Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego"

Transkrypt

1 Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego Zbigniew Palmowski Wspólna praca z I. Czarna Zagadnienia aktuarialne: teoria i praktyka, Wrocław

2 Ekonomiczny punkt widzenia 2 Słowo dywidenda pochodzi od łacińskiego słowa dividendum, które oznacza rzecz, która ma być podzielona i zwykle oznacza część akcji rozprowadzanych pomiędzy akcjonariuszy;

3 Ekonomiczny punkt widzenia 2 Słowo dywidenda pochodzi od łacińskiego słowa dividendum, które oznacza rzecz, która ma być podzielona i zwykle oznacza część akcji rozprowadzanych pomiędzy akcjonariuszy; Dywidendy sa wypłacane z opodatkowanych dochodów oraz też podlegaja opodatkowaniu;

4 Ekonomiczny punkt widzenia 2 Słowo dywidenda pochodzi od łacińskiego słowa dividendum, które oznacza rzecz, która ma być podzielona i zwykle oznacza część akcji rozprowadzanych pomiędzy akcjonariuszy; Dywidendy sa wypłacane z opodatkowanych dochodów oraz też podlegaja opodatkowaniu; Sa dwie strony polityki wypłaty dywidend: z jednej strony menadżerowie staraja sie zminimalizować wypłatę dywidend aby na przykład zwiększyć inwestycje, z drugie strony akcjonariusze pragna zmaksymalizować jej wypłatę, m.in także dlatego aby zwiększyć efektywnośc firmy;

5 Ekonomiczny punkt widzenia 2 Słowo dywidenda pochodzi od łacińskiego słowa dividendum, które oznacza rzecz, która ma być podzielona i zwykle oznacza część akcji rozprowadzanych pomiędzy akcjonariuszy; Dywidendy sa wypłacane z opodatkowanych dochodów oraz też podlegaja opodatkowaniu; Sa dwie strony polityki wypłaty dywidend: z jednej strony menadżerowie staraja sie zminimalizować wypłatę dywidend aby na przykład zwiększyć inwestycje, z drugie strony akcjonariusze pragna zmaksymalizować jej wypłatę, m.in także dlatego aby zwiększyć efektywnośc firmy; Wypłata dywidend może być jeszcze jedna miara ryzyka (firma w słabej kondycji finansowej wypłaca mała dywidendę);

6 Ekonomiczny punkt widzenia 2 Słowo dywidenda pochodzi od łacińskiego słowa dividendum, które oznacza rzecz, która ma być podzielona i zwykle oznacza część akcji rozprowadzanych pomiędzy akcjonariuszy; Dywidendy sa wypłacane z opodatkowanych dochodów oraz też podlegaja opodatkowaniu; Sa dwie strony polityki wypłaty dywidend: z jednej strony menadżerowie staraja sie zminimalizować wypłatę dywidend aby na przykład zwiększyć inwestycje, z drugie strony akcjonariusze pragna zmaksymalizować jej wypłatę, m.in także dlatego aby zwiększyć efektywnośc firmy; Wypłata dywidend może być jeszcze jedna miara ryzyka (firma w słabej kondycji finansowej wypłaca mała dywidendę); W trakcie tej prezentacji będziemy koncentrować się tylko na zysku akcjonariuszy.

7 Modelowanie matematyczne 3 Aneta Kręglicka A model is a model, the reality is sometimes less perfect.

8 Modelowanie matematyczne 4 John M. Keynes It is better to be roughly right than precisely wrong.

9 Model Craméra-Lundberga 5 Zwykle rezerwy firmy ubezpieczeniowej sa modelowane przez proces Craméra-Lundberga: gdzie X t = x + pt N t C k - ciag niezależnych zmiennych losowych o jednakowym rozkładzie F (tzw. roszczenia) k=1 C k N t - niezależny proces Poissona z intensywnościa λ p - intensywność wpłaty składki

10 Proces Lévy ego 6 X t - spektralnie ujemny proces Lévy ego, który nie jest subordynatorem, będzie modelować rezerwy firmy ubezpieczeniowej przed wypłata dywidend X t - proces ze niezależnymi i stacjonarnymi przyrostami, który nie ma dodatnich skoków

11 Proces Lévy ego 7 X t - spektralnie ujemny proces Lévy ego, który nie jest subordynatorem, będzie modelować rezerwy firmy ubezpieczeniowej przed wypłata dywidend X t - proces ze niezależnymi i stacjonarnymi przyrostami, który nie ma dodatnich skoków Formuła Lévy ego-chinczyna: Ee iθx t = e Ψ(θ)t gdzie Ψ(θ) = ipθ + σ2 ( 2 θ2 + ) 1 e iθx ν(δx) (, 1) ( + 1 e iθx + iθx ) ν(dx) ( 1,0) oraz zakładamy, że ( 1,0) (1 x2 ) ν(dx) <

12 Motywacja 8 Motywacja rozważań dowolnych spektralnie ujemnych procesów Lévy ego: obok skoków modelujemy małe perturbacje Brownowskie i martyngałowe;

13 Motywacja 8 Motywacja rozważań dowolnych spektralnie ujemnych procesów Lévy ego: obok skoków modelujemy małe perturbacje Brownowskie i martyngałowe; wszystkie wzory dane w jednolitym języku tzw. funkcji skalujacych (brak potrzeby rozważania kolejnych przypadków różnych rozkładów roszczeń);

14 Motywacja 8 Motywacja rozważań dowolnych spektralnie ujemnych procesów Lévy ego: obok skoków modelujemy małe perturbacje Brownowskie i martyngałowe; wszystkie wzory dane w jednolitym języku tzw. funkcji skalujacych (brak potrzeby rozważania kolejnych przypadków różnych rozkładów roszczeń); krótsze dowody niż dla klasycznego procesu ryzyka (kosztem bardziej zaawansowanej wiedzy poczatkowej);

15 Motywacja 8 Motywacja rozważań dowolnych spektralnie ujemnych procesów Lévy ego: obok skoków modelujemy małe perturbacje Brownowskie i martyngałowe; wszystkie wzory dane w jednolitym języku tzw. funkcji skalujacych (brak potrzeby rozważania kolejnych przypadków różnych rozkładów roszczeń); krótsze dowody niż dla klasycznego procesu ryzyka (kosztem bardziej zaawansowanej wiedzy poczatkowej); te same metody pojawiaja się przy wycenie opcji i innych problemach matematyki finansowej;

16 Motywacja 8 Motywacja rozważań dowolnych spektralnie ujemnych procesów Lévy ego: obok skoków modelujemy małe perturbacje Brownowskie i martyngałowe; wszystkie wzory dane w jednolitym języku tzw. funkcji skalujacych (brak potrzeby rozważania kolejnych przypadków różnych rozkładów roszczeń); krótsze dowody niż dla klasycznego procesu ryzyka (kosztem bardziej zaawansowanej wiedzy poczatkowej); te same metody pojawiaja się przy wycenie opcji i innych problemach matematyki finansowej; im więcej modeli tym lepiej (nie ma jednego wiecznie prawdziwego modelu, co dobitnie pokazał ostatni kryzys finansowy).

17 Problem De Finettiego Zakładamy, że X t p.w. 9

18 Problem De Finettiego Zakładamy, że X t p.w. Proces regulowany: U π t = X t D π t 9 gdzie Dt π jest łaczn a ilości a wypłaconych dywidend do czasu t

19 Problem De Finettiego Zakładamy, że X t p.w. Proces regulowany: U π t = X t D π t 9 gdzie Dt π jest łaczn a ilości a wypłaconych dywidend do czasu t Obserwujemy proces U π do czasu ruiny σ, gdzie Klasyczna ruina: σ = σ π = inf{t 0 : U π t < 0} Paryska ruina: σ = σ π,ζ = inf{t > 0 : t sup{s t : U π s 0} ζ, U π t < 0}

20 Funkcja wypłaty 10 Średnie zdyskontowane łaczne dywidendy: [ σπ ] v π (x) = E x e qt dd π t oraz [ ] σπ,ζ vπ(x) ζ = E x e qt dd π t gdzie E x oznacza średnia kiedy X 0 = x. 0 0

21 Funkcja wypłaty 10 Średnie zdyskontowane łaczne dywidendy: [ σπ ] v π (x) = E x e qt dd π t oraz [ ] σπ,ζ vπ(x) ζ = E x e qt dd π t gdzie E x oznacza średnia kiedy X 0 = x. Celem jest znalezienie optymalnej strategii 0 0 π = D która maksymalizuje v π (x) oraz vπ(x) ζ oraz porównanie optymalnych v π (x) oraz vπ(x), ζ czyli jak opóźnienie paryskie wpływa na łaczn a zdyskontowana wypłatę dywidend.

22 Strategia barierowa π a 11

23 Czas lokalny w maksimum 12 Dla strategii barierowej w a: D π a t = a X t a, gdzie X t = sup s t X s oraz {U π a t, t σ π a ; U π a 0 = x} = D {a Y t, t σ a ; Y 0 = a x} gdzie Y t = (a X t ) X t jest procesem odbitym w supremum i σ a = inf{t > 0 : Y t > a} jest pierwszym momentem wyjścia tego procesu z przedziału [0, a]

24 Proces regulowany raz jeszcze 13

25 Zdyskontowany czas lokalny 14

26 Paryska strategia barierowa π a 15 X t a z,z t

27 Funkcje skalujace Wykładnik Laplace a: ψ(θ): 16 E[e θx t ] = e tψ(θ) Φ(q) - największy pierwiastek równania ψ(θ) = q Pierwsza funkcja skalujaca: W (q) : [0, ) [0, ): 0 e θx W (q) (y)dy = (ψ(θ) q) 1, θ > Φ(q) Interpretacja probabilistyczna: W (q) (x) = e Φ(q)x P Φ(q) x (τ 0 = ), gdzie τ 0 = inf{t > 0 : X t < 0} oraz dp Φ(q) dp = exp (Φ(q)X t qt) Ft

28 Paryskie funkcje skalujace 17 gdzie V (q) (x) = e Φ(q)x P Φ(q) x (τ ζ = ), τ ζ = inf{t > 0 : t sup{s t : X s 0} ζ, X t > 0} X t t - 0 z t z t P x (τ ζ < ) było rozważane w poprzedniej prezentacji Irminy Czarnej!!!

29 Funkcja wypłaty dla π a 18 Twierdzenie 1. W (q) (x), x a, W (q) (a) v πa (x) = x a + W (q) (a) x > a oraz v ζ π a (x) = W (q) (a), V (q) (x), x a, V (q) (a) x a + V (q) (a) V (q) (a), x > a

30 Funkcja wypłaty dla π a 18 Twierdzenie 1. W (q) (x), x a, W (q) (a) v πa (x) = x a + W (q) (a) x > a oraz v ζ π a (x) = W (q) (a), V (q) (x), x a, V (q) (a) x a + V (q) (a) V (q) (a), x > a Optymalność π a w zbiorze wszystkich dopuszczalnych strategii (HJB): Γf(x) qf(x) 0, if x R, f (x) 1, if x R, gdzie Γ jest generatorem procesu ryzyka X: Γf(x) = σ2 2 f (x) + p 0 f (x) + 0 [ f(x + y) f(x) + f (x)y1 { y <1} ] ν(dy)

31 Optymalność π a 19 Twierdzenie 2. Przypuśćmy, że miara skoków ma gęstość monotonicznie malejac a, to wtedy strategia barierowa jest optymalna dla obu problemów optymalizacyjnych z klasyczna i paryska ruina. W szczególności, optymalna bariera dla problemu z klasyczna ruina wynosi: a = inf{a > 0 : W (q) (a) W (q) (y) dla każdego y 0}, zaś dla problemu z paryskim opóźnieniem w momencie ruiny: a,ζ = inf{a > 0 : V (q) (a) V (q) (y) dla każdego y 0}. Dodatkowo jeśli W (q) C 2 (R) (a tak jest na przykład kiedy mamy Bronowskie perturbacje), to optymalne bariery rozwiazuj a następujace równania: W (q) (a ) = 0, V (q) (a,ζ ) = 0.

32 Model Craméra-Lundberga X t = x + pt N t U i 20 U i Exp(ξ) i=1 dla oraz a,ζ = a = 1 q + (q) q (q) log q (q) 2 (ξ + q (q)) q + (q) 2 (ξ + q + (q)) q ± (q) = q + λ ξp ± (q + λ ξp) 2 + 4pqξ 2 2c [( log ξ q λ q λ q D cξ q λ q (1 D) ) ( 1 cξ )] q λ q cφ(q) dla D = 1 ζ 0 pξ q λ q e (λ q+pξ q )t t 1 I 1 (2t pλ q ξ)dt z λ q = λξ/ξ q i ξ q = ξ + q + (q)

33 C-L - an. numeryczna 21 Bierzemy następujace parametry procesu ryzyka: ξ = 2, λ = 2, q = 0.1, p = 2.5. Wtedy a = ζ a,ζ Tabela 1: Optymalna wyskość bariery dla różnych paryskich opóźnień. x v(x) v a,ζ(x) Tabela 2: Łaczna ilość zdyskontowanych dywidend dla klasycznej i paryskiej ruiny dla różnych kapitałów poczatkowych

34 C-L - an. numeryczna 22 Niech ζ = 0.3. x x v(x 1 ) = v a,ζ(x) Tabela 3: Ile więcej potrzebujemy kapitału poczatkowego aby w przypadku klasycznym ilość wypłaconych dwyidend była na tym samym poziomie jak dla paryskiego opóźnienia

35 Ruch Browna z dryfem 23 Wtedy: X t = σb t + pt, a = log δ + ω δ ω dla δ=σ 2 p 2 + 2qσ 2 i ω = p/σ 2 oraz ( ) p a,ζ = σ2 Ψ q ζ σ 2 log p q ( ) Ψ p q σ ζ 2 1/δ p q ζπ σ 2 + p q σ ζπ 2 ( 1 2p ) q p q p i dla Ψ(x) = 2 πxn ( 2x) πx + e x2 p q = p 2 + 2qσ 2

36 R. Browna - an. numeryczna 24 Bierzemy następujace parametry procesu ryzyka: σ = 2, p = 2.5. Wtedy a = ζ a,ζ Tabela 1: Optymalna wyskość bariery dla różnych paryskich opóźnień. x v(x) v a,ζ(x) Tabela 2: Łaczna ilość zdyskontowanych dla klasycznej i paryskiej ruiny dla różnych kapitałów poczatkowych

37 R. Browna - an. numeryczna 25 Niech ζ = 0.3. x x v(x 1 ) = v a,ζ(x) Tabela 3: Ile więcej potrzebujemy kapitału poczatkowego aby w przypadku klasycznym ilość wypłaconych dwyidend była na tym samym poziomie jak dla paryskiego opóźnienia

38 DZIEKUJ E BARDZO ZA UWAGE!!!!! 26

Problemy dywidendowe dla procesu ryzyka typu Lévy ego

Problemy dywidendowe dla procesu ryzyka typu Lévy ego Problemy dywidendowe dla procesu ryzyka typu Lévy ego Zbigniew Palmowski Wspólne prace z F. Avramem, S. Baranem, P. Azcue, N. Muler R. Loeffenem, A. Kyprianou, M. Pistoriusem I. Czarna, E. Marciniak Zagadnienia

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,

Bardziej szczegółowo

Numeryczne aproksymacje prawdopodobieństwa ruiny

Numeryczne aproksymacje prawdopodobieństwa ruiny Numeryczne aproksymacje prawdopodobieństwa ruiny Krzysztof Burnecki Aleksander Weron Centrum Metod Stochastycznych im. Hugona Steinhausa Instytut Matematyki i Informatyki Politechnika Wrocławska www.im.pwr.wroc.pl/

Bardziej szczegółowo

Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14

Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2013/14 ZESTAW A IMIȨ I NAZWISKO: Egzamin z matematyki ubezpieczeniowej (MUMIO), semestr zimowy 2/4 Data: 224 Egzaminar: Ryszard Szekli INSTRUKCJE: Rozwiązując test zakreślamy literką X POPRAWNE ODPOWIEDZI W TABELCE

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Zadania z Procesów Stochastycznych 1

Zadania z Procesów Stochastycznych 1 Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Problem optymalizacji oczekiwanej użyteczności wypłat dywidend w modelu Craméra-Lundberga 1

Problem optymalizacji oczekiwanej użyteczności wypłat dywidend w modelu Craméra-Lundberga 1 Roczniki Kolegium Analiz Ekonomicznych Zeszyt 31/213 Sebastian Baran Zbigniew Palmowski Problem optymalizacji oczekiwanej użyteczności wypłat dywidend w modelu Craméra-Lundberga 1 Streszczenie W niniejszej

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

O geometrii semialgebraicznej

O geometrii semialgebraicznej Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć

Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć Jak rzucać losowe spojrzenia na ruch Browna by w nim wszystko dojrzeć Jan Ob lój Uniwersytet Warszawski Université Paris 6 Konwersatorium IMPAN, Listopad 2004 p.1/22 Plan referatu 1. Wstępne definicje

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: E X 20 8 oraz znamy następujące charakterystyki dotyczące przedziału 10, 20 : 3 Pr

Bardziej szczegółowo

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 3 i 4 1 / 25 MODEL RYZYKA INDYWIDUALNEGO X wielkość

Bardziej szczegółowo

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA FUNKCJI HAZARDU cz. II: CDS y - swapy kredytowe Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić

Bardziej szczegółowo

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA

PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

01. dla x 0; 1 2 wynosi:

01. dla x 0; 1 2 wynosi: Matematyka ubezpieczeń majątkowych 0.0.04 r. Zadanie. Ryzyko X ma rozkład z atomami: Pr X 0 08. Pr X 0. i gęstością: f X x 0. dla x 0; Ryzyko Y ma rozkład z atomami: Pr Y 0 07. Pr Y 0. i gęstością: fy

Bardziej szczegółowo

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y)

Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. u = 0, (6.1) jest operatorem Laplace a. (x,y) Wykład 6 Funkcje harmoniczne Ważną rolę odgrywają tzw. funkcje harmoniczne. Przyjmujemy następującą definicję. e f i n i c j a Funkcję u (x 1, x 2,..., x n ) nazywamy harmoniczną w obszarze R n wtedy i

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Wariacje na temat Twierdzenia Banacha o Indykatrysie i ich zastosowanie

Wariacje na temat Twierdzenia Banacha o Indykatrysie i ich zastosowanie Wariacje na temat Twierdzenia Banacha o Indykatrysie i ich zastosowanie Rafał M. Łochowski Wrocław 2015 Rafał M. Łochowski Twierdzenie o indykatrysie Wrocław 2015 1 / 42 Plan odczytu 1 Twierdzenie Banacha

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

FUNKCJE ZESPOLONE Lista zadań 2005/2006

FUNKCJE ZESPOLONE Lista zadań 2005/2006 FUNKJE ZESPOLONE Lista zadań 25/26 Opracowanie: dr Jolanta Długosz Liczby zespolone. Obliczyć wartości podanych wyrażeń: (2 + ) ( ) 2 4 i (5 + i); b) (3 i)( 4 + 2i); c) 4 + i ; d) ( + i) 4 ; e) ( 2 + 3i)

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Modelowanie ryzyka kredytowego Zadania 1.

Modelowanie ryzyka kredytowego Zadania 1. 1 Ex-dividend prices Modelowanie ryzyka kredytowego Zadania 1. Mariusz Niewęgłowski 19 października 2014 Definicja 1. Dla każdego t [0, T ] cena ex-dividend wypłaty (X, A, X, Z, τ) ( ) S t := B t E Q Bu

Bardziej szczegółowo

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n.

Zadania ze Wstępu do Analizy Stochastycznej 1. = 0 p.n. Zadania ze Wstępu do Analizy Stochastycznej 1 1. Znajdź rozkład zmiennej 5W 1 W 3 + W 7. 2. Dla jakich parametrów a i b, zmienne aw 1 W 2 oraz W 3 + bw 5 są niezależne? 3. Znajdź rozkład wektora losowego

Bardziej szczegółowo

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ.

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ. Wprowadzenie Mamy ustalone T > 0 horyzont, (Ω, F, P) z F filtracja, F = {F t } t [0,T ] oraz Proces chwilowej stopy procentowej r = (r t ) t [0,T ], tzn. rachunek bankowy spełnia ODE: db t = B t r t dt,

Bardziej szczegółowo

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia

Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik. Historia 1 Prognozowalne kryterium całkowalności według A. N. Shiryaeva i A. S. Cherny ego Joanna Karłowska-Pik Całka stochastyczna ( t ) H s dx s = H X. t Historia K. Itô (1944) konstrukcja całki stochastycznej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

Procesy stochastyczne 2.

Procesy stochastyczne 2. Procesy stochastyczne 2. Listy zadań 1-3. Autor: dr hab.a. Jurlewicz WPPT Matematyka, studia drugiego stopnia, I rok, rok akad. 211/12 1 Lista 1: Własność braku pamięci. Procesy o przyrostach niezależnych,

Bardziej szczegółowo

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany

Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Co to są liczby naturalne i czemu ich nie ma?! Adam Kolany Załóżmy, że wiemy co to są liczby naturalne... Język (I-go rzędu): V, { F n : n IN

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Wykład 3 Jednowymiarowe zmienne losowe

Wykład 3 Jednowymiarowe zmienne losowe Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej

Bardziej szczegółowo

Fluktuacje procesów Lévy ego

Fluktuacje procesów Lévy ego Fluktuacje procesów Lévy ego Mateusz Kwaśnicki (Politechnika Wrocławska) mateusz.kwasnicki@pwr.edu.pl 5 Forum Matematyków Polskich Poznań, 16 maja 2014 r. Błądzenie losowe X n = X n X n 1 i.i.d. (niezależne,

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. Niech łączna wartość szkód: Ma złożony rozkład Poissona. Momenty rozkładu wartości poedyncze szkody wynoszą:, [ ]. Wiemy także, że momenty nadwyżki wartości poedyncze szkody ponad udział własny

Bardziej szczegółowo

W3 - Niezawodność elementu nienaprawialnego

W3 - Niezawodność elementu nienaprawialnego W3 - Niezawodność elementu nienaprawialnego Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Niezawodność elementu nienaprawialnego 1. Model niezawodności elementu nienaprawialnego

Bardziej szczegółowo

Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności

Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Krotności hadronów a + b c 1 + c +...+ c i +...+ c N Reakcje ekskluzywne: wszystkie

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Rozkłady prawdopodobieństwa

Rozkłady prawdopodobieństwa Tytuł Spis treści Wersje dokumentu Instytut Matematyki Politechniki Łódzkiej 10 grudnia 2011 Spis treści Tytuł Spis treści Wersje dokumentu 1 Wartość oczekiwana Wariancja i odchylenie standardowe Rozkład

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Na podstawie dokonanych obserwacji:

Na podstawie dokonanych obserwacji: PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy

Bardziej szczegółowo

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAT1332 Wydział Matematyki, Matematyka Stosowana Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Warunkowa

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11 Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)

Bardziej szczegółowo