Liczby zmiennopozycyjne. Kody Hamminga.
|
|
- Feliks Majewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Liczby zmiennopozycyjne. Kody Hamminga. 1 Liczby zmiennopozycyjne 1.1 Wprowadzenie Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na cz ± uªamkow. Wad takiego rozwi zania jest stosunkowo niewielki przedziaª, z którego liczby mo»emy reprezentowa : cz sto podczas oblicze«u»ywamy zarówno warto±ci bardzo du»ych jaki i bardzo maªych. Dlatego w komputerach przechowuje si liczby rzeczywiste w postaci zmiennoprzecinkowej (ang. oating point): ±m b e. Pami tamy osobno znak, mantys m oraz wykªadnik e. Podstawa b jest ustalona (zazwyczaj 2) i nie jest jawnie przechowywana. W konkretnej reprezentacji na mantys i wykªadnik przeznaczone s odpowiednie, ustalone liczby bitów. Zatem potramy reprezentowa sko«czon liczb warto±ci. Im dªu»sza mantysa, z tym wi ksz dokªadno±ci mo»emy reprezentowa liczby. Z kolei im dªu»szy wykªadnik, tym wi kszy przedziaª z jakiego liczby potramy reprezentowa. Ka»d liczb mo»na zapisa w postaci zmiennopozycyjnej na wiele sposobów. W konkretnych reprezentacjach ustala si posta jednoznaczn, tzw. znormalizowan. Zazwyczaj przyjmuje si,»e przecinek w mantysie ustawiony jest bezpo±rednio przed pierwsz cyfr znacz c lub za ni. W przypadku podstawy reprezentacji b = 2 pierwsza cyfra znacz ca 1 nie jest zazwyczaj jawnie pami tana. Mówimy wtedy o ukrytej 1. Zauwa»my,»e przy takim zaªo»eniu nie mo»na reprezentowa liczby 0. Dlatego 0 jak i kilka innych warto±ci traktowanych jest wyj tkowo i przypisywane s im specjalne ci gi bitów. 1.2 Prosta modelowa reprezentacja Rozwa»my prost modelow reprezentacj, w której liczby pami tane s jako ci gi pi ciobitowe zeemm, gdzie z oznacza bit znaku (0 - plus, 1 minus), ee to dwubitowy wykªadnik pami tany z przesuni ciem o 2 (tzn. liczba x jest pami tana jako naturalny kod binarny liczby x + 2; reprezentacja z przesuni ciem jest standardem dla wykªadników), a mm to dwa bity znormalizowanej mantysy. Zakªadamy,»e pierwsza jedynka w mantysie jest przed przecinkiem i jest ukryta, zatem np. bity 01 reprezentuj mantys Rysunek 1: Liczby reprezentowalne w naszym modelu 1
2 Reprezentowalne warto±ci przedstawione s na rysunku 1. Najmniejsza reprezentowalna warto± dodatnia to 1 4 wstawiamy najmniejsz mo»liw mantys : 1.00 oraz najmniejszy wykªadnik: 2. Odpowiedni ci g bitów to Podobnie, najwi ksz warto±ci jest : Zauwa»my,»e pomi dzy reprezentowalnymi liczbami pojawiaj si ró»ne odst py im wi ksze 1 warto±ci, tym wi ksze odst py. I tak najmniejszy odst p wynosi 16 (gdy wykªadnik jest równy -2 i zmieniamy mantys o 1 4, a najwi kszy 1 2, gdy wykªadnik jest równy 2. Za to mniej wi cej staªa jest wzgl dna odlegªo± : stosunek warto±ci liczby do warto±ci jej s siada. Zatem mo»emy powiedzie,»e w naszej reprezentacji mamy mniej wi cej staªy wzgl dny bª d przybli»enia. Jeszcze jedn charakterystyczn cech reprezentacji zmiennopozycyjnej (znormalizowanej) jest stosunkowo du»y odst p pomi dzy zerem a pierwsz reprezentowaln warto±ci. Przedziaª pomi dzy zerem a pierwsz warto±ci reprezentowaln nazywany jest niedomiarem (odpowiednio dodatnim lub ujemnym). Mówimy tak»e o nadmiarze (równie» dodatnim lub ujemnym) jest to przedziaª powy»ej (poni»ej) najwi kszej (najmniejszej) reprezentowalnej warto±ci. O arytmetyce zmiennopozycyjnej b dziemy mówi nieco dalej, teraz spróbujmy wykona w naszej reprezentacji proste dziaªanie a + b dla a = 0.7 i b = 1.8. Przeksztaª my nasze uªamki na system binarny: a = , b = Poniewa» mo»emy pami ta tylko dwa bity mantysy, to ju» na pocz tku tracimy precyzj. Wyrównujemy wykªadniki zwi kaszaj c pierwszy do 0: a = Ponownie tracimy precyzj (w rzeczywisto±ci mo»e by ciut lepiej, bo obliczenia po±rednie wykonywane s zazwyczaj na rozszerzonej reprezentacji zawieraj cej dodatkowe bity). Dodajemy mantysy: a + b = Normalizujemy wynik otrzymuj c a + b = , czyli Zauwa»,»e dokªadny wynik dodawanie to 2.5 i jest on dokªadnie reprezentowalny w naszym modelu. Podobne bª dy napotykamy w prawdziwych implementacjach arytmetyki zmiennoprzecinkowej. Oto prosty przykªad ilustruj cy bª d wynikaj cy z braku dokªadnej reprezentacji dla pewnych liczb. Uruchom nast puj ce programy w j zyku C: int main{} { float suma=0; long i; for (i=0; i<100000; ++i) suma=suma+0.6; } printf{"%f", suma); int main{} { float suma=0; long i; for (i=0; i<100000; ++i) suma=suma+0.5; } printf{"%f", suma); W pierwszym przypadku wynik odbiega od oczekiwanego, w drugim jest poprawny. Wynika 2
3 to z faktu,»e 0.6, w przeciwie«stwie do 0.5 nie ma dokªadnej reprezentacji w systemie dwójkowym (z ograniczon liczb bitów po przecinku). 1.3 Standard IEEE 754 Norma IEEE 754 jest powszechnie obowi zuj cym standardem w jakim przechowywane s we wspóªczesnych komputerach liczby zmiennopozycyjne. Oprócz formatu danych okre±la on te» pewne zasady wykonywania oblicze«arytmetycznych, dzi ki czemu mo»na zaªo»y,»e ten sam program, napisany np. w j zyku C, uruchomiony na ró»nych maszynach da te same rezultaty. Mamy dwa formaty: 32-bitowy pojedynczej precyzji (float w C) i 64-bitowy (podwójnej precyzji) (double w C). Dodatkowo deniowane s formaty pomocnicze: rozszerzony pojedynczej precyzji i rozszerzony podwójnej precyzji. Sªu» one do wykonywania oblicze«po±rednich. Format pojedynczej precyzji Mantysa: 23 bity (znormalizowana, ukryta 1 przed przecinkiem), wykªadnik: 8 bitów (przesuni cie 127), zakres liczb dodatnich: 10 38, , liczba reprezentowalnych warto±ci: 1, Format podwójnej precyzji Mantysa: 52 bity (znormalizowana, ukryta 1 przed przecinkiem), wykªadnik: 11 bitów (przesuni cie 1023), zakres liczb dodatnich: , , liczba reprezentowalnych warto±ci: 1, Niektóre sekwencje bitów s interpretowane w specjalny sposób. S to sekwencje z wykªadnikiem skªadaj cym si z samych zer lub samych jedynek: same 0 w wykªadniku, same zera w mantysie: reprezentuj 0 (dodatnie lub ujemne...) same 0 w wykªadniku, niezerowa mantysa: liczb zdenormalizowana (bit na lewo od przecinka jest zerem, wykªadnik wynosi -126 lub -1022); pomysª na redukcj odst pu pomi dzy zerem a najmniejsz dodatni (ujemn ) liczb reprezentowaln. same 1 w wykªadniku, same 0 w mantysie: plus lub minus niesko«czono± same 1 w wykªadnkiu, niezerowa mantysa: NaN (not a number) sytuacja wyj tkowa 2 Arytmetyka zmiennoprzecinkowa Ze wzgl du na zupeªnie inn reprezentacj za operacje arytemtyczne na liczbach zmiennopozycyjnych odpowiedzialne s zupeªnie inne obwody procesora ni» za operacje caªkowitoliczbowe. 2.1 Dodawanie i odejmnowanie 1. Wyrównywanie wykªadników 2. Dodawanie lub odejmnowanie mantys 3. Normalizowanie wyniku. 4. Zaokr glanie wyniku. 2.2 Mno»enie i dzielenie 1. Dodawanie lub odejmowanie wykªadników 2. Mno»enie lub dzielenie mantys, ustawianie znaku 3
4 3. Normalizowanie wyniku 4. Zaokr glanie Schemat ukªadu realizuj cego dodawanie przedstawiony jest na rysunku 2. Ukªad steruj cy (control) generuje sygnaªy steruj ce caªym procesem na podstawie ró»nicy wykªadników, a nast pnie wyniku dodawania mantys. Rysunek 2: Schemat ukªadu dodaj cego liczby zmiennoprzecinkowe 3 Kody Hamminga Rozwa»my kody dwóch znaków (tej samej dªugo±ci). Mówimy,»e odlegªo± Hamminga pomi dzy nimi wynosi d, je±li ró»ni si na dokªadnie d bitach. Rozwa»my teraz dowolny kod znakowy 4
5 (kodem znakowym b dziemy nazywali formalnie funkcj, która znakom z pewnego ustalonego zbioru przyporz dkowuje ci gi bitów (zazwyczaj) ustalonej dªugo±ci). Mówimy,»e ma on odlegªo± Hamminga równ d, je±li d jest minimaln odlegªo±ci Hamminga pomi dzy reprezentacjami znaków w tym kodzie. Np. kod ASCII ma odlegªo± Hamminga równ 1 zmiana pojedynczego bitu w jednym znaku kodu daje nam inny, poprawny znak. 3.1 Bity parzysto±ci Do ka»dego zakodowanego znaku dodajemy bit, tak aby sumaryczna liczba jedynek byªa parzysta. Zauwa»,»e np. kod ASCII poszerzony o bit parzysto±ci ma odlegªo± Hamminga równ 2 zmiana pojedynczego bitu prowadzi do uzyskania niepoprawnego ci gu bitów. W efekcie potra- my wykrywa pojedyncze przekªamania bitów. Nie potramy ich jednak poprawia nasz kod jest kodem detekcyjnym. 3.2 Kod detekcyjno-korekcyjny (kod Hamminga) Chcemy zaprojektowa kod, który potra nie tylko wykrywa pojedyncze przekªamania, ale tak»e automatycznie je poprawia. Wymaga on b dzie znacznej nadmiarowo±ci: zaªó»my,»e oryginalny kod jest 7-bitowy. Pojedyncze przekªamania bitu mog prowadzi do 7 ró»nych sªów. Ka»de z nich musi by jednoznacznie zwi zne z ci giem oryginalnym. Tak naprawd, potrzebujemy zatem 8 ró»nych ci gów bitów dla jednego znaku wyj±ciowego alfabetu. Rozwa»my na pocz tek prosty przykªad. Niech poprawnymi ci gami znaków w naszym kodzie korekcyjnym b d : {00000, 01011, 10110, 11101}. Odlegªo± Hamminga dla tego kodu wynosi 3. Zauwa»my,»e wystarczy to do korygowania pojedynczych bª dów (oraz wykrywania podwójnych). Zaªó»my,»e odczytali±my sªowo Nie jest to poprwne sªowo naszego kodu, musi zatem zawiera co najmniej jeden bª d. Jakie s jego odlegªo±ci od sªów poprawnych? 1, 4, 2, 3. Je±li zatem nast piªo pojedyncze przekªamanie, to wysªanym ci giem musiaª by Zaªó»my ogólnie,»e kod wyj±ciowy jest m-bitowy. Je±li dodamy r bitów nadmiarowych, to musi zachodzi nast puj ca relacja: 2 m (m + r + 1) 2 m+r, a wi c m + r r. Dlaczego: mamy 2 m sªów (znaków) oryginalnych; pozycji na których mo»e doj± do przekªamania bitu jest m + r (do przekªamania mo»e doj± tak»e na bitach dodatkowych!), st d kod korekcyjny musi mie 2 m (m + r + 1) sªów, a mo»e ich mie maksymalnie 2 m+r. Np. je±li m jest równe 4, to r musi by równe co najmniej 3. Jak zbudowa kod korekcyjny? Oto prosty algorytm: 1. Okre±lamy liczb bitów nadmiarowych r, numerujemy n bitów (n = m + r) od prawej do lewej zaczynaj c od Bity, których numery s pot gami dwójki to bity nadmiarowe, które b d bitami parzysto±ci dla pewnych innych bitów. Pozostaªe to bity danych. 3. Bit b jest sprawdzany przez bity b i1, b i2,..., b ik, dla których b i1 + b i2 +..., b ik = b i i j s pot gami dwójki. Przykªad. Skonstuujemy kod dla 8-bitowego kodu ASCII. Z podanego wzoru wynika,»e r musi by równe co najmniej 4. Zatem pojedynczy znak b dzie opisywany przez 12-bitów, z czego bity 1,2,4,8 b d bitami nadmiarowymi: Bit 1 b dzie bitem parzysto±ci dla bitów: 1,3,5,7,9,11; bit 2 dla bitów 2,3,6,7,10,11, bit 4 dla 4,5,6,7,12, bit 8 dla 8,9,10,11,12 (przypominamy: bit 6 jest kontrolowany przez bity 2, 4, bit 11 przez bity 1, 2, 8, bit 10 przez bity 2, 8). 5
6 Zakodujmy liter K (ASCII: ): Wprowad¹my bit na bicie b 9 : Bª dy parzysto±ci wykrywaj bity b 1 i b 8. Kontroluj one wspólnie pozycje 9 i 11, na której± z nich musi by zatem bª d. Jest to pozycja 9, bo przy 11 bª d wskazywaªby tak»e bit b 2. Najpro±ciej jest zsumowa indeksy bª dnych bitów parzysto±ci: = 9. 6
Liczby zmiennoprzecinkowe
Liczby zmiennoprzecinkowe 1 Liczby zmiennoprzecinkowe Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci:
Reprezentacja liczb rzeczywistych w komputerze. Liczby rzeczywiste są reprezentowane w komputerze przez liczby zmiennopozycyjne. Liczbę k można przedstawid w postaci: k = m * 2 c gdzie: m częśd ułamkowa,
Podstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
Pracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
Architektury systemów komputerowych
zadanie: 1 2 3 4 5 6 7 Suma maks: 12 12 12 18 18 10 18 100 Imi i nazwisko: punkty: Architektury systemów komputerowych Egzamin, wersja A 6.II.2013 Do zdobycia jest 100 punktów. Przewidywana skala ocen:
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Technologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Pracownia Komputerowa wyk ad VI
Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
LICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1
Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,
Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010
ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1
Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym
Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb
Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci
Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f
Bash i algorytmy. Elwira Wachowicz. 20 lutego
Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad
Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze
Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych
Zapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
Arytmetyka binarna - wykład 6
SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Konwersje, bª dy przetwarzania numerycznego PWSZ Gªogów, 2009 Dlaczego modelujemy... systematyczne rozwi zywanie problemów, eksperymentalna eksploracja wielu rozwi
Podstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych
Architektura komputerów
Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków
Lekcja 9 - LICZBY LOSOWE, ZMIENNE
Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my
Dokªadny jak komputer?
Dokªadny jak komputer? Czyli dlaczego 2 + 2 = 5? Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska http://math.uni.lodz.pl/~fulmanp/zajecia/prezentacja/festiwalnauki2013/ 17
Dokªadny jak komputer
Dokªadny jak komputer Czy aby na pewno? Piotr Fulma«ski Pa«stwowa Wy»sza Szkoªa Zawodowa w Pªocku Wydziaª Nauk Ekonomicznych i Informatyki piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/pwsz_dzien_otwarty_2017/dzien_otwarty_
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Pozycyjny system liczbowy
Arytmetyka binarna Pozycyjny system liczbowy w pozycyjnych systemach liczbowych wkład danego symbolu do wartości liczby jest określony zarówno przez sam symbol, jak i jego pozycję w liczbie i tak np. w
Wprowadzenie do informatyki - ć wiczenia
Kod uzupełnień do 2 (U2) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Naturalny kod binarny (NKB)
SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System
Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
O pewnym zadaniu olimpijskim
O pewnym zadaniu olimpijskim Michaª Seweryn, V LO w Krakowie opiekun pracy: dr Jacek Dymel Problem pocz tkowy Na drugim etapie LXII Olimpiady Matematycznej pojawiª si nast puj cy problem: Dla ka»dej liczby
X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne)
X WARMI SKO-MAZURSKIE ZAWODY MATEMATYCZNE 18 maja 2012 (szkoªy ponadgimnazjalne) Zadanie 1 Obecnie u»ywane tablice rejestracyjne wydawane s od 1 maja 2000r. Numery rejestracyjne aut s tworzone ze zbioru
Semestr letni 2014/15
Wst p do arytmetyki modularnej zadania 1. Jaki dzie«tygodnia byª 17 stycznia 2003 roku, a jaki b dzie 23 sierpnia 2178 roku? 2. Jaki dzie«tygodnia byª 21 kwietnia 1952 roku? 3. W jaki dzie«odbyªa si bitwa
Wprowadzenie do informatyki - ć wiczenia
Stałoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa pojedynczej
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.
Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka
Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów
Rzut oka na zagadnienia zwi zane z projektowaniem list rozkazów 1 Wst p Przypomnijmy,»e komputer skªada si z procesora, pami ci, systemu wej±cia-wyj±cia oraz po- ª cze«mi dzy nimi. W procesorze mo»emy
Zestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu
Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne
Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4
Wielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Pracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Kod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb
Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych
Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej
Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne
Arytmetyka zmiennopozycyjna
Rozdziaª 4 Arytmetyka zmiennopozycyjna Wszystkie obliczenia w octavie s wykonywane w arytmetyce zmiennopozycyjnej (inaczej - arytmetyce ) podwójnej precyzji (double) - cho w najnowszych wersjach octave'a
Samodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
XVII Warmi«sko-Mazurskie Zawody Matematyczne
1 XVII Warmi«sko-Mazurskie Zawody Matematyczne Kategoria: klasa VIII szkoªy podstawowej i III gimnazjum Olsztyn, 16 maja 2019r. Zad. 1. Udowodnij,»e dla dowolnych liczb rzeczywistych x, y, z speªniaj cych
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Vincent Van GOGH: M»czyzna pij cy li»ank kawy. Radosªaw Klimek. J zyk programowania Java
J zyk programowania JAVA c 2011 Vincent Van GOGH: M»czyzna pij cy li»ank kawy Zadanie 6. Napisz program, który tworzy tablic 30 liczb wstawia do tej tablicy liczby od 0 do 29 sumuje te elementy tablicy,
ELEMENTARNA TEORIA LICZB. 1. Podzielno±
ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
Teoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Wstęp do Informatyki
Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
punkcie. Jej granica lewostronna i prawostronna w punkcie x = 2 wynosz odpowiednio:
5.9. lim x x +4 f(x) = x +4 Funkcja f(x) jest funkcj wymiern, która jest ci gªa dla wszystkich x, dla których mianownik jest ró»ny od zera, czyli dla: x + 0 x Zatem w punkcie x = funkcja ta jest okre±lona
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
LZNK. Rozkªad QR. Metoda Householdera
Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3
PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!
Informacje pomocnicze
Funkcje wymierne. Równania i nierówno±ci wymierne Denicja. (uªamki proste) Wyra»enia postaci Informacje pomocnicze A gdzie A d e R n N (dx e) n nazywamy uªamkami prostymi pierwszego rodzaju. Wyra»enia
Typy danych i formatowanie
Typy danych i formatowanie Elwira Wachowicz elwira@ifd.uni.wroc.pl 28 marca 2013 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Typy danych i formatowanie 28 marca 2013 1 / 16 Sªowa kluczowe typów danych Pierwotne
Zwykle liczby rzeczywiste przedstawia się w notacji naukowej :
Arytmetyka zmiennoprzecinkowa a procesory cyfrowe Prawa algebry stosują się wyłącznie do arytmetyki o nieograniczonej precyzji x=x+1 dla x będącego liczbą całkowitą jest zgodne z algebrą, dopóki nie przekroczymy
LICZBY ZMIENNOPRZECINKOWE
LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia
Ekstremalnie fajne równania
Ekstremalnie fajne równania ELEMENTY RACHUNKU WARIACYJNEGO Zaczniemy od ogólnych uwag nt. rachunku wariacyjnego, który jest bardzo przydatnym narz dziem mog cym posªu»y do rozwi zywania wielu problemów
Kodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Semestr letni 2014/15
. Przyjmijmy,»e chcemy u»y alfabetu Morse'a {,, _} by zakodowa alfabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z () kodem blokowym. Jaka jest najmniejsza dªugo± takiego kodu? 2. Zakoduj alfabet
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych
Wielomiany o wspóªczynnikach rzeczywistych
Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0
Architektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię