Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości"

Transkrypt

1 Mechanika i Budowa Maszyn Materiały pomocnicze do laboratorium Przykład obliczeniowy geometrii mas i analiza wytrzymałości Środek ciężkości Moment bezwładności Wskaźnik wytrzymałości na zginanie Naprężenia kryterialne Naprężenia dopuszczalne Andrzej J. Zmysłowski, dr inż. Politechnika Śląska Wydział Organizacji i Zarządzania Instytut Inżynierii Produkcji

2 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 2 z 15 Spis treści. 1 Przykładowy przekrój Środek ciężkości pola przekroju belki zginanej Centralny moment bezwładności pola przekroju belki zginanej Moment bezwładności pola przekroju belki zginanej Moment bezwładności dużego trójkąta względem osi Moment bezwładności małego trójkąta względem osi Moment bezwładności półokręgu względem osi Moment bezwładności pola przekroju belki zginanej Centralny moment bezwładności pola przekroju belki zginanej Wskaźnik wytrzymałości na zginanie...9 5Naprężenie zginające belkę Warunek wytrzymałości belki zginanej Numeryczne rozwiązanie problemu...11 Referencje....15

3 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 3 z 15 1 Przykładowy przekrój. Przykładowy przekrój belki zginanej przedstawiono na Rys. 1. Przekrój jest symetryczny względem osi pionowej, zatem środek ciężkości będzie położony na osi symetrii w odległości od podstawy figury. Jak pokazano na Rys. 1, podstawa figury ma wymiar, wysokość trapezu wynosi, a promień półokręgu wynosi. Wysokość figury jest równa podstawie i wynosi, czyli cała figura mieści się na planie kwadratu o wymiarach. Dla wyznaczenia środka ciężkości, momentu Rys. 1 Parametryczny zarys przekroju belki; bezwładności oraz wskaźnika wytrzymałości na! parametr wymiarowy zginanie dokonuje się podziału złożonego pola przekroju na figury proste i dokonuje się superpozycji cech elementarnych na cechy ogólne. Wobec figury przedstawionej na Rys. 1 mają uzasadnienie dwa sposoby podziału:! trapez o podstawie dolnej, podstawie górnej i wysokości, z półokręgiem o promieniu umieszczonym symetrycznie na górnej podstawie trapezu,! trójkąt o podstawie i wysokości, trójkąt ujemny 1 o podstawie i wysokości, z półokręgiem o promieniu umieszczonym symetrycznie w obszarze trójkąta ujemnego. Do dalszej analizy wybrano podział drugi, przedstawiony na Rys. 2. Rys. 2 Figury składowe analizowanego przekroju 1 )Trójkąt mały określa się jako ujemny, ponieważ jego pole powierzchni, moment statyczny oraz moment bezwładności będą w superpozycji uwzględniane ze znakiem minus.

4 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 4 z 15 2 Środek ciężkości pola przekroju belki zginanej Zgodnie z Rys. 2, oznaczając pole powierzchni trójkąta dużego przez, pole powierzchni trójkąta małego przez oraz pole powierzchni półokręgu przez, natomiast położenia ich środków ciężkości względem dowolnie wybranej osi przez, oraz, środek ciężkości pola przekroju belki zginanej, pokazanej na Rys. 1, wyznacza się ze wzoru (1). (1) Licznik ułamka we wzorze (1) przedstawia moment statyczny pola przekroju belki pokazanej na Rys. 1, a mianownik ułamka we wzorze (1) przedstawia całkowite pole przekroju tejże belki. Przyjmując, że:,,, zatem wzór (1) po podstawieniu powyższych zależności przyjmuje postać (2). (2) Dzieląc licznik i mianownik przez i porządkując otrzymane wyrażenie prowadzi do ostatecznego wzoru (3) na położenie globalnego środka ciężkości przekroju belki

5 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 5 z 15 (3) We wzorze (3) wyróżniono celowo czynnik, którego wartość odpowiada położeniu środka ciężkości dużego trójkąta względem jego podstawy. Wtedy, wyrażenie we wzorze (3) nabiera znaczenia współczynnika przesuwającego położenie środka ciężkości największej figury składowej, czyli dużego trójkąta, do położenia globalnego środka ciężkości pola przekroju belki. 3 Centralny moment bezwładności pola przekroju belki zginanej. Moment bezwładności centralny składowych, można wyznaczyć na dwa sposoby: 1. Sposób pierwszy:, wyznaczany jako superpozycja momentów figur a. Wyznaczenie centralnych momentów własnych dla każdej figury składowej, b. przeliczenie własnych momentów centralnych do wielkości względem globalnego środka ciężkości stosując twierdzenie Steinera, c. wyznaczenie globalnego momentu bezwładności przez superpozycję momentów składowych. 2. Sposób drugi: a. Wyznaczenie centralnych momentów własnych dla każdej figury składowej, b. przeliczenie własnych momentów centralnych do wielkości względem dowolnej osi stosując twierdzenie Steinera, c. wyznaczenie globalnego momentu bezwładności, względem dowolnej osi, przez superpozycję momentów składowych, d. wyznaczenie centralnego momentu bezwładności względem globalnego środka ciężkości stosując powtórnie twierdzenie Steinera. Pierwszy sposób stosuje się do bezpośrednich obliczeń w oparciu o wartości liczbowe wszystkich parametrów. Drugi sposób jest korzystniejszy w przypadku wyznaczania wzoru zawierającego jeden lub więcej parametrów, ponieważ w koniecznych przekształceniach i wzorach pośrednich unika się parametrycznego wzoru na położenie globalnego środka ciężkości, który może mieć złożoną postać. Również odpowiedni wybór osi pozwala operować wyrażeniami o prostszej postaci, co ułatwia wykonanie całego zadania. Dla wyznaczenia wzoru na moment bezwładności z parametrem wybrano drugi

6 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 6 z 15 sposób postępowania, a oś przyjęto w podstawie dużego trójkąta. 3.1 Moment bezwładności pola przekroju belki zginanej Moment bezwładności całej analizowanej figury względem osi, przechodzącej przez podstawę dużego trójkąta, wyznacza się jako superpozycję momentów składowych, jak pokazuje równanie (4), (4) gdzie:! moment bezwładności dużego trójkąta względem osi.! moment bezwładności małego trójkąta względem osi.! moment bezwładności półokręgu względem osi. Dla dowolnej figury płaskiej, moment bezwładności względem osi środka ciężkości o wielkość, wyraża twierdzenie Steinera (5)., oddalonej od (5) Moment bezwładności dużego trójkąta względem osi. Dla trójkąta o podstawie oraz wysokości, centralny moment bezwładności wyraża się wzorem (6) [1] [2]. Zgodnie z Rys. 2 podstawa dużego trójkąta ma wymiar, wysokość ma także wymiar. Zatem centralny moment bezwładności wyrażony jest wzorem (7). (6) (7) Natomiast, zgodnie z Rys. 2, przesunięcie środka ciężkości względem osi wynosi. Zatem, zgodnie z twierdzeniem Steinera (5), moment bezwładności względem osi wyraża wzór (8). (8)

7 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 7 z Moment bezwładności małego trójkąta względem osi. Zgodnie z Rys. 2 podstawa małego trójkąta ma wymiar, wysokość ma także wymiar. Zatem centralny moment bezwładności wyrażony jest wzorem (9). (9) Natomiast, zgodnie z Rys. 2, przesunięcie środka ciężkości względem osi wynosi. Zatem, zgodnie z twierdzeniem Steinera (5), moment bezwładności względem osi wyraża wzór (10). (10) Moment bezwładności półokręgu względem osi. Zgodnie z Rys. 2 promień półokręgu ma wymiar. Centralny moment bezwładności okręgu o promieniu dany jest wzorem (11). (11) Moment bezwładności półokręgu względem średnicy stanowi połowę momentu bezwładności okręgu, dany wzorem (12). (12) Położenie środka ciężkości ma wartość daną wzorem. Zatem centralny moment bezwładności półokręgu wyrażony jest wzorem (13). (13) Natomiast, zgodnie z Rys. 2, przesunięcie środka ciężkości względem osi wynosi. Zatem, zgodnie z twierdzeniem Steinera (5), moment bezwładności względem osi wyraża wzór (14).

8 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 8 z 15 (14) Moment bezwładności pola przekroju belki zginanej. Zgodnie ze wzorem (4) ostateczny wzór do obliczania przyjmuje postać (15) (15) 3.2 Centralny moment bezwładności pola przekroju belki zginanej. Centralny moment bezwładności pola przekroju belki zginanej wyznacza się z twierdzenia Steinera (5) zgodnie ze wzorem (16). (16) Podstawiając (15) oraz (3), a pole powierzchni, otrzymuje się wzór (17). wprowadzając jako superpozycję pól (17) Upraszczając wyrażenie (17), otrzymuje się postać rozwiązania (18). (18) W nawiasie wyrażenia (18) znajduje się rozwinięta forma postaci, gdzie i stanowią miejsca zerowe rozwiniętego wielomianu. Rozwiązując wielomian w nawiasie otrzymuje się ostateczny wzór na centralny moment bezwładności przekroju belki zginanej w postaci (19). pola (19)

9 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 9 z 15 4 Wskaźnik wytrzymałości na zginanie. Wskaźnik wytrzymałości na zginanie dany jest wzorem (20). (20) Mianownik ułamka (20), dla analizowanego przekroju, wyznacza się jako największą z dwóch wartości zgodnie z formułą logiczną (21). (21) 5 Naprężenie zginające belkę. Naprężenia zginające wyznacza się dzieląc moment zginający przez wskaźnik wytrzymałości na zginanie. Z punktu widzenia bezpieczeństwa belki zginanej, wskazanym jest do wyznaczania naprężeń zginających na podstawie największej wartości momentu zginającego. Zatem, naprężenia zginające wyznacza się ze wzoru (22). (22) Maksymalny moment zginający pochodzi z rozkładu momentu zginającego na długości belki.

10 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 10 z 15 6 Warunek wytrzymałości belki zginanej. Warunek wytrzymałości belki zginanej jest spełniony, jeżeli naprężenia kryterialne mniejsze albo równe naprężeniom dopuszczalnym, co przedstawia nierówność (23). są (23) Podstawiając (22) do (23) otrzymuje się (24): (24) Wskaźnik wytrzymałości jest funkcją w postaci (25), (25) zatem możliwe jest wyznaczenie wartości parametru jako (26). (26) Zakłada się statyczne obciążenie analizowanej belki, bez wyraźnej zmienności. Zatem, przy wyznaczaniu naprężenia dopuszczalnego nie bierze się pod uwagę zjawisk spiętrzenia naprężeń oraz odporności tworzywa na zmęczeniowe pękanie. Do sprawdzenia warunku przyjęto poniższą wartość naprężeń dopuszczalnych: (27)

11 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 11 z 15 7 Numeryczne rozwiązanie problemu. Zagadnienie wyznaczenia minimalnej wartości parametru, gwarantującego zadowalający poziom wytrzymałości belki zginanej można rozwiązać numerycznie, stosując jedną ze znanych metod rozwiązywania równań. Szczególnie korzystnie jest wykorzystać dostępny arkusz kalkulacyjny. Schemat obliczeniowy przedstawiono na Rys. 3. Krok pierwszy ustawia zadane wartości parametrów wytrzymałościowych, jak: parametr wymiarowy przekroju belki zginanej, maksymalny moment zginający belkę, naprężenia dopuszczalne dla zginania. Krok drugi oblicza pola powierzchni figur składowych: pole powierzchni trójkąta dużego o podstawie i wysokości, pole powierzchni trójkąta małego o podstawie i wysokości, pole powierzchni półokręgu o promieniu, oraz pole powierzchni całkowitej dane wzorem (28). Pola powierzchni figur składowych wylicza się ze wzorów na stronicy 4. (28) Krok trzeci oblicza odległości środków ciężkości figur składowych względem osi przechodzącej przez podstawę dużego trójkąta. Wzory do wyznaczania wielkości, oraz zostały wypisane na stronicy 4. Krok czwarty oblicza momenty statyczne figur składowych: moment statyczny trójkąta dużego, moment statyczny trójkąta małego, moment statyczny półkola. Moment statyczny całkowity dany wzorem (29).

12 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 12 z 15 (29) Krok piąty oblicza położenie środka ciężkości całej figury ze wzoru (30) (30) Krok szósty wyznacza wartość mimośrodu, służącego do obliczenia wskaźnika wytrzymałości na zginanie. Zasadniczo mimośród musi spełnić warunek (21), który w metodzie numerycznej należy wyznaczyć ze wzoru (31). (31) Krok siódmy oblicza centralne momenty bezwładności figur składowych względem ich lokalnych środków ciężkości. Moment centralny dla dużego trójkąta wyznacza się ze wzoru (7). Moment centralny dla małego trójkąta wyznacza się ze wzoru (9). Moment centralny bezwładności dla półokręgu wyznacza się stopniowo. Ze wzoru (12) wylicza się moment względem podstawy półokręgu. Następnie stosując twierdzenie Steinera wylicza się moment centralny ze wzoru (32). (32) Krok ósmy oblicza momenty bezwładności figur składowych względem wybranej osi. Z oczywistych względów powinna to być oś kolinearna z podstawą dużego trójkąta, jak przy obliczaniu statycznych momentów figur składowych. Zatem dla dużego trójkąta, moment bezwładności wg wzoru (33). wyznacza się z twierdzenia Steinera (33) Dla małego trójkąta, moment bezwładności wzoru (34). wyznacza się z twierdzenia Steinera wg (34) (35). Dla półokręgu moment bezwładności wyznacza się z twierdzenia Steinera wg wzoru (35) Moment bezwładności całego przekroju belki zginanej wyznacza się przez

13 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 13 z 15 superpozycję momentów składowych ze wzoru (4). Krok dziewiąty oblicza ostateczną wartość centralnego momentu belki zginanej zgodnie ze wzorem (36). całego pola przekroju (36) (20). Krok dziesiąty wyznacza wartość wskaźnika wytrzymałości na zginanie ze wzoru Krok jedenasty wyznacza wartość naprężeń kryterialnych ze wzoru (22). Krok dwunasty wylicza różnicę i przyrównuje do zera, co jest równoznaczne ze sprawdzeniem warunku wytrzymałości. Jeżeli wynik jest równy zero, obliczenia są przerywane, wartość parametru uważa się za minimalną, satysfakcjonującą warunek wytrzymałości. Jeżeli różnica jest różna od zera, obliczenia realizują sprzężenie zwrotne korygujące wartość parametru. Następnie cały cykl obliczeń realizowany jest ponownie aż kroku dwunastego, gdzie warunek wytrzymałości pniwnie jest sprawdzany. Programując obliczenia w arkuszu kalkulacyjnym, wykonuje się kolejno obliczenia od kroku drugiego do dwunastego. Pętla sprzężenia zwrotnego jest realizowana za pomocą procedury SOLVER, dostępnej w zbiorze standardowych procedur arkusza kalkulacyjnego. Tablica poniżej pokazuje sekwencję obliczeniową prowadzącą do ostatecznego wyniku. Mgmax 50 knm k 100 MPa c 0, m F1 0, m 2 Ix1 8,373E-05 m 4 F2 0, m 2 Ix2 3,411E-05 m 4 F3 0, m 2 Ix3 0, m 4 F 0, m 2 Ix 0, m 4 d1 0, m I01 2,791E-05 m 4 d2 0, m I02 3,446E-07 m 4 d3 0, m Ixx 4,871E-06 m 4 I03 1,361E-06 m 4 S1 0, m 3 S2 0, m 3 I0 5,098E-05 m 4 S3 0, m 3 S 0, m 3 Wx 0, m 3 Wartość parametru d 0, m Fg 100 MPa e 0, m Fg - k 0 MPa satysfakcjonuje w sposób minimalny warunek wytrzymałości (23). Praktyczne, do realizacji należy przyjąć wartość.

14 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 14 z 15 Rys. 3 Schemat obliczeniowy wyznaczania minimalnej wartości parametru metodą numeryczną.

15 Mechanika i Budowa Maszyn, Mechanika Stosowana Stronica 15 z 15 Referencje. Biały W.: mechanika Stosowana. ÿÿÿÿÿ 1. Biały W.: Mechanika i Budowa Maszyn. ÿÿÿÿ

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Mechanika i Budowa Maszyn

Mechanika i Budowa Maszyn Mechanika i Budowa Maszyn Materiały pomocnicze do ćwiczeń Wyznaczanie sił wewnętrznych w belkach statycznie wyznaczalnych Andrzej J. Zmysłowski Andrzej J. Zmysłowski Wyznaczanie sił wewnętrznych w belkach

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 1

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 1 Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 1 Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji i Zarządzania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest

Bardziej szczegółowo

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności Informacje ogólne Założenia dotyczące stanu granicznego nośności przekroju obciążonego momentem zginającym i siłą podłużną, przyjęte w PN-EN 1992-1-1, pozwalają na ujednolicenie procedur obliczeniowych,

Bardziej szczegółowo

1. LICZBY (1) 2. LICZBY (2) DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. LICZBY (1) 2. LICZBY (2) DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY (1) 2. LICZBY (2) 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL.I

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL.I WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL.I a w roku szkolnym 2015/2016 na poszczególne stopnie w oparciu o PROGRAM MATEMATYKA Z PLUSEM i podręcznik nr w wykazie 168/1/2015/z1 Prowadzący zajęcia: mgr Elżbieta

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 0/05 MATEMATYKA POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A, A, A, A, A6, A7) GRUDZIEŃ 0 Klucz odpowiedzi do zadań zamkniętych Nr zadania 5 6 7 8 9

Bardziej szczegółowo

Przekrój zespolony. Przykład: Obliczanie parametrów przekroju jednorodnego. Ikona: Polecenie: GEOMZE Menu: BstInżynier Przekrój zespolony

Przekrój zespolony. Przykład: Obliczanie parametrów przekroju jednorodnego. Ikona: Polecenie: GEOMZE Menu: BstInżynier Przekrój zespolony BeStCAD - Moduł INŻYNIER 1 Przekrój zespolony Oblicza geometrię mas dla przekroju zespolonego Ikona: Polecenie: GEOMZE Menu: BstInżynier Przekrój zespolony Procedura licząca oparta jest na dostępnym w

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Matematyka klasa I - wymagania programowe. opracowane na podstawie planu wynikowego opublikowanego przez wydawnictwo OPERON

Matematyka klasa I - wymagania programowe. opracowane na podstawie planu wynikowego opublikowanego przez wydawnictwo OPERON Matematyka klasa I - wymagania programowe opracowane na podstawie planu wynikowego opublikowanego przez wydawnictwo OPERON Liczby wymierne dodatnie - zna pojęcie liczby naturalnej - rozumie pojęcie dziesiątkowego

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI Klasa II Potęgi zna i rozumie pojęcie potęgi o wykładniku naturalnym, umie zapisać potęgę w postaci iloczynu, umie zapisać iloczyn jednakowych czynników

Bardziej szczegółowo

POTĘGI I PIERWIASTKI

POTĘGI I PIERWIASTKI POTĘGI I PIERWIASTKI Zapiszę potęgę w postaci iloczynu Zapisze iloczyn jednakowych czynników w postaci potęgi Obliczy potęgę o wykładniku naturalnym Poda wzór na mnożenie i dzielenie potęg o tych samych

Bardziej szczegółowo

PODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM)

PODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM) PODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM) Automatyka i Robotyka Sem. 3 Dr inŝ. Anna DĄBROWSKA-TKACZYK (4,, 8, 5) X; (8, 3,, 9) XI; (6, 3, 0), XII; (3, 0, 7, 4) I 3 XI (wtorek) zamiast 5 XI (czwartek) Dzień

Bardziej szczegółowo

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

Kryteria oceniania z matematyki KLASA 2

Kryteria oceniania z matematyki KLASA 2 Kryteria oceniania z matematyki KLASA 2 Wiedza i umiejętności ucznia na poszczególne oceny ARYTMETYKA Ocenę dopuszczającą otrzymuje uczeń, który potrafi: - określić pojęcie potęgi o wykładniku naturalnym,

Bardziej szczegółowo

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu.

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys. 4.1. Moment statyczny siły względem punktu. 4. CZYSTE ZGINNIE 1 4. 4. Czyste zginanie 4.1 odstawowe definicje Momentem M siły względem punktu O nazywamy iloczyn wektorowy wektora wodzącego r oraz wektora siły. M= r. (4.1) Wektor r jest promieniem

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy drugiej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. POTĘGI

Kryteria oceniania z zakresu klasy drugiej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. POTĘGI Kryteria oceniania z zakresu klasy drugiej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. POTĘGI HASŁO PROGRAMOWE Potęga o wykładniku naturalnym. Iloczyn i iloraz potęg o jednakowych

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2 POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment

Bardziej szczegółowo

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013 Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 3

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 3 WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 3 Oznaczenia: K poziom konieczny / ocena dopuszczająca P poziom podstawowy / ocena dostateczna R poziom rozszerzający / ocena dobra D poziom dopełniający /ocena

Bardziej szczegółowo

Spis treści. Wstęp Część I STATYKA

Spis treści. Wstęp Część I STATYKA Spis treści Wstęp... 15 Część I STATYKA 1. WEKTORY. PODSTAWOWE DZIAŁANIA NA WEKTORACH... 17 1.1. Pojęcie wektora. Rodzaje wektorów... 19 1.2. Rzut wektora na oś. Współrzędne i składowe wektora... 22 1.3.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA O ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW TECH OLOGICZ A PRÓBA ZGI A IA Zasada wykonania próby. Próba polega

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

1. Połączenia spawane

1. Połączenia spawane 1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia

Bardziej szczegółowo

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik

Rozwiązania zadań. Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY. Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik Rozwiązania zadań Arkusz Maturalny z matematyki nr 1 POZIOM ROZSZERZONY Zadanie 1 (5pkt) Równanie jest kwadratowe, więc Aby istniały dwa różne pierwiastki równania kwadratowego wyróżnik /:4 nierówności

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH 4 GODZ. TYGODNIOWO 128 GODZ. W CIĄGU ROKU POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

MATEMATYKA GIMNAZJUM

MATEMATYKA GIMNAZJUM MATEMATYKA GIMNAZJUM Uczeń otrzymuje ocenę: WYMAGANIA OGÓLNE NA POSZCZEGÓLNE OCENY SZKOLNE - dopuszczającą, gdy: pracuje na lekcji i w domu na miarę swoich możliwości, uczestniczy w zajęciach dodatkowych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo dobra (5); (6)

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM ROZSZERZONY Katalog zadań poziom rozszerzony

Bardziej szczegółowo

prowadnice Prowadnice Wymagania i zasady obliczeń

prowadnice Prowadnice Wymagania i zasady obliczeń Prowadnice Wymagania i zasady obliczeń wg PN-EN 81-1 / 2 Wymagania podstawowe: - prowadzenie kabiny, przeciwwagi, masy równoważącej - odkształcenia w trakcie eksploatacji ograniczone by uniemożliwić: niezamierzone

Bardziej szczegółowo

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011 Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności Magdalena Krokowska KBI III 010/011 Wyznaczyć zakres strefy spręŝystej dla belki o zadanym przekroju poprzecznym

Bardziej szczegółowo

WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO

WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO Ściany obciążone pionowo to konstrukcje w których o zniszczeniu decyduje wytrzymałość muru na ściskanie oraz tzw.

Bardziej szczegółowo

Interaktywna rama pomocnicza. Opis PGRT

Interaktywna rama pomocnicza. Opis PGRT Opis Opis to konstrukcja, której mocowanie sprawia, że dołączone do niej ramy współpracują niczym pojedyncza rama podwozia, a nie dwie osobne ramy. wykazuje znacznie większą odporność na ugięcie niż nieinteraktywna

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM WALL1 (10.92) Autor programu: Zbigniew Marek Michniowski Program do wyznaczania głębokości posadowienia ścianek szczelnych. PRZEZNACZENIE I OPIS PROGRAMU Program służy do wyznaczanie minimalnej

Bardziej szczegółowo

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Bryła sztywna Przewodnik do rozwiązywania typowych zadań Bryła sztywna Przewodnik do rozwiązywania typowych zadań Przed przystąpieniem do korzystania z poniższego poradnika: wydrukuj jego treść, przygotuj kartki w kratkę, na których będziesz rozwiązywał zadania,

Bardziej szczegółowo

Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na

Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na Przedstawiamy Państwu propozycję sprawdzianu diagnostycznego na koniec klasy I szkoły ponadgimnazjalnej opracowanego na wzór arkusza maturalnego na poziomie podstawowym. Narzędzie to było dostępne do pobrania

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Bardziej szczegółowo

takich samych podstawach umie zapisać w postaci jednej potęgi iloczyny i ilorazy potęg o

takich samych podstawach umie zapisać w postaci jednej potęgi iloczyny i ilorazy potęg o Szczegółowe wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w klasie III na podstawie programu nauczania Matematyka z plusem ocena

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie II gimnazjum w roku szkolnym 2011/2012 opracowane dla programu Matematyka z plusem GWO DZIAŁ 1.

Wymagania przedmiotowe z matematyki w klasie II gimnazjum w roku szkolnym 2011/2012 opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. Wymagania przedmiotowe z matematyki w klasie II gimnazjum w roku szkolnym 2011/2012 opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P

Bardziej szczegółowo

LICZBY I WYRAŻNIA ALGEBRAICZNE

LICZBY I WYRAŻNIA ALGEBRAICZNE KLASA III LICZBY I WYRAŻNIA ALGEBRAICZNE dopuszczający otrzymuje uczeń, który: 1) zna pojęcie notacji wykładniczej, 2) zna sposób i rozumie potrzebę zaokrąglania liczb, 3) umie oszacować wynik działań,

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

Moduł. Zakotwienia słupów stalowych

Moduł. Zakotwienia słupów stalowych Moduł Zakotwienia słupów stalowych 450-1 Spis treści 450. ZAKOTWIENIA SŁUPÓW STALOWYCH... 3 450.1. WIADOMOŚCI OGÓLNE... 3 450.1.1. Opis ogólny programu... 3 450.1.2. Zakres pracy programu... 3 450.1.3.

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Parcie na powierzchnie płaską

Parcie na powierzchnie płaską Parcie na powierzchnie płaską Jednostką parcia jest [N]. Wynika z tego, że parcie jest to siła. Powtórzmy, parcie jest to siła. Siła z jaką oddziaływuje ciecz na ścianki naczynia, w którym się znajduje.

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH. Doświadczalne sprawdzenie zasady superpozycji Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Doświadczalne sprawdzenie zasady superpozycji Numer ćwiczenia: 8 Laboratorium

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995

Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-EN-995 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin

15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: Elektroautomatyka okrętowa Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze w

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

DZIAŁ 1. POTĘGI dopuszczaj ący

DZIAŁ 1. POTĘGI dopuszczaj ący W Y MA GANIA NA POSZCZEG ÓLNE O CENY-MATEMATYKA KLASA 2 DZIAŁ 1. POTĘGI dopuszczaj ący dostateczny dobry bardzo dobry celuj ący 1 1+2 1+2+3 1+2+3+4 1+2+3+4+5 zna pojęcie potęgi o wykładniku umie stosować

Bardziej szczegółowo

MATEMATYKA GIMNAZJUM

MATEMATYKA GIMNAZJUM MATEMATYKA GIMNAZJUM Uczeń otrzymuje ocenę: WYMAGANIA OGÓLNE NA POSZCZEGÓLNE OCENY SZKOLNE - dopuszczającą, gdy: pracuje na lekcji i w domu na miarę swoich możliwości, uczestniczy w zajęciach dodatkowych

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ:POTĘGI UCZEŃ: - zna pojęcie potęgi o wykładniku naturalnym - umie

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ:POTĘGI UCZEŃ: - zna pojęcie potęgi o wykładniku naturalnym - umie WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ:POTĘGI - zna pojęcie potęgi o wykładniku naturalnym - umie zapisać potęgę w postaci iloczynu - umie zapisać iloczyn jednakowych

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 1a, 1d, 1e zakres podstawowy rok szkolny 2015/2016. 1.Liczby rzeczywiste

Wymagania edukacyjne matematyka klasa 1a, 1d, 1e zakres podstawowy rok szkolny 2015/2016. 1.Liczby rzeczywiste Wymagania edukacyjne matematyka klasa 1a, 1d, 1e zakres podstawowy rok szkolny 2015/2016 1.Liczby rzeczywiste 1. Podawanie przykładów liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania

Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania Inwersja na płaszczyźnie, własności, konstrukcje, zastosowania Autor: Rafał Kłoda Opiekun pracy: Bożena Witecka XI Liceum Ogólnokształcące im. Marii Dąbrowskiej os. Teatralne 33 31-948 Kraków tel./fax:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

Laboratorium z Podstaw Programowania Zajęcia 1

Laboratorium z Podstaw Programowania Zajęcia 1 Laboratorium z Podstaw Programowania Zajęcia 1 ZADANIE 1 Program obliczający pole odcinka kołowego o zadanym promieniu R oraz kącie rozwarcia. Promieo R oraz kąt (w stopniach) należy wczytad z klawiatury.

Bardziej szczegółowo

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym, szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Okręgi i proste na płaszczyźnie

Okręgi i proste na płaszczyźnie Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O)

PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O) PROJEKT TECHNICZNY MECHANIZMU CHWYTAKA TYPU P-(O-O-O) ZADANIE PROJEKTOWE: Zaprojektować chwytak do manipulatora przemysłowego wg zadanego schematu kinematycznego spełniający następujące wymagania: a) w

Bardziej szczegółowo

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje

Bardziej szczegółowo

Na ocenę dopuszczającą uczeń:

Na ocenę dopuszczającą uczeń: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM Na ocenę dopuszczającą uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki zna

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI W KLASIE II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI W KLASIE II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI W KLASIE II GIMNAZJUM MATEMATYKA 2 - WYDAWNICTWO OPERON DZIAŁ 1 POTĘGI DOPUSZCZAJĄCY uczeń: Zapisuje potęgę w postaci iloczynu jednakowych czynników Przedstawia iloczyn jednakowych

Bardziej szczegółowo

8. Rozwiązywanie równań i nierówności kwadratowych oraz prostych nierówności zawierających funkcje: wartość bezwzględna, logarytmiczna, potęgowa.

8. Rozwiązywanie równań i nierówności kwadratowych oraz prostych nierówności zawierających funkcje: wartość bezwzględna, logarytmiczna, potęgowa. 8. Rozwiązywanie równań i nierówności kwadratowych oraz prostych nierówności zawierających funkcje: wartość bezwzględna, logarytmiczna, potęgowa. 114. Rozwiązać równania i nierówności a) x 2 103x+300 =

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY:

ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: ROK SZKOLNY 2017/2018 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY: KLASA II GIMNAZJUM Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1

Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1 Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności * Rozwiązanie zadania * Oznaczenia : A [cm²] - pole powierzchni figury Xo [cm] - współrzędna

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI Wymagania podstawowe: oceny dopuszczająca i dostateczna Wymagania ponadpodstawowe: oceny dobra, bardzo dobra i celująca Aby uzyskać kolejną, wyższą ocenę,

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych

Bardziej szczegółowo

Standardy wymagań maturalnych z matematyki - matura

Standardy wymagań maturalnych z matematyki - matura Standardy wymagań maturalnych z matematyki - matura 2011-2014 STANDARDY WYMAGAŃ BĘDĄCE PODSTAWĄ PRZEPROWADZANIA EGZAMINU MATURALNEGO Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY 1. wykorzystania

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: II 96 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo