 = 11,0kN T 6,0 = 34,0kN. (Z1/1.9)

5 05/06 Z1/1. NLIZ LK ZNI 1 5 q x = 15,0 6,0 x=2,5 x 11,0 kn x 1 T(x) M(x) X Rys. Z1/1.8. Równowaga części belki w przedziale. Siła poprzeczna posiada miejsce zerowe w punkcie T x 0 = 5,0 4,0 x ,0=0 x 0 =2,966m. (Z1/1.10) kstremum wykresu siły poprzecznej znajduje się w punkcie. Moment zginający wynosi M x =11,0 x ,0 6,0 x x 1 5,0 x 12,0= 3 12,0 x3 11,0 x 12,0. (Z1/1.11) Wartości momentu zginającego na początku i końcu przedziału wynoszą M 0,0 = M 6,0 = 36,0 knm. (Z1/1.12) Wartość momentu zginającego w miejscu ekstremum (Z1/1.10) wynosi M 2,966 =9,754 knm. (Z1/1.13) Pochodna funkcji siły poprzecznej (Z1/1.8) wynosi dt dx = 5,0 2,0 x= 2,5 x = q x. (Z1/1.14) Spełnione zostało różniczkowe równanie równowagi (1.53). Pochodna funkcji momentu zginającego (Z1/1.11) wynosi

6 05/06 Z1/1. NLIZ LK ZNI 1 6 dm dx = 5,0 4,0 x2 11,0=T x. (Z1/1.15) Spełnione zostało różniczkowe równanie równowagi (1.54). Rysunek Z1/1.9 przedstawia wykresy siły poprzecznej i momentu zginającego w przedziale 11,0 kn 52,0 kn 30,0 kn +11,0 T(x) [kn] -34,0 12,0 9,754 36,0 M(x) [knm] Rys. Z1/1.9. Wykres sił przekrojowych w przedziale. Z1/1.5 Siły przekrojowe w przedziale Rysunek Z1/1.10 przedstawia równowagę części belki w przedziale. Na rysunku zaznaczone są założone dodatnie zwroty siły poprzecznej i momentu zginającego. Oczywiście siła normalna w przedziale także wynosi zero. Siły i momenty sił działające zgodnie z przyjętymi zwrotami siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z minusem natomiast siły i momenty sił działające przeciwnie do przyjętych zwrotów siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z plusem. Siła poprzeczna wynosi

7 05/06 Z1/1. NLIZ LK ZNI 1 7 X M(x) T(x) 1 Rys. Z1/10. Równowaga części belki w przedziale. x T x =1. (Z1/1.16) Moment zginający wynosi M x = 18,0 x. (Z1/1.17) Wartości momentu zginającego na początku i końcu przedziału wynoszą M 0,0 =0,0 knm M 12,0 = 36,0 knm. (Z1/1.18) Pochodna momentu zginającego wynosi dm dx = 18,0= T x. (Z1/1.19) Spełniona została więc zależność (1.56). Rysunek Z1/1.11 przedstawia wykresy sił przekrojowych w przedziale. Z1/1.6 Siły przekrojowe w przedziale Rysunek Z1/1.12 przedstawia równowagę części belki w przedziale. Na rysunku zaznaczone są założone dodatnie zwroty siły poprzecznej i momentu zginającego. Oczywiście siła normalna w przedziale wynosi zero. Siły i momenty sił działające zgodnie z przyjętymi zwrotami siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z minusem natomiast siły i momenty sił działające przeciwnie do przyjętych zwrotów siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z plusem. Siła poprzeczna wynosi T x =18,0 10,0 x. (Z1/1.20)

8 05/06 Z1/1. NLIZ LK ZNI ,0 kn 52,0 kn 30,0 kn +18,0 +11,0 T(x) [kn] -34,0 12,0 9,754 36,0 0,0 M(x) [knm] Rys. Z1/1.11. Wykresy sił przekrojowych w przedziale. 2 1 x T(x) M(x) X Rys. Z1/1.12. Równowaga części belki w przedziale. Wartości siły poprzecznej na początku i końcu przedziału wynoszą T 0,0 = 1 T 4,0 = 22,0 kn. (Z1/1.21) Siła poprzeczna posiada miejsce zerowe w punkcie

9 05/06 Z1/1. NLIZ LK ZNI 1 9 T x 0 =18,0 10,0 x 0 x 0 =1,8 m. (Z1/1.22) Moment zginający wynosi M x =18,0 x 10,0 x 1 2 x=18,0 x 5,0 x2. (Z1/1.23) Wartości momentu zginającego na początku i końcu przedziału wynoszą M 0,0 =0,0 knm M 4,0 = m. (Z1/1.24) Wartość momentu zginającego w miejscu ekstremum (Z1/1.22) wynosi M 1,8 =16,2 knm. (Z1/1.25) Pochodna funkcji siły poprzecznej (Z1/1.20) wynosi dt dx = 10,0= q x. (Z1/1.26) Spełnione zostało różniczkowe równanie równowagi (1.53). Pochodna funkcji momentu zginającego (Z1/1.23) wynosi dm dx =18,0 10,0 x=t x. (Z1/1.27) Spełnione zostało różniczkowe równanie równowagi (1.54). Rysunek Z1/1.13 przedstawia wykresy siły poprzecznej i momentu zginającego w przedziale. Z1/1.7 Siły przekrojowe w przedziale Rysunek Z1/1.14 przedstawia równowagę części belki w przedziale. Na rysunku zaznaczone są założone dodatnie zwroty siły poprzecznej i momentu zginającego. Oczywiście siła normalna w przedziale także wynosi zero. Z1/1.7 Siły i momenty sił działające zgodnie z przyjętymi zwrotami siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z minusem natomiast siły i momenty sił działające przeciwnie do przyjętych zwrotów siły poprzecznej i momentu zginającego w funkcjach T(x) i M(x) będziemy zapisywać z plusem.

10 05/06 Z1/1. NLIZ LK ZNI ,0 kn 52,0 kn 30,0 kn +18,0 +11,0 T(x) [kn] -34,0 1,8 2,2-22,0 12,0 9,754 36,0 0,0 16,2 8,0 M(x) [knm] 1,8 2,2 Rys. Z1/1.13. Wykresy sił przekrojowych w przedziale. M(x) X T(x) Rys. Z1/1.14. Równowaga części belki w przedziale. x Siła poprzeczna wynosi T x =8,0kN. (Z1/1.28) Moment zginający wynosi

11 05/06 Z1/1. NLIZ LK ZNI 1 11 M x = 8,0 x. (Z1/1.29) Wartości momentu zginającego na początku i końcu przedziału wynoszą M 0,0 =0,0 knm M 1,0 = m. (Z1/1.30) 11,0 kn 52,0 kn 30,0 kn +18,0 +11,0 +8,0 T(x) [kn] -34,0 1,8 2,2-22,0 12,0 9,754 36,0 0,0 16,2 8,0 M(x) [knm] 1,8 2,2 Rys. Z1/1.15. Wykresy sił przekrojowych w przedziale będące także wykresami ostatecznymi dla całej belki. Pochodna momentu zginającego wynosi dm dx = 8,0= T x. (Z1/1.31) Spełniona została więc zależność (1.56). Rysunek Z1/1.15 przedstawia wykresy sił przekrojowych w przedziale. Są to także wykresy ostateczne dla całej belki.

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

WIERZBICKI JĘDRZEJ. 4 (ns)

WIERZBICKI JĘDRZEJ. 4 (ns) WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH

WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 1 WYZNACZANIE REAKCJI WIĘZÓW W UKŁADZIE TARCZ SZTYWNYCH Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE,

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki Belka Gerbera Poradnik krok po kroku mgr inż. Krzysztof Wierzbicki Odrobina teorii Belki Gerbera: - układy jednowymiarowe (wiodąca cecha geometryczna: długość) -belki o liczbie reakcji >3 - występują w

Bardziej szczegółowo

3. Rozciąganie osiowe

3. Rozciąganie osiowe 3. 3. Rozciąganie osiowe 3. Podstawowe definicje Przyjmijmy, że materiał z którego wykonany został pręt jest jednorodny oraz izotropowy. Izotropowy oznacza, że próbka wycięta z większej bryły materiału

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor

POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH. Ćwiczenie nr 4. Prowadzący: mgr inŝ. A. Kaczor POLITECHNIKA POZNAŃKA INTYTUT KONTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli Ćwiczenie nr 4 WYZNACZANIE IŁ W PRĘTACH KRATOWNIC PŁAKICH Prowadzący: mgr inŝ. A. Kaczor Wykonał: Dariusz Włochal gr. B6 rok

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

9. Mimośrodowe działanie siły

9. Mimośrodowe działanie siły 9. MIMOŚRODOWE DZIŁIE SIŁY 1 9. 9. Mimośrodowe działanie siły 9.1 Podstawowe wiadomości Mimośrodowe działanie siły polega na jednoczesnym działaniu w przekroju pręta siły normalnej oraz dwóc momentów zginającyc.

Bardziej szczegółowo

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011 Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

8. WIADOMOŚCI WSTĘPNE

8. WIADOMOŚCI WSTĘPNE Część 2 8. MECHNIK ELEMENTÓW PRĘTOWYCH WIDOMOŚCI WSTĘPNE 1 8. WIDOMOŚCI WSTĘPNE 8.1. KLSYFIKCJ ZSDNICZYCH ELEMENTÓW KONSTRUKCJI Podstawą klasyfikacji zasadniczych elementów konstrukcji jest kształt geometryczny

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : dr inż. Hanna Weber pok. 227, email: weber@zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 1989 Paluch M., Mechanika Budowli: teoria i przykłady, PWN,

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH 2013 2BA-DI s.1 WIADOMOŚCI OGÓLNE WIADOMOŚCI OGÓLNE O zginaniu mówimy wówczas, gdy prosta początkowo oś pręta ulega pod wpływem obciążenia zakrzywieniu, przy czym włókna pręta od strony wypukłej ulegają wydłużeniu, a od strony wklęsłej

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Raport wymiarowania stali do programu Rama3D/2D:

Raport wymiarowania stali do programu Rama3D/2D: 2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników

Rys. 29. Schemat obliczeniowy płyty biegowej i spoczników Przykład obliczeniowy schodów wg EC-2 a) Zebranie obciąŝeń Szczegóły geometryczne i konstrukcyjne przedstawiono poniŝej: Rys. 28. Wymiary klatki schodowej w rzucie poziomym 100 224 20 14 9x 17,4/28,0 157

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

zredukować w układzie NQ, więc poza siłami P 1 i P 2 trzeba rozłożyć na składowe równoległą i prostopadłą do odcinka CD wypadkową od q1 10

zredukować w układzie NQ, więc poza siłami P 1 i P 2 trzeba rozłożyć na składowe równoległą i prostopadłą do odcinka CD wypadkową od q1 10 Rozwiązać podaną ramę (wykresy M Q N ) q 1 =5 D P 2 = x 3 D q 2 = y 3 40 P 1 =20 2 α B C x 3 /y 3 =2/1 2 c=2/ 5 A E F P 3 = s=1/ 5 Wq 1 =5*2 5 = 5 P 4 = 2 2 2 2 Po prawej stronie tematu narysowano w którą

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują

Bardziej szczegółowo

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW

Poziom I-II Bieg schodowy 6 SZKIC SCHODÓW GEOMETRIA SCHODÓW Poziom I-II ieg schodowy SZKIC SCHODÓW 23 0 175 1,5 175 32 29,2 17,5 10x 17,5/29,2 1,5 GEOMETRI SCHODÓW 30 130 413 24 Wymiary schodów : Długość dolnego spocznika l s,d = 1,50 m Grubość płyty spocznika

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2015 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 0 KOD UZUPEŁNIA ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne:

Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: - str.10 - POZ.2. STROP NAD KLATKĄ SCHODOWĄ Projektuje się płytę żelbetową wylewaną na mokro, krzyżowo-zbrojoną. Parametry techniczne: 1/ Grubość płyty h = 15cm 2/ Grubość otulenia zbrojenia a = 2cm 3/

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo

5. Zginanie ze ścinaniem

5. Zginanie ze ścinaniem 5. 1 5. Zginanie ze ścinaniem 5.1 Belki i ramy płaskie W wykładzie tym rozpatrywane będzie działanie siły poprzecznej, która powstaje w przekroju pręta pryzmatycznego wykonanego z materiału jednorodnego

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu.

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu. 4. CZYSTE ZGINNIE 1 4. 4. Czyste zginanie 4.1 odstawowe definicje Momentem M siły względem punktu O nazywamy iloczyn wektorowy wektora wodzącego r oraz wektora siły. M= r. (4.1) Wektor r jest promieniem

Bardziej szczegółowo

1. Projekt techniczny Podciągu

1. Projekt techniczny Podciągu 1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

Stanisław Pryputniewicz MECHANIKA OGÓLNA MATERIAŁY POMOCNICZE DO WYKŁADÓW I ĆWICZEŃ

Stanisław Pryputniewicz MECHANIKA OGÓLNA MATERIAŁY POMOCNICZE DO WYKŁADÓW I ĆWICZEŃ Stanisław Pryputniewicz MECHANIKA OGÓLNA MATERIAŁY POMOCNICZE DO WYKŁADÓW I ĆWICZEŃ SPIS TREŚCI Przedmowa 1. Podstawowe pojęcia, definicje i aksjomaty statyki 1.1. Wprowadzenie 1.2. Modele ciał rzeczywistych

Bardziej szczegółowo

mgr inż. Sławomir Żebracki MAP/0087/PWOK/07

mgr inż. Sławomir Żebracki MAP/0087/PWOK/07 PLASMA PROJECT s.c. Justyna Derwisz, Adam Kozak 31-871 Kraków, os. Dywizjonu 303 5/159 biuro@plasmaproject.com.pl Inwestycja: REMONT KŁADKI PIESZEJ PRZYWRÓCENIE FUNKCJI UŻYTKOWYCH Brzegi Górne NA DZIAŁCE

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

E, J H 2 E, J H 1. Rysunek 9.1. Schemat statyczny słupa. 1. Kinematycznie dopuszczalna (zgodna z więzami) postać odkształcona analizowanej struktury:

E, J H 2 E, J H 1. Rysunek 9.1. Schemat statyczny słupa. 1. Kinematycznie dopuszczalna (zgodna z więzami) postać odkształcona analizowanej struktury: Przykład 9.. Wyboczenie słupa o dwóch przęsłach Wyznaczyć wartość krytyczną siły P obciążającej głowicę słupa przebiegającego w sposób ciągły przez dwie kondygnacje budynku. Słup jest zamocowany w undamencie.

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO

13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13. WYZNACZANIE CHARAKTERYSTYK ORAZ PRZEŁOŻENIA UKŁADU KIEROWNICZEGO 13.0. Uwagi dotyczące bezpieczeństwa podczas wykonywania ćwiczenia 1. Studenci są zobowiązani do przestrzegania ogólnych przepisów BHP

Bardziej szczegółowo

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP

Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

8. Zginanie ukośne. 8.1 Podstawowe wiadomości

8. Zginanie ukośne. 8.1 Podstawowe wiadomości 8. 1 8. ginanie ukośne 8.1 Podstawowe wiadomości ginanie ukośne zachodzi w przypadku, gdy płaszczyzna działania obciążenia przechodzi przez środek ciężkości przekroju pręta jednak nie pokrywa się z żadną

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

Moduł. Profile stalowe

Moduł. Profile stalowe Moduł Profile stalowe 400-1 Spis treści 400. PROFILE STALOWE...3 400.1. WIADOMOŚCI OGÓLNE...3 400.1.1. Opis programu...3 400.1.2. Zakres programu...3 400.1. 3. Opis podstawowych funkcji programu...4 400.2.

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą zginania pręta

Wyznaczanie modułu Younga metodą zginania pręta POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu FIZYKA Kod przedmiotu KS017; KN017; LS017; LN017 Ćwiczenie Nr 1 Wyznaczanie modułu Younga metodą

Bardziej szczegółowo

Obliczanie obciążeń konstrukcji budowlanych 311[04].Z1.02

Obliczanie obciążeń konstrukcji budowlanych 311[04].Z1.02 MINISTERSTWO EDUKACJI i NAUKI Anna Kusina Obliczanie obciążeń konstrukcji budowlanych 311[04].Z1.02 Poradnik dla ucznia Wydawca Instytut Technologii Eksploatacji Państwowy Instytut Badawczy Radom 2005

Bardziej szczegółowo

POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=

POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:= POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53

ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53 ZDNE TTECZNOŚĆ UKŁDU 5 Treść zadania Wyznazyć najniejszą wartość siły, przy której nastąpi utrata stateznośi. kn 54 Układ podstawowy etody przeieszzeń aa jest trzykrotnie geoetryznie niewyznazalna 55 Dobór

Bardziej szczegółowo

Przykład obliczeń głównego układu nośnego hali - Rozwiązania alternatywne. Opracował dr inż. Rafał Tews

Przykład obliczeń głównego układu nośnego hali - Rozwiązania alternatywne. Opracował dr inż. Rafał Tews 1. Podstawa dwudzielna Przy dużych zginaniach efektywniejszym rozwiązaniem jest podstawa dwudzielna. Pozwala ona na uzyskanie dużo większego rozstawu śrub kotwiących. Z drugiej strony takie ukształtowanie

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00 8 4.41-0.47 9 9.29-0.

Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00 8 4.41-0.47 9 9.29-0. 7. Więźba dachowa nad istniejącym budynkiem szkoły. 7.1 Krokwie Geometria układu Lista węzłów Nr węzła X [m] Y [m] 1 0.00 0.00 2 0.35 0.13 3 4.41 1.63 4 6.85 2.53 5 9.29 1.63 6 13.35 0.13 7 13.70 0.00

Bardziej szczegółowo

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY

ĆWICZENIE NR 3 OBLICZANIE UKŁADÓW STATYCZNIE NIEWYZNACZALNYCH METODĄ SIŁ OD OSIADANIA PODPÓR I TEMPERATURY zęść OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ 1 POLITEHNIK POZNŃSK INSTYTUT KONSTRUKJI UOWLNYH ZKŁ MEHNIKI UOWLI ĆWIZENIE NR 3 OLIZNIE UKŁÓW STTYZNIE NIEWYZNZLNYH METOĄ SIŁ O OSINI POPÓR I TEMPERTURY

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA Katedra Konstrukcji Stalowych i Spawalnictwa PRZYKŁADY WYMIAROWANIA KONSTRUKCJI STALOWYCH Z PROFILI SIN

POLITECHNIKA KRAKOWSKA Katedra Konstrukcji Stalowych i Spawalnictwa PRZYKŁADY WYMIAROWANIA KONSTRUKCJI STALOWYCH Z PROFILI SIN POLITECHIKA KRAKOWSKA Katedra Konstrukcji Stalowych i Spawalnictwa PRZYKŁADY WYIAROWAIA KOSTRUKCJI STALOWYCH Z PROFILI SI Kraków Prof. dr hab. inż. Zbigniew EDERA gr inż. Krzysztof KUCHTA Katedra Konstrukcji

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

Dane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v

Dane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v Biuro Inwestor Nazwa projektu Projektował Sprawdził TrussBar v. 0.9.9.22 Pręt - blacha węzłowa PN-90/B-03200 Wytężenie: 2.61 Dane Pręt L120x80x12 h b f t f t w R 120.00[mm] 80.00[mm] 12.00[mm] 12.00[mm]

Bardziej szczegółowo

Pręt nr 4 - Element żelbetowy wg PN-EN :2004

Pręt nr 4 - Element żelbetowy wg PN-EN :2004 Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

XXIII OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2010 ELIMINACJE OKRĘGOWE Godło nr PYTANIA I ZADANIA

XXIII OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2010 ELIMINACJE OKRĘGOWE Godło nr PYTANIA I ZADANIA XXIII OLIMPIADA WIEDZY I UMIEJĘTNOŚCI BUDOWLANYCH 2010 ELIMINACJE OKRĘGOWE Godło nr CZĘŚĆ A Czas 120 minut PYTANIA I ZADANIA 1 2 PUNKTY Na rysunku pokazano kilka przykładów spoin pachwinowych. Na każdym

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

3. Wstępny dobór parametrów przekładni stałej

3. Wstępny dobór parametrów przekładni stałej 4,55 n1= 3500 obr/min n= 1750 obr/min N= 4,55 kw 0,70 1,00 16 37 1,41 1,4 8 30,7 1,41 1. Obliczenie momentu Moment na kole n1 obliczam z zależności: 9550 9550 Moment na kole n obliczam z zależności: 9550

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku

EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku TEMAT MODERNIZACJA POMIESZCZENIA RTG INWESTOR JEDNOSTKA PROJEKTOWA SAMODZIELNY PUBLICZNY ZESPÓŁ OPIEKI ZDROWOTNEJ 32-100 PROSZOWICE,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY PRZYKŁADOWY

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ.

1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ. 1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ. Zestawienie obciążeń. Kąt nachylenia połaci dachowych: Obciążenie śniegie. - dla połaci o kącie nachylenia 0 stopni Lokalizacja

Bardziej szczegółowo

ANALIZA KINEMATYCZNA PALCÓW RĘKI

ANALIZA KINEMATYCZNA PALCÓW RĘKI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 111-116, Gliwice 2010 ANALIZA KINEMATYCZNA PALCÓW RĘKI ANTONI JOHN, AGNIESZKA MUSIOLIK Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki, Politechnika

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą zginania pręta MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 1 KATEDRA ZARZĄDZANIA PRODUKCJĄ

Wyznaczanie modułu Younga metodą zginania pręta MATEMATYKA Z ELEMENTAMI FIZYKI. Ćwiczenie Nr 1 KATEDRA ZARZĄDZANIA PRODUKCJĄ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu ISO17; INO17 Ćwiczenie Nr 1 Wyznaczanie modułu Younga

Bardziej szczegółowo

TEMAT 21: Maszyny proste.

TEMAT 21: Maszyny proste. TEMAT 21: Maszyny proste. Większość osób kojarzy pojęcie "maszyna" jako skomplikowaną mechanicznie konstrukcję jak np. obrabiarka, wiertarka czy inne urządzenie posiadające napęd. Tymczasem, w fizyce maszyną

Bardziej szczegółowo

Zagadnienia konstrukcyjne przy budowie

Zagadnienia konstrukcyjne przy budowie Ogrodzenie z klinkieru, cz. 2 Konstrukcja OGRODZENIA W części I podane zostały niezbędne wiadomości dotyczące projektowania i wykonywania ogrodzeń z klinkieru. Do omówienia pozostaje jeszcze bardzo istotna

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE Z PRZEDMIOTU KONSTRUKCJE BETONOWE - OBIEKTY PROJEKT SŁUPA W ŻELBETOWEJ HALI PREFABRYKOWANEJ. Politechnika Wrocławska

ĆWICZENIE PROJEKTOWE Z PRZEDMIOTU KONSTRUKCJE BETONOWE - OBIEKTY PROJEKT SŁUPA W ŻELBETOWEJ HALI PREFABRYKOWANEJ. Politechnika Wrocławska Politechnika Wrocławska Wydział Budownictwa Lądowego i Wodnego Instytut Budownictwa Katedra Konstrukcji Betonowych ĆWICZENIE PROJEKTOWE Z PRZEDMIOTU KONSTRUKCJE BETONOWE - OBIEKTY PROJEKT SŁUPA W ŻELBETOWEJ

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO UZUPEŁNI ZJĄY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY

Bardziej szczegółowo

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie

Bardziej szczegółowo

Mechanika ogólna statyka

Mechanika ogólna statyka Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu

Bardziej szczegółowo