Ciało liczb zespolonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ciało liczb zespolonych"

Transkrypt

1 Ciało liczb zespolonych

2 Twierdzenie: Niech C = R 2.Wzbiorze Cokreślamydodawanie: oraz mnożenie: (a,b) + (c,d) = (a +c,b +d) (a,b) (c,d) = (ac bd,ad +bc). Wówczas (C, +, ) jest ciałem, w którym elementem neutralnym dodawania jest (0, 0), a elementem neutralnym mnożenia jest (1,0).

3 Dowód: Pokażemy dla przykładu, że każdy (0, 0) element ma element odwrotny względem mnożenia. Niech (0,0) (a,b) C. Rozważmy element: ( a b ) a 2 +b 2, a 2 +b 2 C. Wówczas ( a (a,b) b ) ( a 2 +b 2 ) ab a 2 +b 2, a 2 +b 2 = a 2 +b2,ab a 2 +b 2 = (1,0).

4 Definicja: Ciało (C, +, ) nazywamy ciałem liczb zespolonych. Zwyczajowopiszemya +ibzamiast (a,b)orazazamiast (a,0). Liczbę a nazywamy częścią rzeczywistą liczby a + bi i oznaczamy R(a +bi). Liczbębnazywamyczęściąurojonąliczbya +biioznaczamy I(a +bi).

5 Przykłady: 1. Sprawdzamy, że: (1 i) + (4 +7i) =5 +6i, ( 1 +3i) (2 5i) = (( 1) 2 3 ( 5)) + (( 1) ( 5) +3 2)i =13 +11i, 1+3i 2+5i = ( 1 +3i) (2 +5i) 1 = ( 1 +3i) ( i) =10 29.

6 2.Podobniesprawdzamy,żei i = 1.

7 Uwaga: Ponieważ, jak zauważyliśmy, i i = 1, intuicyjnie przyjmujemy 1 =i.

8 Definicja: Niechz=a +bi C. Liczbąsprzężonązliczbąznazywamyliczbęz =a bi.

9 Przykład: 3.Wprostzdefinicjiwidzimy,że1 +2i =1 2i.

10 Twierdzenie: Niechz,w C.Wówczas: 1.z +w =z+w, 2.z w =z w, 3.z w =z w, z 4. w = z w,oilew 0.

11 Dowód: Pokażemy dla przykładu własność(4). Niechz=a +bi,w =c+di. Wówczas skąd z w =a +bi c +di Z drugiej strony = (a +bi)(c di) c 2 +d 2 = z w +bd ad =ca c 2 cb +d2 c 2 +d 2i. ca +bd ad c 2 +cb +d2 c 2 +d 2i, z w =a bi c di = (a bi)(c +di) c 2 +d 2 = ca +bd ad c 2 cb +d2 c 2 +d 2i.

12 Definicja: Niechz=a +bi C. Wartością bezwzględną(albo modułem) liczby z nazywamy liczbęrzeczywistą z = a 2 +b 2.

13 Przykład: 4.Wprostzdefinicjiwidzimy,że 3 +4i = =5.

14 Twierdzenie: Niechz,w C.Wówczas: 1. z w = odległośćmiędzypunktamiziw, 2. z w = z w, 3. z 2 =z z.

15 Dowód: Niechz=a +bi,w =c+di. 1. Wprost z definicji modułu: z w = (a c) + (b d)i = (a c) 2 + (b d) 2, co, z kolei, jest dokładnie równe odległości między punktami o współrzędnych (a, b) i (c, d).

16 2. Podobnie jak w punkcie(1) otrzymujemy: z w = (ac bd) + (ad +bc)i = a 2 c 2 2abcd +b 2 d 2 +a 2 d 2 +2abcd +b 2 c 2 = a 2 (c 2 +d 2 ) +b 2 (c 2 +d 2 ) = a 2 +b 2 c 2 +d 2 = z w.

17 3. Podobnie jak w poprzednich punktach: z 2 =a 2 +b 2 = (a +bi) (a bi) =z z.

18 Definicja: Niechz=a +bi C. Niech (r,φ)będątakimiliczbami,żea =rcos φ,b=rsinφ: (tj. niech (r, φ)) będą współrzędnymi biegunowymi punktu (a, b)), awięcniech z =rcos φ +irsinφ =r(cos φ +isinφ).

19 Przedstawienie to nazywamy postacią trygonometryczną z. Kąt skierowany φ nazywamy argumentem z i oznaczamy arg(z). Kątskierowany θ [0,2π)taki,że cos θ =cosarg(z)isinθ =sinarg(z) nazywamy argumentem głównym liczby z i oznaczamy Arg(z).

20 Przykłady: 5.Rozważmyliczbęz=1 +i,czylipunktowspółrzędnych (1, 1) na płaszczyźnie zespolonej: Zrysunkułatwoodczytujemy,żer = 2,zaśprzykładowa wartośćkąta φto π 4.

21 Wszczególnościargumentgłównyliczbyz =1 +itoarg(z) = π 4. Argumentami arg(z) tej liczby mogą też być, na przykład, liczby 9π 4, 17π 4, 25π 4 itd.jakoże i równocześnie sin π 4 =sin9π 4 =sin17π 4 =sin25π 4 cos π 4 =cos9π 4 =cos17π 4 =cos25π 4. Tym samym przykładowe postaci trygonometryczne liczby z =1 +ito z = ( 2 cos π 4 +isin π ) = ( 2 cos 9π ) 4 4 +isin9π =... 4

22 6.Rozważmyliczbęz= 3 i,czylipunktowspółrzędnych ( 3, 1)napłaszczyźniezespolonej: Zrysunkułatwoodczytujemy,żer =2,zaśprzykładowa wartośćkąta φto 11π 6.

23 Wszczególnościargumentgłównyliczbyz = 3 ito Arg(z) = 11π 6. Argumentami arg(z) tej liczby mogą też być, na przykład, liczby 23π 6, 35π 6, 47π 6 itd.jakoże i równocześnie sin 11π 6 =sin23π 6 =sin35π 6 =sin47π 6 cos 11π 6 =cos23π 6 =cos35π 6 =cos47π 6. Tym samym przykładowe postaci trygonometryczne liczby z = 3 ito ( z =2 cos 11π ) ( 6 +isin11π =2 cos 23π ) 6 6 +isin23π =... 6

24 Twierdzenie: Niechz 1 =r 1 (cos φ 1 +isinφ 1 ),z 2 =r 2 (cos φ 2 +isinφ 2 ) C. Wówczas: 1.z 1 z 2 =r 1 r 2 [cos(φ 1 + φ 2 ) +isin(φ 1 + φ 2 ), z 2. 1 z 2 = r 1 r2 [cos(φ 1 φ 2 ) +isin(φ 1 φ 2 )],oilez 2 0, 1 3. z 1 = 1 r 1 (cos φ 1 isinφ 1 ),oilez 2 0.

25 Dowód: Wzorytewynikająwprostzewzorównasumyiróżnicefunkcji trygonometrycznych znane ze szkoły średniej. Udowodnimy dla przykładu własność(1): z 1 z 2 = r 1 r 2 [(cos φ 1 +isinφ 1 )(cos φ 2 +isinφ 2 )] = r 1 r 2 [(cos φ 1 cos φ 2 sinφ 1 sinφ 2 )] + i(cos φ 1 sinφ 2 +sinφ 1 cos φ 2 )] = r 1 r 2 [cos(φ 1 + φ 2 ) +isin(φ 1 + φ 2 )].

26 Przykład: 7.Rozważmypostaćtrygonometrycznąliczby (1 +i)( 3 i). W poprzednich przykładach sprawdziliśmy, że 1 +i = ( 2 cos π 4 +isin π ) 4 oraz 3 i =2 (cos 11π ) 6 +isin11π. 6 Wobectegopostaćtrygonometrzycznaliczby (1 +i)( 3 i) to: 2 2(cos 25π 12 +isin25π 12 ).

27 Zauważmy przy tym, że wobec czego 25π 12 =24π 12 + π 12 =2π + π 12 cos 24π 12 =cos π 12 orazsin24π 12 =sin π 12 iliczbę (1 +i)( 3 i)możemyteżzapisaćjako (1 +i)( 3 i) =2 2(cos π 12 +isin π 12 ).

28 Tym samym posługując się postacią trygonometryczną liczb zespolonych możemy wyznaczyć dokładne wartości funkcji trygonometrycznychkąta π 12.Istotnie: (1 +i)( 3 i) = ( 3 +1) + ( 3 1)i = 2 ( ) i = 2 ( ) i, 4 4 co po porównaniu z postacią trygonometryczną liczby (1 +i)( 3 i)daje cos π 12 = orazsin π =. 4

29 Wniosek(wzory de Moivre a): Niechz=r(cos φ +isinφ) C,niechn N. Wówczasz n =r n (cosnφ +isinnφ).

30 Przykład: 8. Przy pomocy wzorów de Moivre a potęgowanie potrafi być naprawdę szybkie. Obliczmydlaprzykładu (1 +i) 10. Sprawdziliśmy już, że 1 +i = ( 2 cos π 4 +isin π ). 4 Wobec tego (1 +i) 10 =32 ( cos 10π ) 4 +isin10π. 4

31 Ale z drugiej strony iwobectego 10π 4 =8π 4 +2π 4 =2π + π 2 cos 10π 4 =cos π 2 orazsin10π 4 =sin π 2 iliczbę (1 +i) 10 możemyzapisaćjako ( (1 +i) 10 =32 cos π 2 +isin π ) =32(0 +1i) =32i. 2

32 Twierdzenie: Niechz=r(cos φ +isinφ) C,niechn N. Wówczas z ma n różnych pierwiastków stopnia n danych wzorem ( w k = n r cos φ +2kπ +isin φ +2kπ ), n n gdziek {0,1,...,n 1}.

33 Dowód: Niechw Cbędzietakąliczbą,żew n =ziniech w =s(cos θ +isinθ). Wówczass n (cosnθ +isinnθ) =r(cos φ +isinφ),skąds= n r oraz cosnθ =cos φisinnθ =sinφ. Tym samym, wobec okresowości funkcji cos i sin awięc θ = φ+2kπ n,dlak N. nθ = φ +2kπ,dlak N,

34 Zauważmyjednak,żedlak n: φ +2kπ n = φ +2(n + l)π n = φ +2nπ +2lπ n =2π + φ +2lπ, n skąd cos φ +2kπ n =cos φ +2lπ n isin φ +2kπ n =sin φ +2lπ. n Wobec tego otrzymujemy tylko n różnych liczb i wystarczy rozpatrywaćk {0,...,n 1}.

35 Przykład: 9. Wyznaczymy wszystkie pierwiastki stopnia 6 z liczby 2. Sprawdzamy, że 2 =2( 1 +0i) =2(cos π +isinπ). Wobectegopierwiastkistopnia6z 2wyrażąsię następującymi wzorami: w 0 = 6 ( 2 cos π 6 +isin π ) ( ) = i1 2 w 1 = 6 ( 2 cos 3π ) 6 +isin3π = 6 ( 2 cos π 6 2 +isin π ) 2 = 6 2 (0 +i1) = 6 2i

36 w 2 = 6 ( 2 cos 5π 6 +isin5π 6 = 6 [ ( 2 cos π π ) +isin 6 = 6 ( 2 cos π 6 +isin π ) = ) w 3 = 6 ( 2 ) ( π π )] ( 6 cos 7π 6 +isin7π 6 = 6 [ ( 2 cos π + π ) +isin 6 = 6 ( 2 cos π 6 isin π ) = ( π + π )] ( 6 ) 3 2 +i1 2 ) 3 2 i1 2

37 w 4 = 6 ( 2 cos 9π 6 +isin9π 6 = 6 2 [cos (2π + π) +isin(2π + π)] = 6 2 (cos π +isinπ) = 6 2 ( 1 +i0) = 6 2 w 5 = 6 ( 2 cos 11π ) 6 +isin11π 6 = 6 [ ( 2 cos 2π π ) ( +isin 2π π )] 6 6 = 6 ( 2 cos π 6 isin π ) ( ) = i1. 2 )

38 cos(φ 1 + φ 2 ) = cos φ 1 cos φ 2 sinφ 1 sinφ 2 sin(φ 1 + φ 2 ) = cos φ 1 sinφ 2 +sinφ 1 cos φ 2 cos(π α) = cos α sin(π α) = sinα cos(π + α) = cos α sin(π + α) = sinα

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

Liczby zespolone C := R 2.

Liczby zespolone C := R 2. C := R 2. R 2 (a, b) = (a, 0) + (0, b) = a (1, 0) + b (0, 1). R C, R x (x, 0) C. i := (0, 1), 1 = (1, 0) (a, b) = a(1, 0) + b(0, 1) = a + bi. R 2 (a, b) = z = a + bi C. a- część rzeczywista liczby zespolonej

Bardziej szczegółowo

Skąd się biorą i jak należy rozumieć liczby zespolone

Skąd się biorą i jak należy rozumieć liczby zespolone Skąd się biorą i jak należy rozumieć liczby zespolone Ryszard Rębowski 27 października 2016 1 Wstęp Zbiór liczb rzeczywistych R ma ważną w zastosowaniach, dobrze znaną własność każde dwie liczby rzeczywiste

Bardziej szczegółowo

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.

Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,

Bardziej szczegółowo

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki

Spis treści Wstęp Liczby zespolone Funkcje elementarne zmiennej zespolonej Wielomiany Macierze i wyznaczniki Spis treści Wstęp ii 1 Liczby zespolone 1 1.1 Definicja i działania, liczby sprzężone......................... 1 1.2 Moduł, argument, postać trygonometryczna..................... 2 1.3 Działania na liczbach

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Rozwiązywanie równań sześciennych - wzory Cardana Każde równanie sześcienne można sprowadzić

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Matematyka (Materiały dydaktyczne) Aleksander Błaszczyk

Matematyka (Materiały dydaktyczne) Aleksander Błaszczyk Niniejsza publikacja została przygotowana w ramach realizacji projektu Innowacyjne specjalności na kierunku Informatyka w Wyższej Szkole Biznesu w Dąbrowie Górniczej, Program Operacyjny Kapitał Ludzki,

Bardziej szczegółowo

1 Działania na macierzach

1 Działania na macierzach 1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5

Bardziej szczegółowo

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy,

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy, Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy, że i = 1 zaś a i b sa liczbami rzeczywistymi. Suma liczb

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

PRZEWODNIK DO ĆWICZEŃ Z ALGEBRY. dla studentów Wydziału Elektrycznego. ELŻBIETA KASPERSKA, ANDRZEJ KASPERSKI wersja robocza

PRZEWODNIK DO ĆWICZEŃ Z ALGEBRY. dla studentów Wydziału Elektrycznego. ELŻBIETA KASPERSKA, ANDRZEJ KASPERSKI wersja robocza PRZEWODNIK DO ĆWICZEŃ Z ALGEBRY dla studentów Wydziału Elektrycznego ELŻBIETA KASPERSKA, ANDRZEJ KASPERSKI wersja robocza I. Relacje Definicja Mówimy, że w zbiorze Ω określiliśmy parę uporządkowaną, jeżli

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

Repetytorium. Zajęcia w semestrze zimowym 2012/2013. Ewa Cygan

Repetytorium. Zajęcia w semestrze zimowym 2012/2013. Ewa Cygan Repetytorium Zajęcia w semestrze zimowym 01/013 Ewa Cygan Wersja z 15 stycznia 013 Zestawy zadań na kolejne ćwiczenia Na najbliższe zajęcia (11.10.) proszę o rozwiązanie (bądź powtórzenie sobie rozwiązań

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?

1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

ciałem F i oznaczamy [L : F ].

ciałem F i oznaczamy [L : F ]. 11. Wykład 11: Baza i stopień rozszerzenia. Elementy algebraiczne i przestępne. Rozszerzenia algebraiczne i skończone. 11.1. Baza i stopień rozszerzenia. Uwaga 11.1. Niech F będzie ciałem, L rozszerzeniem

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Czworościany ortocentryczne zadania

Czworościany ortocentryczne zadania Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Weronika Siwek, Układ biegunowy, płaszczyzna Gaussa i nie tylko... 1

Weronika Siwek, Układ biegunowy, płaszczyzna Gaussa i nie tylko... 1 Weronika Siwek, Układ biegunowy, płaszczyzna Gaussa i nie tylko... Spis treści. Badanie przebiegu zmienności funkcji.................. Co i jak, czyli trochę teorii........................ Przykłady................................

Bardziej szczegółowo

10 zadań związanych z granicą i pochodną funkcji.

10 zadań związanych z granicą i pochodną funkcji. 0 zadań związanych z granicą i pochodną funkcji Znajdź przedziały monotoniczności funkcji f() 4, określonej dla (0,) W przedziale ( 0,) wyrażenie 4 przyjmuje wartości ujemne, dlatego dla (0,) funkcja f()

Bardziej szczegółowo

TRÓJKĄTY CIĘCIW. Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie

TRÓJKĄTY CIĘCIW. Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie TRÓJKĄTY CIĘCIW Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie Spis treści 1. Zapoznanie z zagadnieniem 1.1. Co to jest trójkąt cięciw? 2. Twierdzenia dotyczące trójkątów

Bardziej szczegółowo

1 Zbiory i odwzorowania

1 Zbiory i odwzorowania MATEMATYKA biory i odwzorowania Liczby zespolone 4 4 Macierze, wyznaczniki, układy równań liniowych 6 6 Algebra liniowa Wektory w przestrzeni. Prosta i płaszczyzna w przestrzeni 6 6 Ciagi i szeregi liczbowe

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 78353 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 4 jest

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1 Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0

Wykład I. Literatura. Oznaczenia. ot(x 0 ) zbiór wszystkich otoczeń punktu x 0 Wykład I Literatura Podręczniki 1. G. M. Fitherholz Rachunek różniczkowy i całkowy 2. W. Żakowski Matematyka tom I Zbiory zadań 1. W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach tom I i II

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z matematyki poziom podstawowy rozumowanie i argumentacja karty pracy ZESTAW II Zadanie. Wiadomo, że,7 jest przybliżeniem liczby 0,5 z zaokrągleniem do miejsc po przecinku. Wyznacz przybliżenie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 04/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-R CZERWIEC 0 Klucz punktowania zadań zamkniętych Nr zad. 3

Bardziej szczegółowo

1 Funkcje i ich granice

1 Funkcje i ich granice Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani

Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L 2 (R) to funkcje na prostej spełniające

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

Rozwiązania zadań otwartych i schematy punktowania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Rozwiązania zadań otwartych i schematy punktowania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D D B C B B A A A D C D C D B A C A C Zadanie. (pkt) Rozwiąż nierówność

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa I (poziom podstawowy) wg programu nauczania Matematyka Prosto do matury LICZBY RZECZYWISTE Na poziomie wymagań koniecznych - na ocenę dopuszczającą (2) uczeń potrafi: zamieniać ułamek zwykły na ułamek dziesiętny podać przykłady liczb niewymiernych podać przybliżenie dziesiętne

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Wykład 1. Przestrzeń Hilberta

Wykład 1. Przestrzeń Hilberta Wykład 1. Przestrzeń Hilberta Sygnały. Funkcje (w języku inżynierów - sygnały) które będziemy rozważali na tym wykładzie będą kilku typów Sygnały ciągłe (analogowe). ) L (R) to funkcje na prostej spełniające

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej

Całki podwójne. Definicja całki podwójnej. Jacek Kłopotowski. 25 maja Katedra Matematyki i Ekonomii Matematycznej Definicja całki podwójnej Katedra Matematyki i Ekonomii Matematycznej 25 maja 2016 Definicja całki podwójnej Załóżmy, że f : K R, gdzie K = a, b c, d R 2, jest funkcją ograniczoną. Niech x 0, x 1,...,

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo