Lekcja 9 - LICZBY LOSOWE, ZMIENNE

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lekcja 9 - LICZBY LOSOWE, ZMIENNE"

Transkrypt

1 Lekcja 9 - LICZBY LOSOWE, ZMIENNE I STAŠE 1 Liczby losowe Czasami spotkamy si z tak sytuacj,»e b dziemy potrzebowa by program za nas wylosowaª jak ± liczb. U»yjemy do tego polecenia: - liczba losowa Sprawd¹my w praktyce jak dziaªa to polecenie. W programie (rys. 1) b dzie wy±wietlana na scenie liczba z przedzia- ªu <0;1) (mo»e zosta wylosowane 0, ale nie 1). Spróbujmy teraz stworzy program, który b dzie symulowaª rzut kostk, powiedzmy 5 razy. Pierwsze co nam si nasuwa to program jak na rys. 2. Rysunek 1: Wy±wietlanie losowej liczby Rysunek 2: Sumulacja rzutu kostk Jednak po uruchomieniu programu mo»emy zauwa»y,»e program losuje liczby od 0 do 5. Dzieje si tak poniewa» program losuje z po±ród pierwszych sze±ciu liczb. Jak wcze±niej wspominali±my, w przypadku wspóªrz dnych, w informatyce numerujemy od 0, nie od 1. W zwi zku z tym program losuje liczby od 0 do 5. Poprawmy program (rys. 3). 1

2 Rysunek 3: Sumulacja rzutu kostk - poprawiony Teraz program losuje liczby caªkowite z przedziaªu <1;6>. Poprawmy jeszcze nasz program by mi dzy wylosowanymi liczbami pojawiªy si przerwy - aby wynik dziaªania programu byª bardziej czytelny. Czyli potrzebujemy by nasz program pi razy wylosowaª liczb i zostawiª za ni lub przed ni puste pole. Najlepiej b dzie u»y w tym celu bloku polece«(gotowy program rys. 4). Rysunek 4: Sumulacja rzutu kostk - wersja ostateczna Puste pole to przedmiot nr 1, z banku przedmiotów nr 0. 2 Zmienne Co to jest zmienna? Zmienn mo»na wyobrazi sobie jako pudªo z nazw, do którego mo»na schowa warto± i mo»na jej pó¹niej u»y w programie. Zawsze trzeba rozró»nia mi dzy sam zmienn (tzn. nazwanym pudªem) i warto±ci zmiennej (tzn. zawarto±ci pudªa). denicja pochodzi z pomocy programu Baltie. 3 Podziaª zmiennych Podziaª zmiennych Zmienne dzielimy wedªug ich typów i wedªug ich zasi gu w programie. Podziaª wedªug typów: zmienne caªkowite - jasnoniebieskie 2

3 zmienne rzeczywiste - zielone zmienne tekstowe -»óªte Podziaª wedªug zasi gu: - widoczne ze wszyst- zmienne globalne (szuady) kich miejsc w programie zmienne lokalne (koszyki) - u»ywane tylko we fragmentach programu (niewidoczne dla reszty programu) 4 Wprowadzenie zmiennych By wprowadzi zmienn do programu u»ywamy polecenia: - nowy element Przeci gamy go do miejsca w programie, w którym chcemy wprowadzi zmienn. Pojawi si wtedy okno z wyborem typu i zasi gu zmiennej (rys. 5). Mo-»emy, klikaj c w odpowiedni ikon, zmieni typ oraz zasi g zmiennej. Spróbujmy wprowadzi pierwsz zmienn do programu. Zacznijmy od zmiennej sugerowanej przez program (zmienna caªkowita, o zasi gu globalnym, czyli jasnoniebieska szuada). Obok ikony zmiennej s dwie linie (rys. 6). W pierwszej linii wpisujemy nazw zmiennej (nasz zmienn nazwijmy A). Rysunek 5: Okno z wyborem typu zmiennej W drugiej linii mo»emy wpisa jej pocz tkow warto± (my zostawimy to pole puste). Zmiennej A w programie przypiszmy warto± losow oraz wy±wietlmy j na ekranie (gotowy program rys. 7). 3

4 Rysunek 6: Linie wyboru zmiennej Zastanówmy si dlaczego program zawsze wy±wietla na ekranie 0? Dzieje si tak poniewa» u»yli±my zmiennej caªkowitej, a nie rzeczywistej, wi c program obcinaª cz ±ci dziesi tne w wylosowanej liczbie. Nie b dziemy jednak zmienia rodzaju zmiennej, tylko zmienimy zakres losowanych liczb - od 1 do 9. Wprowad¹my te» dodatkow zmienn B, caªkowit do programu (rys. 8). Rysunek 7: Pierwszy program ze zmienn Rysunek 8: Program ze zmienn, losuj cy liczby caªkowite Teraz zmie«my program przypisuj c zmiennej B zmienion warto± zmiennej A - dodajmy do niej 5 i pomnó»my otrzyman sum 2 razy (Program po wprowadzonych zmianach rys. 9). Rysunek 9: Program ze zmiennymi, z przypisan warto±ci do zmiennej B Na koniec sprawmy by na naszej scenie, w czytelny sposób, byªy wy±wietlane obie wprowadzone zmienne (rys. 10). 4

5 Rysunek 10: Zmienne - gotowy program Dzi ki wy±wietleniu zmiennej A i B mo»emy sprawdzi poprawno± dzia- ªania programu, jest to wa»ne dla pocz tkuj cych programistów i dla sprawdzenia czy program robi to co chcieli±my uzyska 5 Zmiennie - ci gi znaków Stwórzmy podobny program do poprzedniego, tylko u»ywaj c zmiennych typu tekstowego (ci gi znaków). Zaplanujmy jak b dzie wygl daª nasz program: 1.Wprowad¹my do programu dwie zmiennie Kot o warto±ci pocz tkowej: Ala ma kota oraz zmienn Ry± (w nazwach zmiennych nie u»ywamy polskich liter, wi c zmienn nazywamy Rys) bez warto±ci pocz tkowej. 2. Do zmiennej Rys przypiszmy zmienn Kot oraz tekst: Sierotka ma rysia. 3. Wy±wietlmy obydwie zmienne na ekranie. Gotowy program powinien wygl da tak jak na rys. 11. Rysunek 11: Program wykorzystuj cy zmienne typu ci gi znaków 5

6 6 Staªe Wró my do okna wyboru typu zmiennej (rys. 12). Pierwsza linia zawiera zmienne, w których mo»emy przechowa przedmiot lub klawisz - jednak musimy zna ich numery przed ich wprowadzeniem do programu. Przy wyborze typu zmiennej oprócz szuad i koszyków s równie» dost pne ikony wst»ek - oznacza to wprowadzenie staªej do programu. Czym jest staªa? Staªa jest to element z nazw, którego warto± jest zawsze taka sama podczas caªego dziaªania programu. Staªych u»ywa si zamiast literaªów w programie - program staje si bardziej czytelny. Gªówna ró»nica mi dzy staª i literaªem jest taka, i» staªa ma sw nazw, podczas gdy literaª jest tylko warto±ci. Informacja pochodzi z pomocy programu Baltie Rysunek 12: Okno wyboru typu zmiennej 7 Podsumowanie - zmienne 1. Zmiennych mo»emy u»ywa w dowolnym miejscu programu. 2. W nazwach zmiennych nie u»ywamy polskich liter. 3. W zale»no±ci od naszych potrzeb u»ywamy ró»nych typów (kolorów) zmiennych. 8 Praca wªasna Przeczytaj i dowiedz si wi cej o bankach zmiennych. Mo»esz w tym celu wykorzysta pomoc programu Baltie. 6

Lekcja 9 Liczby losowe, zmienne, staªe

Lekcja 9 Liczby losowe, zmienne, staªe Lekcja 9 Liczby losowe, zmienne, staªe Akademia im. Jana Dªugosza w Cz stochowie Liczby losowe Czasami potrzebujemy by program za nas wylosowaª liczb. U»yjemy do tego polecenia liczba losowa: Liczby losowe

Bardziej szczegółowo

Lekcja 12 - POMOCNICY

Lekcja 12 - POMOCNICY Lekcja 12 - POMOCNICY 1 Pomocnicy Pomocnicy, jak sama nazwa wskazuje, pomagaj Baltiemu w programach wykonuj c cz ± czynno±ci. S oni szczególnie pomocni, gdy chcemy ci g polece«wykona kilka razy w programie.

Bardziej szczegółowo

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz

Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia

Bardziej szczegółowo

Lekcja 6 Programowanie - Zaawansowane

Lekcja 6 Programowanie - Zaawansowane Lekcja 6 Programowanie - Zaawansowane Akademia im. Jana Dªugosza w Cz stochowie Wst p Wiemy ju»: co to jest program i programowanie, jak wygl da programowanie, jak tworzy programy za pomoc Baltiego. Na

Bardziej szczegółowo

Lekcja 5 Programowanie - Nowicjusz

Lekcja 5 Programowanie - Nowicjusz Lekcja 5 Programowanie - Nowicjusz Akademia im. Jana Dªugosza w Cz stochowie Programowanie i program wedªug Baltiego Programowanie Programowanie jest najwy»szym trybem Baltiego. Z pomoc Baltiego mo»esz

Bardziej szczegółowo

Lekcja 3 Banki i nowe przedmioty

Lekcja 3 Banki i nowe przedmioty Lekcja 3 Banki i nowe przedmioty Akademia im. Jana Dªugosza w Cz stochowie Banki przedmiotów Co ju» wiemy? co to s banki przedmiotów w Baltie potramy korzysta z banków przedmiotów mo»emy tworzy nowe przedmioty

Bardziej szczegółowo

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p

Edyta Juszczyk. Akademia im. Jana Dªugosza w Cz stochowie. Lekcja 1Wst p Lekcja 1 Wst p Akademia im. Jana Dªugosza w Cz stochowie Baltie Baltie Baltie jest narz dziem, które sªu»y do nauki programowania dla dzieci od najmªodszych lat. Zostaª stworzony przez Bohumira Soukupa

Bardziej szczegółowo

Lekcja 3 - BANKI I NOWE PRZEDMIOTY

Lekcja 3 - BANKI I NOWE PRZEDMIOTY Lekcja 3 - BANKI I NOWE PRZEDMIOTY Wiemy ju» co to s banki przedmiotów i potramy z nich korzysta. Dowiedzieli±my si te»,»e mo»emy tworzy nowe przedmioty, a nawet caªe banki przedmiotów. Na tej lekcji zajmiemy

Bardziej szczegółowo

Lekcja 2 - BUDUJEMY I CZARUJEMY

Lekcja 2 - BUDUJEMY I CZARUJEMY Lekcja 2 - BUDUJEMY I CZARUJEMY Na tej lekcji dowiemy si, jak korzysta z trybów Budowania oraz Czarowania w programie Baltie. Troch ju» wiemy o tych dwóch trybach z poprzedniej lekcji, jednak przypomnijmy

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. 21 pa¹dziernika 2010. Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska 21 pa¹dziernika 2010 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

Bash i algorytmy. Elwira Wachowicz. 20 lutego

Bash i algorytmy. Elwira Wachowicz. 20 lutego Bash i algorytmy Elwira Wachowicz elwira@ifd.uni.wroc.pl 20 lutego 2012 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Bash i algorytmy 20 lutego 2012 1 / 16 Inne przydatne polecenia Polecenie Dziaªanie Przykªad

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania :: Roman Grundkiewicz :: 014 Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

Celem tego projektu jest stworzenie

Celem tego projektu jest stworzenie Prosty kalkulator Celem tego projektu jest stworzenie prostego kalkulatora, w którym użytkownik będzie podawał dwie liczby oraz działanie, które chce wykonać. Aplikacja będzie zwracała wynik tej operacji.

Bardziej szczegółowo

Zadania do wykonaj przed przyst!pieniem do pracy:

Zadania do wykonaj przed przyst!pieniem do pracy: wiczenie 3 Tworzenie bazy danych Biblioteka tworzenie kwerend, formularzy Cel wiczenia: Zapoznanie si ze sposobami konstruowania formularzy operujcych na danych z tabel oraz metodami tworzenia kwerend

Bardziej szczegółowo

Zastosowania matematyki

Zastosowania matematyki Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent

Bardziej szczegółowo

1. Wprowadzenie do C/C++

1. Wprowadzenie do C/C++ Podstawy Programowania - Roman Grundkiewicz - 013Z Zaj cia 1 1 rodowisko Dev-C++ 1. Wprowadzenie do C/C++ Uruchomienie ±rodowiska: Start Programs Developments Dev-C++. Nowy projekt: File New Project lub

Bardziej szczegółowo

Typy danych i formatowanie

Typy danych i formatowanie Typy danych i formatowanie Elwira Wachowicz elwira@ifd.uni.wroc.pl 28 marca 2013 Elwira Wachowicz (elwira@ifd.uni.wroc.pl) Typy danych i formatowanie 28 marca 2013 1 / 16 Sªowa kluczowe typów danych Pierwotne

Bardziej szczegółowo

Pracownia internetowa w szkole podstawowej (edycja 2004)

Pracownia internetowa w szkole podstawowej (edycja 2004) Instrukcja numer SPD1/02_01/Z Pracownia internetowa w szkole podstawowej (edycja 2004) Opiekun pracowni internetowej cz. 1 (PD1) Dost p do zasobów sieciowych serwera i stacji - Zadania Zadanie 1 Modyfikacja

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy

System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy System zarządzania bazą danych (SZBD) Proces przechodzenia od świata rzeczywistego do jego informacyjnej reprezentacji w komputerze nazywać będziemy modelowaniem, a pewien dobrze zdefiniowany sposób jego

Bardziej szczegółowo

Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions)

Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Alexander Bendikov Uniwersytet Wrocªawski 25 maja 2016 Elementarna statystyka Dwie próby: porównanie

Bardziej szczegółowo

Instrukcja poruszania się po stronie www.plusbus.pl krok po kroku. tak zwane ABC Plusika

Instrukcja poruszania się po stronie www.plusbus.pl krok po kroku. tak zwane ABC Plusika Instrukcja poruszania się po stronie www.plusbus.pl krok po kroku tak zwane ABC Plusika Spis treści 1. Rejestracja użytkownika 2. Kupno biletu 3. Wymiana biletu 4. Zwrot biletu 5. Doładowanie konta 6.

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi.

Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Mikro II: Krzywe kosztów, Poda» rmy i Poda» gaª zi. Krzysztof Makarski 22 Krzywe kosztów Wst p Celem jest wyprowadzenie funkcji poda»y i jej wªasno±ci. Funkcj poda»y wyprowadzamy z decyzji maksymalizuj

Bardziej szczegółowo

Jak spersonalizować wygląd bloga?

Jak spersonalizować wygląd bloga? Jak spersonalizować wygląd bloga? Czy wiesz, że każdy bloger ma możliwość dopasowania bloga do własnych preferencji? Wszystkie blogi posiadają tzw. skórkę czyli układ graficzny, który możesz dowolnie zmieniać.

Bardziej szczegółowo

System midzybankowej informacji gospodarczej Dokumenty Zastrzeone MIG DZ ver. 2.0. Aplikacja WWW ver. 2.1 Instrukcja Obsługi

System midzybankowej informacji gospodarczej Dokumenty Zastrzeone MIG DZ ver. 2.0. Aplikacja WWW ver. 2.1 Instrukcja Obsługi System midzybankowej informacji gospodarczej Dokumenty Zastrzeone MIG DZ ver. 2.0. Aplikacja WWW ver. 2.1 Instrukcja Obsługi 1.Wymagania techniczne 1.1. Wymagania sprztowe - minimalne : komputer PC Intel

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. November 9, Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska

Wst p do informatyki. Systemy liczbowe. Piotr Fulma«ski. November 9, Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska Wst p do informatyki Systemy liczbowe Piotr Fulma«ski Wydziaª Matematyki i Informatyki, Uniwersytet Šódzki, Polska November 9, 2015 Spis tre±ci 1 Liczby i ich systemy 2 Rodzaje systemów liczbowych Liczba

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Informatyka. z przedmiotu RACHUNEK PRAWDOPODOBIE STWA

Informatyka. z przedmiotu RACHUNEK PRAWDOPODOBIE STWA Informatyka Zbiór przykªadowych prac kontrolnych oraz przykªadowych zada«egzaminacyjnych z przedmiotu RACHUNEK PRAWDOPODOBIE STWA Sprawdzian 1, M09-02 Zadanie 1 (1p) W rzucie dwiema kostkami obliczy prawdopodobie«stwo

Bardziej szczegółowo

INSTRUKCJE WEJŚCIA I WYJŚCIA

INSTRUKCJE WEJŚCIA I WYJŚCIA INSTRUKCJE WEJŚCIA I WYJŚCIA Zadanie nr 1 Napisz algorytm za pomocą a i schematów blokowych. Algorytm ma wczytywać z klawiatury wartości dwóch liczb, obliczać sumę tych liczb i wyświetlać jej wartość na

Bardziej szczegółowo

Zarządzanie Zasobami by CTI. Instrukcja

Zarządzanie Zasobami by CTI. Instrukcja Zarządzanie Zasobami by CTI Instrukcja Spis treści 1. Opis programu... 3 2. Konfiguracja... 4 3. Okno główne programu... 5 3.1. Narzędzia do zarządzania zasobami... 5 3.2. Oś czasu... 7 3.3. Wykres Gantta...

Bardziej szczegółowo

Liczby zmiennoprzecinkowe

Liczby zmiennoprzecinkowe Liczby zmiennoprzecinkowe 1 Liczby zmiennoprzecinkowe Najprostszym sposobem reprezentowania liczb rzeczywistych byªaby reprezentacja staªopozycyjna: zakªadamy,»e mamy n bitów na cz ± caªkowit oraz m na

Bardziej szczegółowo

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym.

Zestaw 1 ZESTAWY A. a 1 a 2 + a 3 ± a n, gdzie skªadnik a n jest odejmowany, gdy n jest liczb parzyst oraz dodawany w przeciwnym. ZESTAWY A Zestaw 1 Organizacja plików: Wszystkie pliki oddawane do sprawdzenia nale»y zapisa we wspólnym folderze o nazwie b d cej numerem indeksu, umieszczonym na pulpicie. Oddajemy tylko ¹ródªa programów

Bardziej szczegółowo

ostatni dzień miesiąca (yyyy-mm-dd) miejsce zam. - ulica nr miejscowość wypełnienia oświadczenia

ostatni dzień miesiąca (yyyy-mm-dd) miejsce zam. - ulica nr miejscowość wypełnienia oświadczenia ostatni dzień miesiąca (yyyy-mm-dd) 2014 11 30 imię i nazwisko: miejsce zam. - ulica nr miejsce zam. - kod Miejscowość Imię nazwisko ul. Xxx nr kod miejscowość miejscowość wypełnienia oświadczenia miejscowość

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy.

1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy. 1 Klasy. Klasa to inaczej mówi c typ który podobnie jak struktura skªada si z ró»nych typów danych. Tworz c klas programista tworzy nowy typ danych, który mo»e by modelem rzeczywistego obiektu. 1.1 Denicja

Bardziej szczegółowo

GEO-SYSTEM Sp. z o.o. GEO-RCiWN Rejestr Cen i Wartości Nieruchomości Podręcznik dla uŝytkowników modułu wyszukiwania danych Warszawa 2007

GEO-SYSTEM Sp. z o.o. GEO-RCiWN Rejestr Cen i Wartości Nieruchomości Podręcznik dla uŝytkowników modułu wyszukiwania danych Warszawa 2007 GEO-SYSTEM Sp. z o.o. 02-732 Warszawa, ul. Podbipięty 34 m. 7, tel./fax 847-35-80, 853-31-15 http:\\www.geo-system.com.pl e-mail:geo-system@geo-system.com.pl GEO-RCiWN Rejestr Cen i Wartości Nieruchomości

Bardziej szczegółowo

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe

wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe wiczenie 1 Podstawy j zyka Java. Instrukcje warunkowe 1 Wprowadzenie 1.1 rodowisko programistyczne NetBeans https://netbeans.org/ 1.2 Dokumentacja j zyka Java https://docs.oracle.com/javase/8/docs/api/

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Wtedy wystarczy wybrać właściwego Taga z listy.

Wtedy wystarczy wybrać właściwego Taga z listy. Po wejściu na stronę pucharino.slask.pl musisz się zalogować (Nazwa użytkownika to Twój redakcyjny pseudonim, hasło sam sobie ustalisz podczas procedury rejestracji). Po zalogowaniu pojawi się kilka istotnych

Bardziej szczegółowo

Edytor tekstu OpenOffice Writer Podstawy

Edytor tekstu OpenOffice Writer Podstawy Edytor tekstu OpenOffice Writer Podstawy Cz. 5. Tabulatory i inne funkcje edytora OpenOffice Writer Tabulatory umożliwiają wyrównanie tekstu do lewej, do prawej, do środka, do znaku dziesiętnego lub do

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Konfiguracja programu Outlook 2007 do pracy z nowym serwerem poczty (Exchange)

Konfiguracja programu Outlook 2007 do pracy z nowym serwerem poczty (Exchange) IBIB PAN, 2014-07-21 Konfiguracja programu Outlook 2007 do pracy z nowym serwerem poczty (Exchange) 1. Otwieramy Panel Sterowania, przełączamy Widok na Duże ikony (przełączanie widoków znajduje się w prawym

Bardziej szczegółowo

Ćwiczenie 6.5. Otwory i śruby. Skrzynia V

Ćwiczenie 6.5. Otwory i śruby. Skrzynia V Ćwiczenie 6.5. Otwory i śruby. Skrzynia V W tym ćwiczeniu wykonamy otwory w wieku i w pudle skrzyni, w które będą wstawione śruby mocujące zawiasy do skrzyni. Następnie wstawimy osiem śrub i spróbujemy

Bardziej szczegółowo

Użytkowanie elektronicznego dziennika UONET PLUS.

Użytkowanie elektronicznego dziennika UONET PLUS. Użytkowanie elektronicznego dziennika UONET PLUS. Po wejściu na stronę https://uonetplus.vulcan.net.pl/bialystok i zalogowaniu się na swoje konto (przy użyciu adresu e-mail podanego wcześniej wychowawcy

Bardziej szczegółowo

INFORMATOR TECHNICZNY WONDERWARE

INFORMATOR TECHNICZNY WONDERWARE Informator techniczny nr 95 04-06-2007 INFORMATOR TECHNICZNY WONDERWARE Synchronizacja czasu systemowego na zdalnych komputerach względem czasu systemowego na komputerze z serwerem Wonderware Historian

Bardziej szczegółowo

Ekonometria - wykªad 8

Ekonometria - wykªad 8 Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana

Bardziej szczegółowo

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny:

Zadanie 1. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Matematyka ubezpieczeń majątkowych 5.2.2008 r. Zadanie. Liczba szkód w każdym z trzech kolejnych lat dla pewnego ubezpieczonego ma rozkład równomierny: Pr ( N = k) = 0 dla k = 0,, K, 9. Liczby szkód w

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

INSTRUKCJA Panel administracyjny

INSTRUKCJA Panel administracyjny INSTRUKCJA Panel administracyjny Konto trenera Spis treści Instrukcje...2 Opisy...3 Lista modułów głównych...3 Moduł szkoleniowy...4 Dodaj propozycję programu szkolenia...4 Modyfikuj arkusz wykładowcy...6

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Platforma Aukcyjna Marketplanet. Podręcznik Oferenta. Aukcja dynamiczna zniŝkowa

Platforma Aukcyjna Marketplanet. Podręcznik Oferenta. Aukcja dynamiczna zniŝkowa Platforma Aukcyjna Marketplanet Podręcznik Oferenta Aukcja dynamiczna zniŝkowa (c) 2008 Otwarty Rynek Elektroniczny S.A. 1. Spis treści 1. SPIS TREŚCI... 2 2. WSTĘP... 3 3. LOGOWANIE DO SYSTEMU... 3 4.

Bardziej szczegółowo

Warstwy. 1. MenedŜer warstw ROZDZIAŁ 7.

Warstwy. 1. MenedŜer warstw ROZDZIAŁ 7. ROZDZIAŁ 7. Warstwy Zapewne jeszcze pami tasz czasy przezroczystych folii, na których kreśliłeś poszczególne elementy rysunku, na jednej np. kontury brył, na drugiej opisy, a na trzeciej wymiary. Praca

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą.

Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą. Metoda LBL (ang. Layer by Layer, pol. Warstwa Po Warstwie). Jest ona metodą najprostszą. Po pierwsze - notacja - trzymasz swoją kostkę w rękach? Widzisz ścianki, którymi można ruszać? Notacja to oznaczenie

Bardziej szczegółowo

Zaznaczając checkbox zapamiętaj program zapamięta twoje dane logowania. Wybierz cmentarz z dostępnych na rozwijalnej liście.

Zaznaczając checkbox zapamiętaj program zapamięta twoje dane logowania. Wybierz cmentarz z dostępnych na rozwijalnej liście. 1. Uruchomienie programu. 1.1. Odszukaj na pulpicie ikonę programu i uruchom program klikają dwukrotnie na ikonę. 1.2. Zaloguj się do programu korzystając ze swego loginu i hasła Zaznaczając checkbox zapamiętaj

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

Model obiektu w JavaScript

Model obiektu w JavaScript 16 marca 2009 E4X Paradygmat klasowy Klasa Deniuje wszystkie wªa±ciwo±ci charakterystyczne dla wybranego zbioru obiektów. Klasa jest poj ciem abstrakcyjnym odnosz cym si do zbioru, a nie do pojedynczego

Bardziej szczegółowo

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.),

art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny (Dz. U. Nr 16, poz. 93 ze zm.), Istota umów wzajemnych Podstawa prawna: Księga trzecia. Zobowiązania. Dział III Wykonanie i skutki niewykonania zobowiązań z umów wzajemnych. art. 488 i n. ustawy z dnia 23 kwietnia 1964 r. Kodeks cywilny

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny

Wojewódzki Konkurs Matematyczny Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY 16 listopada 2012 Czas 90 minut Instrukcja dla Ucznia 1. Otrzymujesz do rozwi zania 10 zada«zamkni tych oraz 5 zada«otwartych. 2. Obok

Bardziej szczegółowo

obsług dowolnego typu formularzy (np. formularzy ankietowych), pobieranie wzorców formularzy z serwera centralnego,

obsług dowolnego typu formularzy (np. formularzy ankietowych), pobieranie wzorców formularzy z serwera centralnego, Wstp GeForms to program przeznaczony na telefony komórkowe (tzw. midlet) z obsług Javy (J2ME) umoliwiajcy wprowadzanie danych według rónorodnych wzorców. Wzory formularzy s pobierane z serwera centralnego

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki

Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki Wst p teoretyczny do wiczenia nr 3 - Elementy kombinatoryki 1 Zadania na wiczenia nr 3 - Elementy kombinatoryki Zad. 1. Ile istnieje ró»nych liczb czterocyfrowych zakªadaj c,»e cyfry nie powtarzaj si a

Bardziej szczegółowo

Specyfikacja techniczna banerów Flash

Specyfikacja techniczna banerów Flash Specyfikacja techniczna banerów Flash Po stworzeniu własnego banera reklamowego należy dodać kilka elementów umożliwiających integrację z systemem wyświetlającym i śledzącym reklamy na stronie www. Specyfikacje

Bardziej szczegółowo

, dnia roku (miejscowość)

, dnia roku (miejscowość) Niniejszy formularz po wypełnieniu i podpisaniu zgodnie z instrukcjami w nim zawartymi, wraz z oryginałami lub uwierzytelnionych kopiami dokumentów potwierdzającymi poprawność reprezentacji Akcjonariusza,

Bardziej szczegółowo

OptiMore Importer Rejestru VAT. Instrukcja obsługi programu

OptiMore Importer Rejestru VAT. Instrukcja obsługi programu OptiMore Importer Rejestru VAT Instrukcja obsługi programu Wstęp Program OptiMore Importer Rejestru VAT jest przeznaczony do importowania wpisów do rejestru VAT na podstawie danych zawartych w pliku źródłowym.

Bardziej szczegółowo

Android. Podstawy tworzenia aplikacji. Piotr Fulma«ski. March 4, 2015

Android. Podstawy tworzenia aplikacji. Piotr Fulma«ski. March 4, 2015 Android Podstawy tworzenia aplikacji Piotr Fulma«ski Instytut Nauk Ekonomicznych i Informatyki, Pa«stwowa Wy»sza Szkoªa Zawodowa w Pªocku, Polska March 4, 2015 Table of contents Framework Jednym z najwarto±ciowszych

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup

Baltie 3. Podręcznik do nauki programowania dla klas I III gimnazjum. Tadeusz Sołtys, Bohumír Soukup Baltie 3 Podręcznik do nauki programowania dla klas I III gimnazjum Tadeusz Sołtys, Bohumír Soukup Czytanie klawisza lub przycisku myszy Czytaj klawisz lub przycisk myszy - czekaj na naciśnięcie Polecenie

Bardziej szczegółowo

VinCent Office. Moduł Drukarki Fiskalnej

VinCent Office. Moduł Drukarki Fiskalnej VinCent Office Moduł Drukarki Fiskalnej Wystawienie paragonu. Dla paragonów definiujemy nowy dokument sprzedaży. Ustawiamy dla niego parametry jak podano na poniższym rysunku. W opcjach mamy możliwość

Bardziej szczegółowo

Zaloguj się do Moje GS1. wprowadź dane o swoich lokalizacjach w mniej niż 5 minut!

Zaloguj się do Moje GS1. wprowadź dane o swoich lokalizacjach w mniej niż 5 minut! Zaloguj się do Moje GS1 0 wprowadź dane o swoich lokalizacjach w mniej niż 5 minut! WSTĘP DO MOJE GS1 (1) MOJE GS1 to przyjazne w obsłudze narzędzie do tworzenia i zarządzania numerami GTIN i GLN posiadające

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:

PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych: Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow

Bardziej szczegółowo

Pracownia internetowa w ka dej szkole (edycja 2004/2005)

Pracownia internetowa w ka dej szkole (edycja 2004/2005) Instrukcja numer SPD3/15_04/Z3 Pracownia internetowa w ka dej szkole (edycja 2004/2005) Opiekun pracowni internetowej cz. 3 Komunikatory internetowe - MS Messenger (PD3) Do czego s u y MSN Messenger? Wi

Bardziej szczegółowo

Zastanawiałeś się może, dlaczego Twój współpracownik,

Zastanawiałeś się może, dlaczego Twój współpracownik, Kurs Makra dla początkujących Wiadomości wstępne VBI/01 Piotr Dynia, specjalista ds. MS Office Czas, który poświęcisz na naukę tego zagadnienia, to 15 20 minut. Zastanawiałeś się może, dlaczego Twój współpracownik,

Bardziej szczegółowo

PERSON Kraków 2002.11.27

PERSON Kraków 2002.11.27 PERSON Kraków 2002.11.27 SPIS TREŚCI 1 INSTALACJA...2 2 PRACA Z PROGRAMEM...3 3. ZAKOŃCZENIE PRACY...4 1 1 Instalacja Aplikacja Person pracuje w połączeniu z czytnikiem personalizacyjnym Mifare firmy ASEC

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

Zad.1 Pokazać pierwszeństwo trybu odmów przed zezwalaj.

Zad.1 Pokazać pierwszeństwo trybu odmów przed zezwalaj. Sprawozdanie 2 Zad.1 Pokazać pierwszeństwo trybu odmów przed zezwalaj. Ilustracja 1: Przy próbie zapisu pliku odmówiono dostępu mimo że administratorzy mają jawnie zezwalaj Zad. 2 Pokazać pierwszeństwo

Bardziej szczegółowo

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9

Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Instrukcja obsługi programu Pilot PS 5rc

Instrukcja obsługi programu Pilot PS 5rc Instrukcja obsługi programu Pilot PS 5rc Spis treci 1.Wprowadzenie....3 2. Wymagania....3 3. Instalacja oprogramowania...3 4. Uruchomienie Programu...5 4.1. Menu główne...5 4.2. Zakładki...6 5. Praca z

Bardziej szczegółowo

Spring MVC Andrzej Klusiewicz 1/18

Spring MVC Andrzej Klusiewicz 1/18 Spring MVC pierwsza aplikacja Kod źródłowy aplikacji którą tworzę w niniejszym kursie jest do pobrania z adresu: http://www.jsystems.pl/storage/spring/springmvc1.zip Aplikacja jest tworzona w NetBeans,

Bardziej szczegółowo

Dyskretyzacja i kwantyzacja obrazów

Dyskretyzacja i kwantyzacja obrazów Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Dyskretyzacja i kwantyzacja obrazów 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z procesami dyskretyzacji i kwantyzacji, oraz ze zjawiskami

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Rozliczenia z NFZ. Ogólne założenia. Spis treści

Rozliczenia z NFZ. Ogólne założenia. Spis treści Rozliczenia z NFZ Spis treści 1 Ogólne założenia 2 Generacja raportu statystycznego 3 Wczytywanie raportu zwrotnego 4 Szablony rachunków 4.1 Wczytanie szablonów 4.2 Wygenerowanie dokumentów rozliczenia

Bardziej szczegółowo

przewidywania zapotrzebowania na moc elektryczn

przewidywania zapotrzebowania na moc elektryczn do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)

Bardziej szczegółowo

Instalacja. Zawartość. Wyszukiwarka. Instalacja... 1. Konfiguracja... 2. Uruchomienie i praca z raportem... 4. Metody wyszukiwania...

Instalacja. Zawartość. Wyszukiwarka. Instalacja... 1. Konfiguracja... 2. Uruchomienie i praca z raportem... 4. Metody wyszukiwania... Zawartość Instalacja... 1 Konfiguracja... 2 Uruchomienie i praca z raportem... 4 Metody wyszukiwania... 6 Prezentacja wyników... 7 Wycenianie... 9 Wstęp Narzędzie ściśle współpracujące z raportem: Moduł

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

1. Podstawy budowania wyra e regularnych (Regex)

1. Podstawy budowania wyra e regularnych (Regex) Dla wi kszo ci prostych gramatyk mo na w atwy sposób napisa wyra enie regularne które b dzie s u y o do sprawdzania poprawno ci zda z t gramatyk. Celem niniejszego laboratorium b dzie zapoznanie si z wyra

Bardziej szczegółowo