1 Metody iteracyjne rozwi zywania równania f(x)=0

Wielkość: px
Rozpocząć pokaz od strony:

Download "1 Metody iteracyjne rozwi zywania równania f(x)=0"

Transkrypt

1 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0 ) < 0 i f(b 0 ) > 0. Wyznaczamy zst puj cy ci g przedziaªów [a 0, b 0 ] [a 1, b 1 ]... [a k, b k ], gdzie m k = 1 (a k 1, b k 1 ) oraz [a k, b k ] = { [m k, b k 1 ], f(m k ) < 0 [a k 1, m k ], f(m k ) > 0. Innymi sªowy ka»dy nast pny przedziaª jest t poªow przedziaªu poprzedniego, która zawiera pierwiastek funkcji. Po n krokach dostajemy przedziaª [a n, b n ] dªugo±ci b n a n = 1 n (b 0 a 0 ) zawieraj cy pierwiastek. Jako warto± przybli»on pierwiastka mo»emy przyj ±rodek tego przedziaªu, czyli m n+1. Bª d wyliczenia pierwiastka wynosi w tym przypadku 1 n+1 (b 0 a 0 ). Metod bisekcji mo»na zilustrowa () y y=f() a m k-1 k b k-1 Figure 1: Metoda bisekcji 1. Metoda stycznych (Newtona) W metodzie stycznych konstruujemy ci g 0, 1,... korzystaj c ze wzoru iteracyjnego: i+1 = i f( i) f, i = 0, 1,... (3) ( i ) 1

2 oraz zaczynaj c od pewnego wybranego punktu 0. Punkt 0 musi dostatecznie bliski pierwiastkowi funkcji, inaczej metoda mo»e nie by zbie»na. Geometrycznie proces ten oznacza przeprowadzenie stycznej do wykresu funkcji f w punkcie k i przyj ciu za k+1 punktu przeci cia tej stycznej z osi. y y=f() k+1 k Figure : Metoda stycznych 1.3 Metoda siecznych W przypadku, gdy metoda Newtona zawodzi z powodu konieczno±ci wyliczenia warto±ci pochodnych mo»emy zastosowa metod siecznych. W poni»szym wzorze pochodne zast pujemy ilorazem ró»nicowym: i+1 = i i i 1 f( i ) f( i 1 ) f( i), i = 1,,... (4) W tej metodzie potrzebne s dwa punkty startowe 0 oraz 1. Geometryczna interpretacja tej metody to: k+1 wyznacza si jako punkt przeci cia siecznej przechodz cej przez punkty ( k 1, f( k 1 )) i ( k, f( k )) z osi.

3 y y=f() k+1 k k-1 Figure 3: Metoda siecznych Ka»d z powy»szych metod nale»y w pewnym momencie zako«czy. Mo»na sko«czy konstruowanie kolejnych przybli»e«pierwiastków po zadanej liczbie kroków lub je±li osi gniemy wystarczaj c dokªadno± wyznaczenia pierwiastka. Mo»emy skorzysta z jednego z nast puj cych kryteriów stopu: (1) i+1 i < ε () f( i ) < ε (3) i+1 i < ε lub f( i ) < ε Zadanie 1. Wykonaj 3 pierwsze kroki metody bisekcji dla f() = 5. Rozwi zanie. Na pocz tku nale»y okre±li przedziaª, w którym b dziemy szuka miejsca zerowego funkcji. Ustalmy go jako [a 0, b 0 ] = [, 3]. Sprawdzamy,»e f()f(3) = (4 5)(9 5) = ( 1)(4) < 0 oraz mamy f() < 0 i f(3) > 0. Krok 1. Wyznaczamy przedziaª [a 1, b 1 ]. rodek przedziaªu [a 0, b 0 ] to m 1 = 5. Warto± f(m 1 ) = = 5 4 jest dodatnia, wi c za pocz tek nowego przedziaªu przyjmujemy a 0, a za koniec m 1. St d [a 1, b 1 ] = [, 5 ]. Krok. Analogicznie powtarzamy czynno±ci z kroku 1. Wyznaczamy m = a 1+b 1 = 9 4 oraz f(m ) = = 1 16 > 0. St d kolejny podprzedziaª, w którym znajduje si pierwiastek to [a, b ] = [, 9 4 ]. Krok 3. W ostatnim, trzecim kroku liczymy m 3 = 17 8 oraz f(m 3) = = < 0. St d [a 3, b 3 ] = [ 17 8, 9 4 ]. Za wyliczony t metod pierwiastek przyjmujemy ±rodek ostatniego przedziaªu, czyli m 4 = Bª d z jakim przybli»amy pierwiastek wynosi 1. 4 Zadanie. Znajd¹ zero wielomianu f() = metod stycznych 3

4 z dokªadno±ci ε = 0.1 wiedz c,»e znajduje si ono w przedziale [1, ]. Rozwi zanie. Wyznaczmy pochodn f () = 3 6. Za pocz tek ci gu, który b dziemy konstruowa przyjmujemy warto± jak najbli»sz pierwiastkowimo»e to by pocz tek danego przedziaªu, czyli 0 = 1. Nast pnie konstruujemy kolejne warto±ci i a» do uzyskania zadanej dokªadno±ci. 1 = = = 1 5 > ε f( 1 ) = 1 15 < ε Przyjmuj c za kryterium stopu podpunkt () mo»emy sko«czy obliczenia przyjmuj c za pierwiastek 1. Je±li kryterium stopu jest takie jak w punkcie (1) to liczymy dalej. = 6 5 1/15 1/5 = = < ε Kryterium stopu z punktu (1) zostaªo osi gni te, wi c przybli»eniem pierwiastka jest = Zadanie 3. Znajd¹ zero wielomianu f() = metod siecznych zaczynaj c od 0 = 0, 1 = 1. Rozwi zanie. W tym zadaniu nie mamy okre±lonego kryterium stopu. Mo»emy wi c zako«czy obliczenia po kilku krokach. Wykonajmy dwa kroki metody siecznych. = ( 1) 1 = 1 3 = ( 3 8 ) = 7 11 (5) (6) (7) Zadanie 4. Za pomoc metody siecznych wyznaczy 7 z dokªadno±ci ε = Rozwi zanie. Nale»y okre±li funkcj, której pierwiastek chcemy obliczy za pomoc metody siecznych. Jest ni f() = 7. Punktu pocz tkowe staramy si wybra jak najbli»ej pierwiastka, przyjmijmy 0 = i 1 = 3. Wyznaczamy kolejne punktu ci gu iteracyjnego i w ka»dym kroku sprawdzamy czy zadana dokªadno± zostaªa osi gni ta. = = = 5 > ε f( ) = 6 5 > ε (8) 4

5 adne z kryteriów nie jest speªnione, wi c liczymy kolejny element ci gu. 3 = ( 6 5 ) = = 3 70 > ε f( 3 ) = > ε Znowu nie osi gn li±my dokªadno±ci = = < ε f( 4 ) = < ε ( ) = (9) (10) Przybli»enie 7 o warto±ci 4 speªnia zadan dokªadno±. Zadanie 5. Zbadaj zachowanie si powy»szych metod dla f() = + ln(), 0 = 0.1 i 1 = 0., ε = 0.1,..., (11) Zbadaj te» zachowanie dla metod powstaªych z postaci funkcji a) n+1 = ln( n ), b) n+1 = ep( n ), c) n+1 = 1 ( n + ep( n )). Powy»sze metody oraz inne metody iteracyjne mo»na prze±ledzi pod nast puj cymi adresami, gdzie s zaprezentowane gracznie metody dla ró»nych funkcji: 5

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Programowanie i struktury danych 1 / 44

Programowanie i struktury danych 1 / 44 Programowanie i struktury danych 1 / 44 Lista dwukierunkowa Lista dwukierunkowa to liniowa struktura danych skªadaj ca si z ci gu elementów, z których ka»dy pami ta swojego nast pnika i poprzednika. Operacje

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba,

W zadaniach na procenty wyró»niamy trzy typy czynno±ci: obliczanie, jakim procentem jednej liczby jest druga liczba, 2 Procenty W tej lekcji przypomnimy sobie poj cie procentu i zwi zane z nim podstawowe typy zada«. Prosimy o zapoznanie si z regulaminem na ostatniej stronie. 2.1 Poj cie procentu Procent jest to jedna

Bardziej szczegółowo

1 Kodowanie i dekodowanie

1 Kodowanie i dekodowanie 1 Kodowanie i dekodowanie Teoria informacji zajmuje si sposobami gromadzenia, przechowywania oraz przesyªania informacji. W tym celu, a tak»e dla ochrony danych informacje kodujemy. Rozmowa telefoniczna,

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

przewidywania zapotrzebowania na moc elektryczn

przewidywania zapotrzebowania na moc elektryczn do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wst p do sieci neuronowych, wykªad 15 Algorytmy genetyczne

Wst p do sieci neuronowych, wykªad 15 Algorytmy genetyczne Wst p do sieci neuronowych, wykªad 15 Algorytmy genetyczne M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-25-01 Motywacja Algorytmy

Bardziej szczegółowo

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna

Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna Zagadnienia na wej±ciówki z matematyki Technologia Chemiczna 1. Podaj denicj liczby zespolonej. 2. Jak obliczy sum /iloczyn dwóch liczb zespolonych w postaci algebraicznej? 3. Co to jest liczba urojona?

