3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ"

Transkrypt

1 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie D umieszczono przegub. Wyznaczyć niewiadome podporowe. elka jest obciążona obciążeniem ciągłym o intensywności q na długości a, a w punkcie C momentem skupionym M. ys.3.. ozwiązanie Wzdłuż osi belki prowadzimy oś x układu współrzędnych, a oś y pionowo w górę przez punkt (rys.3..). ys.3.. W zależności od rodzaju podpór zakładamy w nich odpowiednie niewiadome podporowe. Dla płaskiego dowolnego układu sił mamy trzy równania, plus jedno równanie momentów

2 względem przegubu. Często najłatwiej jest ułożyć dwa równania momentów po obydwu stronach przegubu (wtedy nie wolno układać równania momentów dla całej belki) i dwa równania rzutów na osie przyjętego układu. ) ) iy ; ; x y + równanie momentów względem przegubu D po prawej stronie przegubu p 3) MiD ; M + a ; równanie momentów względem przegubu D po lewej stronie przegubu l 4) MiD ; M ya + z równania (3) a, z równania () y +, y z równania (4) 5 5 M ya, M Ostatecznie: 5 x ; y ; ; M Zadanie 3. elkę o długości 3a utwierdzono w punkcie i oparto na podporze przegubowej przesuwnej w punkcie. W punkcie D belka posiada przegub. Wyznaczyć niewiadome podporowe w punktach i oraz oddziaływanie w przegubie D gdy belka jest obciążona obciążeniem

3 ciągłym o intensywności q na odcinku, momentem skupionym M przyłożonym do punktu i siłą skupioną P działającą w punkcie C pod kątem α, rysunek 3... ys.3.. Dane: a m; q kn/m; α 3 o, P ; M. 3 ozwiązanie by móc wyznaczyć oddziaływania w przegubie D musimy belkę rozbić w tym miejscu na dwie części lewą i prawą, rys ys.3.. Dla obydwu części zakładamy w podporach odpowiednie niewiadome podporowe, w punkcie D dla strony lewej i prawej zakładamy przeciwnie skierowane oddziaływania pionowe i poziome, tak aby po złożeniu belki w całość siły te wzajemnie się znosiły. by rozwiązać to zadanie badamy równowagę osobno części lewej i prawej, bo przecież po uwzględnieniu wzajemnych oddziaływań pomiędzy nimi każda z nich musi być w równowadze. Układamy równania równowagi dla części lewej, których jak wiadomo dla płaskiego dowolnego układu sił jest 3.

4 ) ; H x D, ) ; + V q a iy y D, a 3) M ; VD a + M i. Układamy równania dla prawej części: 4) ; H P sin α, D 5) ; V P cos α, D a 6) M ; VD a + + M P cos α a i. ozwiązywanie równań rozpoczniemy od części prawej gdyż tam są równania z jedną niewiadomą. 3 3 z (4) H D Psin α,5 kn, M 3 z (6) VD P cosα kn, a 3 a 3 z (5) VD + + P cos α + + 5kN, z () x H D kn, 6 6 z () V + kn, y D 3 z (3) M VD a + 5kNm. Ostatecznie: 3 x kn, y kn, M 5kNm. 5kN, 6 3 H D kn, V D kn, 6 Możemy teraz przeprowadzić obliczenia sprawdzające nie rozdzielając belki w przegubie D rys

5 ys.3..3 Dla belki z przegubem najlepiej jest rozpocząć układanie warunków równowagi od równań momentów względem przegubu po jego lewej i prawej stronie. Następnie piszemy równania rzutów na oś poziomą i pionową. a P 7) M id ; a + M P cos α a stąd: 3 + 5kN 3 a a L 8) M id ; M y a +, 9) ; P sin α x 3 3 x P sin α kn ) ; + P cos α ; iy y 3 y + P cos α + kn 3 Wstawiając do (8): 3 M y a 5kNm Otrzymane wyniki potwierdzają poprawność poprzednich obliczeń.

6 Zadanie 3.3 Dla ramy przedstawionej na rysunku 3.3. wyznaczyć niewiadome podporowe w punktach i. ama obciążona jest na odcinku pionowym obciążeniem ciągłym o intensywności N q, a w punkcie C przyłożono moment skupiony M [Nm]. m ys.3.3. ozwiązanie Przyjmujemy prostokątny układ współrzędnych,x,y (rys. 3.3.) i przyjmujemy zgodnie z rodzajem podpór niewiadome podporowe. W punkcie (podpora przegubowa stała) niewiadoma rozłożona na dwie składowe x i y o kierunkach osi układu współrzędnych. Zwroty niewiadomych możemy przyjmować dowolnie (przy pewnej wprawie starajmy się aby były one zgodne z rzeczywistymi, co zmniejsza ryzyko pomyłek w czasie obliczeń). W punkcie jedna niewiadoma pionowa. ys.3.3.

7 ównania równowagi dla płaskiego dowolnego układu sił iy M ; ; i ; x y + + a M z których wyznaczamy reakcje x y + a 3 a + 3 Zadanie 3.4 Dla przedstawionej na rysunku konstrukcji wyznaczyć niewiadome podporowe na podporach i oraz siłę w pręcie. Pewną część konstrukcji stanowi łuk o promieniu r a w punkcie C występuje przegub. Obciążenie stanowi siła skupiona P przyłożona w punkcie C, moment skupiony K przyłożony w punkcie E, oraz obciążenie ciągłe o intensywności q działające na pionowy fragment konstrukcji rys ys.3.4.

8 Dane: h r 5m, a m, b 4m l m, P 5kN, K 75kNm, q kn/m. ozwiązanie Przyjmujemy układ współrzędnych jak na rysunku 3.4. i zakładamy niewiadome podporowe w punktach i. by uzewnętrznić siłę w pręcie przecinamy go w dowolnym miejscu a do przegubów i przykładamy dwie przeciwnie skierowane siły S (rys. 3.4.) równe sile wewnętrznej w tym pręcie. ys.3.4. Jest to płaski dowolny układ z przegubem. Do dyspozycji mamy więc cztery równania równowagi. ) ) iy ; ; q h + x y + S S P h 3) Mi ; y l P b q h + K ; i warunek momentów względem przegubu C po prawej stronie przegubu: p 4) M ic ; S r x r + y (a + r) Podstawiamy: P q r; K 3/q r ; h r; a /5r; b 4/5r; l /5r. ) ) iy ; ; q r + x y q r

9 4 r 3 3) M ; y r qr r q + qr 5 5 p 4) M ic ; S r + y ( r + r) x r 5 i ; z () z (3) z () z (4) x qr 5 kn y + qr qr 7,3 kn qr qr qr 7,7 kn S x y qr qr qr 8, kn 5 5 Zadanie 3.5 Wyznaczyć reakcję więzów konstrukcji złożonej z bieżni i umieszczonego na niej wysięgnika W o ciężarze G. ieżnia posiada w punkcie E przegub, ciężar jej pomijamy. Wysięgnik styka się punktowo z bieżnią w punktach C i D, i zawieszony jest na nim ładunek o ciężarze P. Wymiary konstrukcji podano na rysunku 3.5. w metrach. Dane: l m, P kn, Q 5 kn. kąt α 3 ys.3.5.

10 ozwiązanie Potraktujemy konstrukcję jako złożoną z dwóch ciał sztywnych. Wysięgnika W obciążonego tylko pionowymi siłami P i Q (w punktach styku z bieżnią wystąpią tylko oddziaływania pionowe) i bieżni obciążonej siłami oddziaływania wysięgnika. Obydwa ciała znajdują się w stanie równowagi, muszą więc spełniać warunki równowagi. Wysięgnik rys ys.3.5. Traktujemy go jako całość (nie wyznaczamy sił wewnętrznych w prętach wysięgnika). Stanowi on płaski równoległy układ sił. Przyjmujemy prostokątny układ odniesienia, zakładamy w punktach styku pionowe siły C i D i układamy równania równowagi równanie rzutów na oś y ) iy ; C + D P Q równanie momentów względem dowolnego punktu np. punktu C ) MiC ; D l Q l P 5l

11 z równania () 5 5 D Q + P kn wstawiając do () C P + Q D kn Siłami tymi po zmianie ich zwrotów obciążamy bieżnię w punktach C i D. ieżnia rys ys ozpatrujemy teraz równowagę bieżni jako płaskiego dowolnego układu sił z jednym przegubem w punkcie E. Ilość równań (3 + )., Przyjmujemy układ odniesienia i zakładamy niewiadome podporowe w punkcie x, y i M, w punkcie skierowaną pod kątem 9 - α 6 do osi bieżni. 3) ; x cos6 4) iy ; y + sin 6 C D l ) M ; sin 6 8l l 5 ic D p 6) MiC ; C l + M y 4l

12 z(5) z () z () z (4) D sin 6 cos6 kn 3 x 5 kn 3 + sin y C D M Y 4l C l 4l l 3l 3 knm 3 kn Zadanie 3.6 Dwa pełne walce o ciężarach Q 7 kn, Q kn i o promieniach r 3 mm, r mm umieszczono swobodnie w gładkim cylindrze o promieniu r 6 mm, rysunek Wyznaczyć położenie równowagi określone kątem ϕ, reakcje w punktach i oraz wzajemny nacisk walców na siebie. Osie walców i cylindra są poziome. Tarcie w układzie pominąć. ys.3.6. ozwiązanie W punktach i zakładamy reakcje i, które działają wzdłuż prostych OO i OO, zaś wzajemny nacisk walców oznaczamy symbolami N N, (rys.3.6.). Kąt pomiędzy prostymi OO i OO oznaczamy α.

13 ys.3.6. Traktując oba walce jako całość, układamy warunki równowagi jak dla płaskiego dowolnego układu sił. ) ) iy ; ; sin ϕ cosϕ+ sin( α ϕ) cos( α ϕ) Q Q 3) MiO ; Q(r r )sin ϕ Q (r r )sin( α ϕ) ozpoczynamy od wyznaczenia kąta ϕ z równania (3) ozwijamy wyrażenie sin(α - ϕ) Q (r r )sin ϕ Q (r r )(sin αcosϕ cosαsin ϕ) dzieląc przez sinϕ Q (r r ) Q (r r )sin αctgϕ+ Q (r r )cosα stąd ctgα Q ctgα (r r Q z twierdzenia cosinusów (r + r ) (r r ) )cosα + Q(r r ) (r r )sin α (r r ) + (r r ) (r cosα (r r )(r r ) + (r r ) (r r )(r r )cosα + r )

14 wstawiając: (6 3) + (6 ) (3 + ) cosα (6 3) (6 ) sin α cos α,6,8,6 ostatecznie 5, ctgϕ 6 5,8 ϕ 9,46 z równań () i () wyznaczamy reakcje i cosϕ+ sin ϕ sin( α ϕ) sin ϕ cos( α ϕ) Q Q sin( α ϕ) Q + Q cosϕ + sin ϕ ctg( α ϕ) cos9,46 sin ϕ 69,5 6,44 kn sin( α ϕ) sin 9,46 ctg(53,3 69,5 kn 9,46 ) by wyznaczyć oddziaływanie pomiędzy walcami rozpatrujemy równowagę tylko jednego z walców np. pierwszego, rys ys.3.6.3

15 Wyznaczamy wartość kąta γ (rys. 3.6.) z twierdzenia cosinusów: (r r ) γ 9 (r r ) + (r + r ) (r r ) + (r + r ) (r r) cosγ (r r )(r + r ) (r r )(r + r )cosγ Jest to przypadek szczególny i w celu wyznaczenia oddziaływania N ułożymy równanie rzutów na prostą O O gdyż jest ona prostopadła do prostej OO N N Q sin ϕ N 7 sin ϕ,5 kn W przypadku ogólnym gdyby kąt γ był różny od 9 rzutujemy siły działające na walec na prostą OO N Q N cosϕ+ N Q cosγ cosϕ cosγ

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił.

Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy. Obliczyć wektor główny i moment główny tego układu sił. Przykład 1 Dany jest płaski układ czterech sił leżących w płaszczyźnie Oxy Obliczyć wektor główny i moment główny tego układu sił. Wektor główny układu sił jest równy Moment główny układu wynosi Przykład

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

Wyznaczenie reakcji w Belkach Gerbera

Wyznaczenie reakcji w Belkach Gerbera Wyznaczenie reakcji w elkach erbera Sposób obliczania: by policzyć elkę erbera w najprostszy sposób dzielimy ją w przegubach uzyskując pojedyncze belki by móc policzyć konstrukcję, belki powstałe po podziale

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

WIERZBICKI JĘDRZEJ. 4 (ns)

WIERZBICKI JĘDRZEJ. 4 (ns) WIERZBICKI JĘDRZEJ 4 (ns) CZĘŚĆ 1a BELKA 1. Zadanie Przeprowadzić analizę kinematyczną oraz wyznaczyć reakcje w więzach belki, danej schematem przedstawionym na rys. 1. Wymiary oraz obciążenia przyjąć

Bardziej szczegółowo

BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie.

BELKI GERBERA WYTRZYMAŁOŚĆ MATERIAŁÓW. n s = R P 3 gdzie: - R liczba reakcji, - P liczba przegubów, - 3 liczba równań równowagi na płaszczyźnie. Są to belki ciągłe przegubowe i należą do układów statycznie wyznaczalnych (zatem n s = 0). Przykładowy schemat: A ELKI GERERA V V Wyznaczenie stopnia statycznej niewyznaczalności układu: n s = R P 3 gdzie:

Bardziej szczegółowo

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE

WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH Zakład Mechaniki Budowli ĆWICZENIE nr 2 WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELCE Prowadzący: mgr inŝ. A. Kaczor STUDIA DZIENNE MAGISTERSKIE, I ROK Wykonał:

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH

WIADOMOŚCI WSTĘPNE, PRACA SIŁ NA PRZEMIESZCZENIACH Część 1 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1 1.. 1. WIADOOŚCI WSTĘNE, RACA SIŁ NA RZEIESZCZENIAC 1.1. Wstęp echanika budowli stanowi dział mechaniki technicznej zajmującej się statyką, dynamiką,

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3

Z1/7. ANALIZA RAM PŁASKICH ZADANIE 3 Z1/7. NLIZ RM PŁSKIH ZNI 3 1 Z1/7. NLIZ RM PŁSKIH ZNI 3 Z1/7.1 Zadanie 3 Narysować wykresy sił przekrojowych w ramie wspornikowej przedstawionej na rysunku Z1/7.1. Następnie sprawdzić równowagę sił przekrojowych

Bardziej szczegółowo

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji.

Mechanika. Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Mechanika Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Wyznaczanie reakcji. Przyłożenie układu zerowego (układ sił równoważących się, np. dwie siły o takiej samej mierze,

Bardziej szczegółowo

Z1/1. ANALIZA BELEK ZADANIE 1

Z1/1. ANALIZA BELEK ZADANIE 1 05/06 Z1/1. NLIZ LK ZNI 1 1 Z1/1. NLIZ LK ZNI 1 Z1/1.1 Zadanie 1 Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/1.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej

Bardziej szczegółowo

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu

wszystkie elementy modelu płaskiego są w jednej płaszczyźnie, zwanej płaszczyzną modelu Schemat statyczny zawiera informacje, takie jak: geometria i połoŝenie tarcz (ciał sztywnych), połączenia tarcz z fundamentem i ze sobą, rodzaj, połoŝenie i wartość obciąŝeń czynnych. wszystkie elementy

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

ĆWICZENIE 6 Kratownice

ĆWICZENIE 6 Kratownice ĆWICZENIE 6 Kratownice definicja konstrukcja składająca się z prętów prostych połączonych przegubowo w węzłach, dla której jedynymi obciążeniami są siły skupione przyłożone w węzłach. Umowa: jeśli konstrukcja

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

1. ANALIZA BELEK I RAM PŁASKICH

1. ANALIZA BELEK I RAM PŁASKICH 5/6 1. NIZ BEEK I RM PŁSKICH 1 1. NIZ BEEK I RM PŁSKICH 1.1 naliza kinematyczna podstawowe definicje Podstawowym pojęciem stosowanym w analizie kinematycznej belek i ram płaskich jest tarcza sztywna. Jest

Bardziej szczegółowo

5.1. Kratownice płaskie

5.1. Kratownice płaskie .. Kratownice płaskie... Definicja kratownicy płaskiej Kratownica płaska jest to układ prętowy złożony z prętów prostych, które są połączone między sobą za pomocą przegubów, Nazywamy je węzłami kratownicy.

Bardziej szczegółowo

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Przykład Łuk ze ściągiem, obciążenie styczne. D A Przykład 1.4. Łuk ze ściągiem, obciążenie styczne. Rysunek przedstawia łuk trójprzegubowy, kołowy, ze ściągiem. Łuk obciążony jest obciążeniem stycznym do łuku, o stałej gęstości na jednostkę długości

Bardziej szczegółowo

PROJEKT NR 1 METODA PRZEMIESZCZEŃ

PROJEKT NR 1 METODA PRZEMIESZCZEŃ POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 1 METODA PRZEMIESZCZEŃ Jakub Kałużny Ryszard Klauza Grupa B3 Semestr

Bardziej szczegółowo

Dr inż. Janusz Dębiński

Dr inż. Janusz Dębiński r inż. Janusz ębiński Mechanika teoretyczna zastosowanie metody prac wirtualnych 1. Metoda prac wirtualnych zadanie 1 1.1. Zadanie 1 Na rysunku 1.1 przedstawiono belkę złożoną z pionowym prętem F, na którą

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH

6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy

Bardziej szczegółowo

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych

ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych ĆWICZENIE 2 WYKRESY sił przekrojowych dla belek prostych bez pisania funkcji Układ płaski - konwencja zwrotu osi układu domniemany globalny układ współrzędnych ze zwrotem osi jak na rysunku (nawet jeśli

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 21

INSTRUKCJA DO ĆWICZENIA NR 21 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT OPRACOWAŁ MECHANIKA TECHNICZNA Analiza płaskiego dowolnego układu sił Dr hab. inż. Krzysztof

Bardziej szczegółowo

Sprawy organizacyjne. Materiały edukacyjne dostępne w KWM: Zagadnienia dla studentów autor Adam Zaborski

Sprawy organizacyjne. Materiały edukacyjne dostępne w KWM: Zagadnienia dla studentów autor Adam Zaborski Sprawy organizacyjne 3 kolokwia kartkówki około 5 3 nieobecności nieusprawiedliwione wykluczają z zajęć projekty oddane przed kolokwium egzamin testowy punkty bonusowe jednolity system w grupach semestr

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami

Przykład 7.3. Belka jednoprzęsłowa z dwoma wspornikami Przykład.. eka jednoprzęsłowa z dwoma wspornikami Narysować wykresy sił przekrojowych da poniższej beki. α Rozwiązanie Rozwiązywanie zadania rozpocząć naeży od oznaczenia punktów charakterystycznych, składowych

Bardziej szczegółowo

Zginanie proste belek

Zginanie proste belek Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH

8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH Część 1 8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH 1 8. 8. ANALIZA KINEMATYCZNA I STATYCZNA USTROJÓW PRĘTOWYCH 8.1. Analiza kinematyczna płaskiego układu tarcz sztywnych. Układy statycznie

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku..

Rysunek Łuk trójprzegubowy, kołowy, obciążony ciężarem własnym na prawym odcinku łuku.. rzykład 10.. Łuk obciążony ciężarem przęsła. Rysunek przedstawia łuk trójprzegubowy, którego oś ma kształt części półokręgu. Łuk obciążony jest ciężarem własnym. Zakładamy, że prawe przęsło łuku jest nieporównanie

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium. Mechaniki Technicznej KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki Technicznej Ćwiczenie 3 Badanie reakcji podporowych w konstrukcjach płaskich Cel ćwiczenia Celem ćwiczenia jest porównanie wartości

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA

OBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki

Belka Gerbera. Poradnik krok po kroku. mgr inż. Krzysztof Wierzbicki Belka Gerbera Poradnik krok po kroku mgr inż. Krzysztof Wierzbicki Odrobina teorii Belki Gerbera: - układy jednowymiarowe (wiodąca cecha geometryczna: długość) -belki o liczbie reakcji >3 - występują w

Bardziej szczegółowo

Tarcie poślizgowe

Tarcie poślizgowe 3.3.1. Tarcie poślizgowe Przy omawianiu więzów w p. 3.2.1 reakcję wynikającą z oddziaływania ciała na ciało B (rys. 3.4) rozłożyliśmy na składową normalną i składową styczną T, którą nazwaliśmy siłą tarcia.

Bardziej szczegółowo

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Projekt nr 1. Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 1 Obliczanie przemieszczeń z zastosowaniem równania pracy wirtualnej

Bardziej szczegółowo

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH

1. ANALIZA KINAMATYCZNA PŁASKICH UKŁADÓW PRĘTOWYCH 1 1.1. Płaskie układy tarcz sztywnych naliza kinematyczna służy nam do określenia czy dany układ spełnia wszystkie warunki aby być konstrukcją budowlaną. Podstawowym pojęciem stosowanym w analizie kinematycznej

Bardziej szczegółowo

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów.

Zgodnie z wyznaczonym zadaniem przed rozpoczęciem obliczeo dobieram wstępne przekroje prętów. 2kN/m -20 C D 5kN 0,006m A B 0,004m +0 +20 3 0,005rad E 4 2 4 [m] Układ prętów ma dwie tarcze i osiem reakcji w podporach. Stopieo statycznej niewyznaczalności SSN= 2, ponieważ, przy dwóch tarczach powinno

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Stropy TERIVA - Projektowanie i wykonywanie

Stropy TERIVA - Projektowanie i wykonywanie Stropy TERIVA obciążone równomiernie sprawdza się przez porównanie obciążeń działających na strop z podanymi w tablicy 4. Jeżeli na strop działa inny układ obciążeń lub jeżeli strop pracuje w innym układzie

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Drgania układu o wielu stopniach swobody

Drgania układu o wielu stopniach swobody Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Siły wewnętrzne - związki różniczkowe

Siły wewnętrzne - związki różniczkowe Siły wewnętrzne - związki różniczkowe Weźmy dowolny fragment belki obciążony wzdłuż osi obciążeniem n(x) oraz poprzecznie obciążeniem q(x). Na powyższym rysunku zwroty obciążeń są zgodne z dodatnimi zwrotami

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 3 Badanie reakcji w układzie belkowym 1 Cel ćwiczenia Celem ćwiczenia jest poznanie metody wyznaczania reakcji

Bardziej szczegółowo

SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM

SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM LINIE WŁYWU przykład sposób kinematyczny SORZĄDZNIE LINII WŁYWU WIELKOŚCI STTYCZNYCH SOSOBEM KINEMTYCZNYM Sposób kinematyczny sporządzania linii wpływu wielkości statycznych polega na wykorzystaniu twierdzenia

Bardziej szczegółowo

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2

Rozciąganie i ściskanie prętów naprężenia normalne, przemieszczenia 2 Rozciąganie i ściskanie prętów naprężenia normane, przemieszczenia W przypadku rozciągania/ściskania pręta jego obciążenie stanowi zbiór sił czynnych wzdłuż osi pręta (oś x ). a rys..a przedstawiono przykład

Bardziej szczegółowo

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa

Wykresy momentów gnących: belki i proste ramy płaskie Praca domowa ODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (OWYM) Wykresy momentów gnących: beki i proste ramy płaskie raca domowa Automatyka i Robotyka, sem. 3. Dr inŝ.. Anna Dąbrowska-Tkaczyk LITERATURA 1. Lewiński J., Wiczyński

Bardziej szczegółowo

Bryła sztywna Zadanie domowe

Bryła sztywna Zadanie domowe Bryła sztywna Zadanie domowe 1. Podczas ruszania samochodu, w pewnej chwili prędkość środka przedniego koła wynosiła. Sprawdź, czy pomiędzy kołem a podłożem występował poślizg, jeżeli średnica tego koła

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

I. DYNAMIKA PUNKTU MATERIALNEGO

I. DYNAMIKA PUNKTU MATERIALNEGO I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

Obliczanie układów statycznie niewyznaczalnych. metodą sił

Obliczanie układów statycznie niewyznaczalnych. metodą sił Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład echaniki Budowli Obliczanie układów statycznie niewyznaczalnych metodą sił. Rama Dla układu pokazanego poniŝej naleŝy: - Oblicz i wykonać

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej Dynamika ruchu postępowego 1. Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, aby balon

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Przykłady (twierdzenie A. Castigliano)

Przykłady (twierdzenie A. Castigliano) 23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],

Bardziej szczegółowo

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk)

1. Obliczenia sił wewnętrznych w słupach (obliczenia wykonane zostały uproszczoną metodą ognisk) Zaprojektować słup ramy hali o wymiarach i obciążeniach jak na rysunku. DANE DO ZADANIA: Rodzaj stali S235 tablica 3.1 PN-EN 1993-1-1 Rozstaw podłużny słupów 7,5 [m] Obciążenia zmienne: Śnieg 0,8 [kn/m

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1

Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 1 Przykład obliczeniowy wyznaczenia imperfekcji globalnych, lokalnych i efektów II rzędu P3 Schemat analizowanej ramy Analizy wpływu imperfekcji globalnych oraz lokalnych, a także efektów drugiego rzędu

Bardziej szczegółowo

Mechanika ogólna statyka

Mechanika ogólna statyka Mechanika ogóna statyka kierunek Budownictwo, sem. II materiały pomocnicze do ćwiczeń opracowanie: dr inż. iotr Dębski, dr inż. Irena Wagner TREŚĆ WYKŁADU ojęcia podstawowe, działy mechaniki. ojęcie punktu

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Wykład 6: Linie wpływu reakcji i sił wewnętrznych w belkach gerbera. Obciążanie linii wpływu. dr inż. Hanna Weber

Wykład 6: Linie wpływu reakcji i sił wewnętrznych w belkach gerbera. Obciążanie linii wpływu. dr inż. Hanna Weber Wykład 6: Linie wpływu reakcji i sił wewnętrznych w belkach gerbera. Obciążanie linii wpływu. Zadanie. Dla przedstawionej belki wrysować linie wpływu momentów podporowych, sił wewnętrznych w zadanych przekrojach

Bardziej szczegółowo

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną

Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Przykład 1.8. Wyznaczanie obciąŝenia granicznego dla układu prętowego metodą kinematyczną i statyczną Analizując równowagę układu w stanie granicznym wyznaczyć obciąŝenie graniczne dla zadanych wartości

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona 1. Znajdź masę ciała (poruszającego się po prostej), które pod działaniem siły o wartości F = 30 N w czasie t= 5s zmienia swą szybkość z v 1 = 15 m/s na v 2 = 30 m/s. 2. Znajdź

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie.

Theory Polish (Poland) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Q1-1 Dwa zagadnienia mechaniczne (10 points) Przed rozpoczęciem rozwiązywania przeczytaj ogólne instrukcje znajdujące się w osobnej kopercie. Część A. Ukryty metalowy dysk (3.5 points) Rozważmy drewniany

Bardziej szczegółowo

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO

BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO Ćwiczenie 3 BADANIE STANÓW RÓWNOWAGI UKŁADU MECHANICZNEGO 3.. Cel ćwiczenia Celem ćwiczenia jest teoretyczne i doświadczalne wyznaczenie położeń równowagi i określenie stanu równowagi prostego układu mechanicznego

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Rama statycznie wyznaczalna

Rama statycznie wyznaczalna Rama statycznie wyznaczalna m 5kN/m 1m 2m 3m Rama statycznie wyznaczalna 3m Obciążenie ramy statycznie wyznaczalnej: siła skupioną P =, momentem skupionym M = 10 knm, obciążeniem ciągłym równomiernie rozłożonym

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

J. Szantyr - Wykład 5 Pływanie ciał

J. Szantyr - Wykład 5 Pływanie ciał J. Szantyr - Wykład 5 Pływanie ciał Prawo Archimedesa Na każdy element pola ds działa elementarny napór Napór całkowity P ρg S nzds Główny wektor momentu siły naporu M ρg r nzds S dp Αρχίµηδης ο Σΰρακοσιος

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny.

KRATOWNICE 1. Definicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami. pas górny. KRTOWNIE efinicja: konstrukcja prętowa, składająca się z prętów prostych połączonych ze sobą przegubami słupki pas górny krzyżulce pas dolny Założenia: pręty są połączone w węzłach przegubami idealnymi

Bardziej szczegółowo

Wyznaczenie reakcji belki statycznie niewyznaczalnej

Wyznaczenie reakcji belki statycznie niewyznaczalnej Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne

Bardziej szczegółowo