Bardziej szczegółowo

Wst p do matematyki nansów i ubezpiecze«

Wst p do matematyki nansów i ubezpiecze« Jarosªaw Mederski i Sªawomir Plaskacz Wst p do matematyki nansów i ubezpiecze«materiaªy dydaktyczne dla studentów II-go roku matematyki specjalno± : matematyka w ekonomii i nansach. Wydziaª Matematyki

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

Chess. Joanna Iwaniuk. 9 marca 2010

Chess. Joanna Iwaniuk. 9 marca 2010 9 marca 2010 Plan prezentacji 1. Co to jest? 2. Jak u»ywa? 3. Prezentacja dziaªania 4. kontrola przeplotów model checking odtwarzanie wadliwego wykonania 5. Ogólna idea Wynik dziaªania Co to jest? program

Bardziej szczegółowo

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011

Podstawy Ekonomii Matematycznej. Aktualizacja: 9 czerwca 2011 Podstawy Ekonomii Matematycznej Aktualizacja: 9 czerwca 2011 Spis tre±ci I Elementy matematyki nansowej. 5 1 Procent, stopa procentowa, kapitalizacja. 6 2 Procent prosty. 8 2.1 Zasada oprocentowania prostego,

Bardziej szczegółowo

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi.

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Krzysztof Makarski 22 Krzywe kosztów Wst p Celem jest wyprowadzenie funkcji poda»y i jej wªasno±ci. Funkcj poda»y wyprowadzamy z decyzji maksymalizuj

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p Lekcja 1 Wst p Akademia im. Jana Dªugosza w Cz stochowie Baltie Baltie Baltie jest narz dziem, które sªu»y do nauki programowania dla dzieci od najmªodszych lat. Zostaª stworzony przez Bohumira Soukupa

Bardziej szczegółowo

Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Lekcja 9 - LICZBY LOSOWE, ZMIENNE Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Analiza wydajno±ci serwera openldap

Analiza wydajno±ci serwera openldap Analiza wydajno±ci serwera openldap Autor: Tomasz Kowal 13 listopada 2003 Wst p Jako narz dzie testowe do pomiarów wydajno±ci i oceny konguracji serwera openldap wykorzystano pakiet DirectoryMark w wersji

Bardziej szczegółowo

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska

WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska WFiIS Imi i nazwisko: Rok: Zespóª: Nr wiczenia: Fizyka Dominik Przyborowski IV 5 22 J drowa Katarzyna Wolska Temat wiczenia: Wyznaczanie stosunku przekrojów czynnych na aktywacj neutronami termicznymi

Bardziej szczegółowo

1. Podstawy budowania wyra e regularnych (Regex)

1. Podstawy budowania wyra e regularnych (Regex) Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra

Bardziej szczegółowo

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia

wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. Metodyka bada«do±wiadczalnych dr hab. in». Sebastian Skoczypiec Cel wiczenia Zaªo»enia wiczenie nr 3 z przedmiotu Metody prognozowania kwiecie«2015 r. wiczenia 1 2 do wiczenia 3 4 Badanie do±wiadczalne 5 pomiarów 6 7 Cel Celem wiczenia jest zapoznanie studentów z etapami przygotowania i

Bardziej szczegółowo

Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI

Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI Rozwi zywanie Ukªadów Równa«Liniowych Ax=B metod dekompozycji LU, za pomoc JAVA RMI Marcn Šabudzik AGH-WFiIS, al. Mickiewicza 30, 30-059, Kraków, Polska email: labudzik@ghnet.pl www: http://fatcat.ftj.agh.edu.pl/

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku

Optyka geometryczna. Soczewki. Marcin S. Ma kowicz. rok szk. 2009/2010. Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku skupiaj ce rozpraszaj ce Optyka geometryczna Zespóª Szkóª Ponadgimnazjalnych Nr 2 w Brzesku rok szk. 2009/2010 skupiaj ce rozpraszaj ce Spis tre±ci 1 Wprowadzenie 2 Ciekawostki 3 skupiaj ce Konstrukcja

Bardziej szczegółowo

Zadania i scenariusze zaj z laboratorium komputerowego do wykªadu z Matematyki Obliczeniowej. Leszek Marcinkowski

Zadania i scenariusze zaj z laboratorium komputerowego do wykªadu z Matematyki Obliczeniowej. Leszek Marcinkowski Zadania i scenariusze zaj z laboratorium komputerowego do wykªadu z Matematyki Obliczeniowej Leszek Marcinkowski 12 grudnia 2011 Streszczenie W skrypcie przedstawimy zestawy zada«do odbywaj cego si co

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM w ZESPOLE SZKÓ W SZTUTOWIE

PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM w ZESPOLE SZKÓ W SZTUTOWIE PRZEDMIOTOWY SYSTEM OCENIANIA Z CHEMII W GIMNAZJUM w ZESPOLE SZKÓ W SZTUTOWIE Przedmiotowy System Oceniania sporz dzony zosta w oparciu o: 1. Rozporz dzenie MEN z dnia 21.03.2001 r. 2. Statut Szko y 3.

Bardziej szczegółowo

EDUKARIS - O±rodek Ksztaªcenia

EDUKARIS - O±rodek Ksztaªcenia - O±rodek Ksztaªcenia Zabrania si kopiowania i rozpowszechniania niniejszego regulaminu przez inne podmioty oraz wykorzystywania go w dziaªalno±ci innych podmiotów. Autor regulaminu zastrzega do niego

Bardziej szczegółowo

1. Warunek ka»dy proces w ko«cu wejdzie do sekcji krytycznej jest

1. Warunek ka»dy proces w ko«cu wejdzie do sekcji krytycznej jest Imi i nazwisko: W ka»dym pytaniu testowym nale»y rozstrzygn prawdziwo± wszystkich podpunktów wpisuj c w kratk T lub N. Punkt b dzie przyznany jedynie w przypadku kompletu poprawnych odpowiedzi. 1. Warunek

Bardziej szczegółowo

Podstawowe obiekty AutoCAD-a

Podstawowe obiekty AutoCAD-a LINIA Podstawowe obiekty AutoCAD-a Zad1: Narysowa lini o pocztku w punkcie o współrzdnych (100, 50) i kocu w punkcie (200, 150) 1. Wybierz polecenie rysowania linii, np. poprzez kilknicie ikony. W wierszu

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Rozdziaª I. Postanowienia wst pne

Rozdziaª I. Postanowienia wst pne REGULAMIN RADY RODZICÓW PA STWOWEJ SZKOŠY MUZYCZNEJ I ST. NR 4 IM. KAROLA KURPI«SKIEGO Rozdziaª I. Postanowienia wst pne Ÿ1 Podstaw prawn niniejszego Regulaminu Rady Rodziców, zwanego dalej Regulaminem

Bardziej szczegółowo

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007

Wykªad 10. Spis tre±ci. 1 Niesko«czona studnia potencjaªu. Fizyka 2 (Informatyka - EEIiA 2006/07) c Mariusz Krasi«ski 2007 Wykªad 10 Fizyka 2 (Informatyka - EEIiA 2006/07) 08 05 2007 c Mariusz Krasi«ski 2007 Spis tre±ci 1 Niesko«czona studnia potencjaªu 1 2 Laser 3 2.1 Emisja spontaniczna...........................................

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

Podstawy statystycznego modelowania danych Analiza prze»ycia

Podstawy statystycznego modelowania danych Analiza prze»ycia Podstawy statystycznego modelowania danych Analiza prze»ycia Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu 1. Wprowadzenie 2. Hazard rate

Bardziej szczegółowo

Dziaª utrzymania ruchu aplikacja wspomagaj ca zarz dzanie

Dziaª utrzymania ruchu aplikacja wspomagaj ca zarz dzanie Dziaª utrzymania ruchu aplikacja wspomagaj ca zarz dzanie Instrukcja instalacji Joanna Siwiec-Matuszyk i Ryszard Matuszyk 13 lutego 2006 Spis tre±ci 1 Przygotowanie do instalacji 2 1.1 Wst p.........................................

Bardziej szczegółowo

Zadania z rachunku prawdopodobie«stwa

Zadania z rachunku prawdopodobie«stwa STATYSTYKA 2 rok, informatyka,. Zadania z rachunku prawdopodobie«stwa 1. Niech A B C = Ω, P (B) = 2P (A), P (C) = 3P (A), P (A B) = P (A C) = P (B C). Pokaza,»e 1 P (A) 1. Pokaza,»e oba ograniczenia mog

Bardziej szczegółowo

Podstawy obsªugi Linux: obsªuga procesorów i pami ci, obsªuga procesów, komunikacja mi dzyprocesowa. Zarz dzanie procesami w systemie Linux.

Podstawy obsªugi Linux: obsªuga procesorów i pami ci, obsªuga procesów, komunikacja mi dzyprocesowa. Zarz dzanie procesami w systemie Linux. mgr Maciej Wróbel Podstawy obsªugi Linux: obsªuga procesorów i pami ci, obsªuga procesów, komunikacja mi dzyprocesowa. Zarz dzanie procesami w systemie Linux. 4 pa¹dziernik 2010 1. Wprowadzenie Procesy

Bardziej szczegółowo

Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010

Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD. 15 czerwca 2010 Ocena ryzyka inwestycyjnego na przykªadzie pary walutowej EUR/USD Anna Barczy«ska Maciej Bieli«ski 15 czerwca 2010 1 Spis tre±ci 1 Forex 3 1.1 EUR/USD............................. 4 2 Waluty 5 2.1 Siªa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj¹cego 1. SprawdŸ, czy arkusz egzaminacyjny zawiera 13 stron (zadania 1 11). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski

Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej A. Bobrowski Spis tre±ci Teoria zbie»no±ci ci gów liczbowych strona 6. Gªówne zagadnienia 6.2 Granice sko«czone i niesko«czone

Bardziej szczegółowo

Baza danych - Access. 2 Budowa bazy danych

Baza danych - Access. 2 Budowa bazy danych Baza danych - Access 1 Baza danych Jest to zbiór danych zapisanych zgodnie z okre±lonymi reguªami. W w»szym znaczeniu obejmuje dane cyfrowe gromadzone zgodnie z zasadami przyj tymi dla danego programu

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo

Opracowanie i implementacja zdecentralizowanej struktury sterowania zespoªem heterogenicznch robotów mobilnych

Opracowanie i implementacja zdecentralizowanej struktury sterowania zespoªem heterogenicznch robotów mobilnych Opracowanie i implementacja zdecentralizowanej struktury sterowania zespoªem heterogenicznch robotów mobilnych Wojciech Szynkiewicz, Andrzej Rydzewski, Marek Majchrowski, Piotr Trojanek, Cezary Zieli«ski

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6

P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6 XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem

Bardziej szczegółowo

SPRAWOZDANIE za okres od 1 kwietnia do 30 wrze±nia 2014 r. z dziaªalno±ci Peªnomocnika Rz du do Spraw Wprowadzenia Euro

SPRAWOZDANIE za okres od 1 kwietnia do 30 wrze±nia 2014 r. z dziaªalno±ci Peªnomocnika Rz du do Spraw Wprowadzenia Euro Peªnomocnik Rz du do Spraw Wprowadzenia Euro przez Rzeczpospolit Polsk SPRAWOZDANIE za okres od 1 kwietnia do 30 wrze±nia 2014 r. z dziaªalno±ci Peªnomocnika Rz du do Spraw Wprowadzenia Euro przez Rzeczpospolit

Bardziej szczegółowo

Podr cznik u»ytkownika. Wersja programu:

Podr cznik u»ytkownika. Wersja programu: Podr cznik u»ytkownika Wersja programu: Data wydania: 3.03 23 lutego 2012 Strona 1 z 131 Spis tre±ci 1 Wst p 10 1.1 Czym jest program STOCK?............................... 10 1.2 Do czego sªu»y program

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Eksploracja Danych. Wprowadzenie. (c) Marcin Sydow

Eksploracja Danych. Wprowadzenie. (c) Marcin Sydow Wprowadzenie Proponowane podr czniki T.Hastie, R.Tibshirani et al. An Introduction to Statistical Learning I.Witten et al. Data Mining S.Marsland Machine Learning J.Koronacki, J.Mielniczuk Statystyka dla

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA WYDZIAŠ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH

POLITECHNIKA WARSZAWSKA WYDZIAŠ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH POLITECHNIKA WARSZAWSKA WYDZIAŠ ELEKTRYCZNY INSTYTUT ELEKTROTECHNIKI TEORETYCZNEJ I SYSTEMÓW INFORMACYJNO-POMIAROWYCH PRACA DYPLOMOWA MAGISTERSKA na kierunku INFORMATYKA Zbigniew Przemysªaw Król Nr indeksu

Bardziej szczegółowo

Badanie dynamiki synchronizacji modów w laserze femtosekundowym Yb:KYW

Badanie dynamiki synchronizacji modów w laserze femtosekundowym Yb:KYW Badanie dynamiki synchronizacji modów w laserze femtosekundowym Yb:KYW III Pracownia z optyki Michaª D browski Streszczenie Dynamika laserów impulsowych z pasywn synchronizacj modów jest zjawiskiem maªo

Bardziej szczegółowo

Modele z czasem dyskretnym

Modele z czasem dyskretnym Rozdziaª 1 Modele z czasem dyskretnym 1.1. Wprowadzenie- rynki dyskretne Dynamika aktywu bazowego i warunki pozyskania pieni dza-opis probabilistyczny Niech cena akcji w chwili pocz tkowej wynosi S 0 =

Bardziej szczegółowo

Przygotowanie rodowiska dla egzaminu e-obywatel

Przygotowanie rodowiska dla egzaminu e-obywatel Kandydaci przystpujcy do testu powinni dokona rejestracji w Centrum Egzaminacyjnym ECDL-A wypełniajc Kart rejestracji uczestnika egzaminu ECDL e-obywatel (ang. ECDL e-citizen Skills Card). Po zakoczeniu

Bardziej szczegółowo

Zastosowanie programu Microsoft Excel do analizy wyników nauczania

Zastosowanie programu Microsoft Excel do analizy wyników nauczania Grayna Napieralska Zastosowanie programu Microsoft Excel do analizy wyników nauczania Koniecznym i bardzo wanym elementem pracy dydaktycznej nauczyciela jest badanie wyników nauczania. Prawidłow analiz

Bardziej szczegółowo

1. Techniki pozyskiwania informacji dla robotów. Visual information canal for robot on the base of 3D view models of objects. 1.1.

1. Techniki pozyskiwania informacji dla robotów. Visual information canal for robot on the base of 3D view models of objects. 1.1. WIZUALNY KANAŠ INFORMACYJNY DLA ROBOTA NA BAZIE 3W MODELI WIDOKOWYCH OBIEKTÓW Wojciech S. Mokrzycki Instytut Informatyki Akademii Podlaskiej 08-110 Siedlce, ul. Sienkiewicza 51 mokrzycki@ii3.ap.siedlce.pl

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

PROJEKT USTAWY O ZMIANIE USTAWY O PODATKU DOCHODOWYM OD OSÓB PRAWNYCH. Ustawa. z dnia. 2007 r. o zmianie ustawy o podatku dochodowym od osób prawnych

PROJEKT USTAWY O ZMIANIE USTAWY O PODATKU DOCHODOWYM OD OSÓB PRAWNYCH. Ustawa. z dnia. 2007 r. o zmianie ustawy o podatku dochodowym od osób prawnych PROJEKT USTAWY O ZMIANIE USTAWY O PODATKU DOCHODOWYM OD OSÓB PRAWNYCH Ustawa z dnia. 2007 r. o zmianie ustawy o podatku dochodowym od osób prawnych W ustawie z dnia z dnia 15 lutego 1992 r. o podatku dochodowym

Bardziej szczegółowo

Podpi cia 2014/15 na Wydziale MIM

Podpi cia 2014/15 na Wydziale MIM Podpi cia 2014/15 na Wydziale MIM Marcin Engel 13 listopada 2014 1 Wprowadzenie Na Wydziale MIM ju» od wielu lat dziaªa mechanizm podpi. Ka»dy student, który rozlicza etap studiów i chce uzyska wpis na

Bardziej szczegółowo

Stopa zwrotu pozbawiona ryzyka. Wska¹nik Sharpe'a

Stopa zwrotu pozbawiona ryzyka. Wska¹nik Sharpe'a Stopa zwrotu pozbawiona ryzyka Do estymacji stopy zwrotu pozbawionej ryzyka u»ywa si bonów skarbowych uznaje si,»e w krótkich okresach, np. 13 tygodni, s one bezryzykowne), b d¹ prognoz dotycz cych przyszªych

Bardziej szczegółowo

Paweª Gªadki. Uªamki ªa«cuchowe 1

Paweª Gªadki. Uªamki ªa«cuchowe 1 Paweª Gªadki Uªamki ªa«cuchowe Wst p W numerze /989 miesi cznika "Mªody Technik"w dziale "ROzmaito±ci MAtematyczne" Michaª Szurek zaprezentowaª nast puj ce zadanie z egzaminów wst pnych do szkóª ±rednich:

Bardziej szczegółowo

SUPLEMENT SM-BOSS WERSJA 6.15

SUPLEMENT SM-BOSS WERSJA 6.15 SUPLEMENT SM-BOSS WERSJA 6.15 Spis treci Wstp...2 Pierwsza czynno...3 Szybka zmiana stawek VAT, nazwy i PKWiU dla produktów...3 Zamiana PKWiU w tabeli PKWiU oraz w Kartotece Produktów...4 VAT na fakturach

Bardziej szczegółowo

c Plan nauczania z matematyki dla kursu maturalnego

c Plan nauczania z matematyki dla kursu maturalnego R c Plan nauczania z matematyki dla kursu maturalnego Plan nauczania opracowaªa Izabella . Przedstawione opracowanie chroni ustawa o prawach autorskich. Powielanie, kopiowanie, wykorzystywanie we fragmentach

Bardziej szczegółowo

Pªywamy bezpiecznie! Naci ganie

Pªywamy bezpiecznie! Naci ganie Pªywamy bezpiecznie! Naci ganie Jacek Starzy«ski 16 marca 2002 roku Kontynuuj c rozwa»ania o wpªywie techniki manewrowania kajakiem na bezpiecze«stwo chciaªbym zaj c si w tym odcinku tak zwanym naci ganiem.

Bardziej szczegółowo

7. Symulacje komputerowe z wykorzystaniem opracowanych modeli

7. Symulacje komputerowe z wykorzystaniem opracowanych modeli Opracowane w ramach wykonanych bada modele sieci neuronowych pozwalaj na przeprowadzanie symulacji komputerowych, w tym dotycz cych m.in.: zmian twardo ci stali szybkotn cych w zale no ci od zmieniaj cej

Bardziej szczegółowo

Tu jest miejsce na zapiski sprawdzaj cego prac.

Tu jest miejsce na zapiski sprawdzaj cego prac. EDUKARIS R, KWIECIE 2013 Arkusz jest prawnie chroniony ustaw o prawach autorskich. Mo»e by rozpowszechniany w celach edukacyjnych wyª cznie w caªo±ci wraz ze stron tytuªow. Opracowanie autorskich zada«,

Bardziej szczegółowo

ZARZ DZANIE ZESPO EM P DR PIOTR PILCH

ZARZ DZANIE ZESPO EM P DR PIOTR PILCH ZARZ DZANIE ZESPO EM P DR PIOTR PILCH Aktywno ci Przeci tni mened erowie Mened erowie odnosz cy sukcesy Mened erowie efektywni Tradycyjne zarz dzanie 32% 13% 19% Komunikowanie si 29% 28% 44% Zarz dzanie

Bardziej szczegółowo

Dokumentacja programu SOTEeSKLEP 4.0

Dokumentacja programu SOTEeSKLEP 4.0 Dokumentacja programu SOTEeSKLEP 4.0 Spis tre±ci 17 maja 2007 I Instalacja sklepu 5 1 Wymagania systemowe 5 2 Wymagania sprz towe 6 3 Instalacja 6 3.1 Przygotowanie do instalacji.......................

Bardziej szczegółowo

Kwerendy funkcjonalne

Kwerendy funkcjonalne Kwerendy funkcjonalne Hurtownia owoców Do tej pory zajmowali my si podstawowym rodzajem kwerend - kwerendami wybieraj cymi. Dzi ki nim mo emy wybiera dane, które nas w danym momencie interesuj. Z tabelami

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem (Wpisuje zdajcy przed rozpoczciem pracy) KOD ZDAJCEGO MMA-PGP-0 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 0 minut ARKUSZ I MAJ ROK 00 Instrukcja dla zdajcego.

Bardziej szczegółowo

Wybór formy opodatkowania dochodów / K- 012 /1 przychodów osób fizycznych z tytułu najmu Obowi zuje od 10.01.2011 r.

Wybór formy opodatkowania dochodów / K- 012 /1 przychodów osób fizycznych z tytułu najmu Obowi zuje od 10.01.2011 r. URZ D SKARBOWY W TRZEBNICY ul.prusicka 2, 55-100 Trzebnica Wybór formy opodatkowania dochodów / K- 012 /1 przychodów osób fizycznych z tytułu najmu Obowi zuje od 10.01.2011 r. I. Kogo dotyczy : Osób fizycznych

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

Podstawy Informatyki i Technologii Informacyjnej

Podstawy Informatyki i Technologii Informacyjnej Automatyka i Robotyka, Rok I Wprowadzenie do systemów operacyjnych PWSZ Gªogów, 2009 Denicja System operacyjny (ang. OS, Operating System) oprogramowanie zarz dzaj ce sprz tem komputerowym, tworz ce ±rodowisko

Bardziej szczegółowo

Regulamin Usªugi VPS

Regulamin Usªugi VPS Regulamin Usªugi VPS 1 (Poj cia) Poj cia u»ywane w niniejszym Regulaminie maj znaczenia jak okre±lone w Ÿ1 Regulaminu Ogólnego Usªug Auth.pl Sp. z o.o. oraz dodatkowo jak ni»ej: Wirtualny Serwer Prywatny

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

SYSTEM ZARZDZANIA I KONTROLI FUNDUSZU SPÓJNOCI WYTYCZNE DOTYCZCE OPRACOWANIA CIEEK AUDYTU ORAZ JEDNOLITEGO FORMATU ICH PREZENTACJI

SYSTEM ZARZDZANIA I KONTROLI FUNDUSZU SPÓJNOCI WYTYCZNE DOTYCZCE OPRACOWANIA CIEEK AUDYTU ORAZ JEDNOLITEGO FORMATU ICH PREZENTACJI SYSTEM ZARZDZANIA I KONTROLI FUNDUSZU SPÓJNOCI WYTYCZNE DOTYCZCE OPRACOWANIA CIEEK AUDYTU ORAZ JEDNOLITEGO FORMATU ICH PREZENTACJI Ministerstwo Gospodarki i Pracy Departament Koordynacji Funduszu Spójnoci

Bardziej szczegółowo

Modelowanie scenariuszy negocjacyjnych w celu zwi kszenia skuteczno±ci realizacji przedsi wzi zespoªowych

Modelowanie scenariuszy negocjacyjnych w celu zwi kszenia skuteczno±ci realizacji przedsi wzi zespoªowych Politechnika Gda«ska Wydziaª Elektroniki, Telekomunikacji i Informatyki Katedra Architektury Systemów Komputerowych Rozprawa doktorska Modelowanie scenariuszy negocjacyjnych w celu zwi kszenia skuteczno±ci

Bardziej szczegółowo

Wyszukiwanie i Przetwarzanie Informacji WWW

Wyszukiwanie i Przetwarzanie Informacji WWW Wyszukiwanie i Przetwarzanie Informacji WWW Automatyczne zbieranie dokumentów WWW 2: Zagadnienia techniczne i przechowywanie Marcin Sydow PJWSTK Marcin Sydow (PJWSTK) Wyszukiwanie i Przetwarzanie Informacji

Bardziej szczegółowo

ROZDZIAŁ III: Stany nieustalone Temat 8 : Stan ustalony i nieustalony w obwodach elektrycznych.

ROZDZIAŁ III: Stany nieustalone Temat 8 : Stan ustalony i nieustalony w obwodach elektrycznych. OZDZIAŁ III: Stany niestalone Temat 8 : Stan stalony i niestalony w obwodach elektrycznych. Dotychczas rozpatrywane obwody elektryczne prd stałego i zmiennego rozpatrywane były w tzw. stanie stalonym.

Bardziej szczegółowo

Adres strony internetowej, na której Zamawiaj cy udost pnia Specyfikacj Istotnych Warunków Zamówienia: www.sar.gov.pl

Adres strony internetowej, na której Zamawiaj cy udost pnia Specyfikacj Istotnych Warunków Zamówienia: www.sar.gov.pl Ogoszenie na stron www, wg ogoszenia o zamówieniu BZP Adres strony internetowej, na której Zamawiajcy udostpnia Specyfikacj Istotnych Warunków Zamówienia: www.sar.gov.pl Gdynia: Budowa budynku stacji ratowniczej

Bardziej szczegółowo

Program Sprzeda wersja 2011 Korekty rabatowe

Program Sprzeda wersja 2011 Korekty rabatowe Autor: Jacek Bielecki Ostatnia zmiana: 14 marca 2011 Wersja: 2011 Spis treci Program Sprzeda wersja 2011 Korekty rabatowe PROGRAM SPRZEDA WERSJA 2011 KOREKTY RABATOWE... 1 Spis treci... 1 Aktywacja funkcjonalnoci...

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU

Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Komputerowa Ksiga Podatkowa Wersja 11.4 ZAKOCZENIE ROKU Przed przystpieniem do liczenia deklaracji PIT-36, PIT-37, PIT-O i zestawienia PIT-D naley zapozna si z objanieniami do powyszych deklaracji. Uwaga:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Android. Podstawy tworzenia aplikacji. Piotr Fulma«ski. March 4, 2015

Android. Podstawy tworzenia aplikacji. Piotr Fulma«ski. March 4, 2015 Android Podstawy tworzenia aplikacji Piotr Fulma«ski Instytut Nauk Ekonomicznych i Informatyki, Pa«stwowa Wy»sza Szkoªa Zawodowa w Pªocku, Polska March 4, 2015 Table of contents Framework Jednym z najwarto±ciowszych

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Wst p do obs ugi bazy danych Reaxys

Wst p do obs ugi bazy danych Reaxys Wst p do obs ugi bazy danych Reaxys Baza danych Reaxys pozwala na przeszukiwanie literatury z zakresu chemii, biologii i nauk pokrewnych. Przeszukiwanie literatury odbywa si mo e na ró nych drogach: -

Bardziej szczegółowo

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJ CEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2013

ARKUSZ EGZAMINACYJNY ETAP PRAKTYCZNY EGZAMINU POTWIERDZAJ CEGO KWALIFIKACJE ZAWODOWE CZERWIEC 2013 Zawód: technik rachunkowo ci Symbol cyfrowy zawodu: 412[01] Numer zadania: 2 Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu 412[01]-02-132 Czas trwania egzaminu: 240 minut

Bardziej szczegółowo