Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski"

Transkrypt

1 Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski

2 Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić w zbiorze dopuszczalnych wartości W ( τ ) { }, R t = P U = W τ t Niezawodność jest to prawdopodobieństwo zdarzenia, że zmienna będzie nie mniejsza do pewnego ustalonego czasu t. R( t) = P ( t)

3 Zawodność Zawodnośćjest prawdopodobieństwem wystąpienia uszkodzenia w przedziale czasu t, czyli jest to prawdopodobieństwo wystąpienia zdarzenia przeciwnego do niezawodności tj. Stąd: Q( t) = P( < t) + Q( t) = 1 R t

4 Przykład Eksploatowane jest 1 samolotów. W okresie pierwszego roku eksploatacji żaden z samolotów nie uległ uszkodzeniu. W okresie drugiego roku 2 samoloty uległy uszkodzeniu. W kolejnych latach ilość uszkodzeń przedstawiono w tab.: Lata Liczba uszkodzeń Określić prawdopodobieństwo zawodności i niezawodności samolotów w poszczególnych latach eksploatacj

5 gdy Gęstość prawdopodobieństwa uszkodzeń f(t) ( + ) ( + ) R t t R t Q t t Q t f ( t) = lim = lim t t t t t f ( t) dr t = = dt dq ( t ) Oszacować gęstość prawdopodobieństwa uszkodzeń samolotów w poszczególnych latach eksploatacji f ( t) = dt R( t ) R t 2 1 t t 2 1

6 Intensywność uszkodzeń, funkcja ryzyka λ( t) dr( t) 1 dr( t) 1 dq( t) 1 dq t = dt = = = R( t) R t dt 1 Q t dt R t dt Oszacować intensywność uszkodzeń (funkcję ryzyka uszkodzeń) samolotów w poszczególnych latach eksploatacji λ( t) dr( t) dt 1 R t R t = R( t) R t t t

7 Skumulowana funkcja ryzyka uszkodzeń Λ(t) Λ( Λ t = λ ( t) dt Oszacować skumulowaną funkcję ryzyka uszkodzeń samolotów w poszczególnych latach eksploatacji t Λ t = λ ( t) dt Λ t + λ ( t ) λ ( t ) t t t

8 Oczekiwany średni czas pracy do wystąpienia uszkodzenia to = R( t) dt Można to oszacować analizując skumulowaną funkcję ryzyka wystąpienia uszkodzenia. Szacowany czas średni do wystąpienia uszkodzenia ocenia się poprzez ocenę czasu w którym Λ osiągnie wartość 1. t = ( Λ t = 1) sr

9 Przykład wyznaczania parametrów eksploatacyjnych dla wybranych modeli rozkładu intensywności uszkodzeń (rozwiązania szczególne)

10 Intensywność uszkodzeń ma stałą λ ( t) = const wartość Funkcja gęstości prawdopodobieństwa uszkodzeń: f ( t) = λ t exp λ t dt = λ e λ * Funkcja niezawodności: R( t) = exp λ t dt = e λ Skumulowana funkcja ryzyka: Λ ( t) = λ t dt = λ * λ* Oczekiwany średni czas pracy do wystąpienia uszkodzenia: λt t R( t) dt e dt o = = = 1 λ

11 Przykład obliczeń dla stałej intensywności λ ( t) =,4 rozkładu uszkodzeń np. λ=4% Funkcja gęstości prawdopodobieństwa uszkodzeń: f ( t) = λ t exp t dt =,4 e,4* λ Funkcja niezawodności: R( t) = exp t dt = e Ilość miesięcy Gęstość prawdopodobieństwa uszkodzeń Skumulowana funkcja ryzyka:,4* λ λ Λ ( t) = t dt =,4 Niezawodność Skumulowana funkcja ryzyka 1,384,961,4 1,268,67,4 48,59,15 1,92

12 Średni czas zdatnej pracy t sr = tf t dt = R t dt,4 t 1,4 1,4 = = + = tsr = e dt = e + e =,4,4 25 Skumulowana funkcja ryzyka: Λ ( t = 25) =, 4 25 = 1 R t,4* ( = 25) = e =,3679

13 Przyczyny wykorzystania modelu Prezentowany model dobrze opisuje normalny okres pracy obiektu nieodnawialnego, gdzie uszkodzenia są wynikiem oddziaływań głownie z przyczyn bodźców zewnętrznych, powtarzających się przypadkowo, ale ze stałą częstotliwością. Istnieje poważna grupa obiektów, których czas zdatności ma rozkład wykładniczy, lub nieistotnie różniący się od wykładniczego Pozwala o wiele łatwiej rozwiązywać zadania, a niżeli w przypadku innych rozkładów, gdzie nierzadko nie można znaleźć rozwiązania

14 Wykres parametrów eksploatacyjnych dla stałej intensywności uszkodzeń

15 Funkcja gęstości prawdopodobieństwa uszkodzeń ma rozkład normalny (Gaussa) 1 ( t ) 2 2σ f t = e σ 2π wartość średnia (oczekiwana) pojawienia się niesprawności σ odchylenie standardowe Niesprawności pojawiają się w czasie o ±3σ. W zakresie poza przedziałem o ± 3σ prawdopodobieństwo wystąpienia uszkodzenia jest znikome (Q(o- 3σ)=,14 Funkcja intensywności uszkodzeń monotonicznie rośnie praktycznie od w punkcie o-3σi zbliża się asymptotycznie do funkcji y 1 y( t) = t 2 σ 2

16 Praktyczne rozwiązywanie zagadnień niezawodnościowych dla funkcji gęstości uszkodzeń w postaci rozkładu normalnego Wprowadza się zmienną U: Zawodność : Q( t) = f U du 1 U ( t) = ( t ) σ 2 U f ( U ) 2 Gdzie : f ( U ) = e f ( t) 2π = σ Praktycznie do obliczeń wykorzystuje się dane w AB 2 str. 542:

17 Wyznaczyć dla stałego rozkładu gęstości uszkodzeń podstawowe charakterystyki niezawodnościowe Dokonać porównania wyników R, Q, f(t), Λ(t) i λ(t) dla λ=4%, λ=8% i λ=2% (porównanie na wykresie) Określić oczekiwane czasy pracy urządzenia

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski Cechy eksploatacyjne statku powietrznego Dr inż. Robert Jakubowski Własności i właściwości SP Cechy statku technicznego, które są sformułowane w wymaganiach taktyczno-technicznych, konkretyzują się w jego

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 3 dr inż. Kamila Kustroń Warszawa, 10 marca 2015 24 lutego: Wykład wprowadzający w interdyscyplinarną tematykę eksploatacji statków

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH dr inż. Kamila Kustroń dr inż. Kamila Kustroń ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH 1. Wykład wprowadzający

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek

PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Większość zadań pochodzi z podręcznika: J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Elementy nieodnawialne. Wskaźniki,

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 3 ZADANIA - ZESTAW 3 ZADANIA - ZESTAW 3 Zadanie 3. L Prawdopodobieństwo trafienia celu w jednym strzale wynosi 0,6. Do celu oddano niezależnie 0 strzałów. Oblicz prawdopodobieństwo, że cel został trafiony: a) jeden raz, b)

Bardziej szczegółowo

4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO

4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO Znaczenie rozkładu wykładniczego 4 51 4. ZNACZENIE ROZKŁADU WYKŁADNICZEGO 4.1. Rozkład wykładniczy Zmienna losowa X ma rozkład wykładniczy, jeżeli funkcja gęstości prawdopodobieństwa f ( x) = λe λx x 0,

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

ELEMENTÓW PODANYCH W PN-EN i PN-EN

ELEMENTÓW PODANYCH W PN-EN i PN-EN PORÓWNANIE METOD OCENY NIEUSZKADZALNOŚCI ELEMENTÓW PODANYCH W PN-EN 6508- i PN-EN 680-2 prof. dr inż. Tadeusz MISSALA Przemysłowy Instytut Automatyki i Pomiarów, 02-486 Warszawa Al. Jerozolimskie 202 tel.

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu Zagadnienia niezawodności w procesie projektowania Produkty tradycyjne i nowoczesne Środki pomocnicze w projektowaniu pomoc specjalistów

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście) Leszek Chybowski Wydział Mechaniczny Politechnika Szczecińska ZASTOSOWANIE DRZEWA USZKODZEŃ DO WYBRANEGO SYSTEMU SIŁOWNI OKRĘTOWEJ 1. Wprowadzenie Stanem systemu technicznego określa się zbiór wartości

Bardziej szczegółowo

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego IV Sympozjum Bezpieczeństwa Maszyn, Urządzeń i Instalacji Przemysłowych organizowane przez Klub Paragraf 34 Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego Wpływ doboru

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K.

g) wartość oczekiwaną (przeciętną) i wariancję zmiennej losowej K. TEMAT 1: WYBRANE ROZKŁADY TYPU SKOKOWEGO ROZKŁAD DWUMIANOWY (BERNOULLIEGO) Zadanie 1-1 Prawdopodobieństwo nieprzekroczenia przez pewien zakład pracy dobowego limitu zużycia energii elektrycznej (bez konieczności

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności

Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Rozdział 9 Przegląd niektórych danych doświadczalnych o produkcji hadronów. Rozpraszanie elastyczne. Rozkłady krotności Krotności hadronów a + b c 1 + c +...+ c i +...+ c N Reakcje ekskluzywne: wszystkie

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH

Bardziej szczegółowo

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ 1-2012 PROBLEMY EKSPLOATACJI 79 Joanna RYMARZ, Andrzej NIEWCZAS Politechnika Lubelska OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ Słowa kluczowe Niezawodność, autobus miejski. Streszczenie

Bardziej szczegółowo

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Excel: niektóre rozkłady ciągłe (1)

Excel: niektóre rozkłady ciągłe (1) MS Ecel niektóre rozkłady ciągłe (1) Ecel: niektóre rozkłady ciągłe (1) 1. ROZKŁAD.BETA (tylko dystrybuanta)...1 2. ROZKŁAD.BETA.ODW (kwantyl w rozkładzie beta)...3 3. ROZKŁAD.LIN.GAMMA (to nie jest żaden

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM 1-2011 PROBLEMY EKSPLOATACJI 205 Zbigniew ZDZIENNICKI, Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Modele długości trwania

Modele długości trwania Modele długości trwania Pierwotne zastosowania: przemysłowe (trwałość produktów) aktuarialne (długość trwania życia) Zastosowania ekonomiczne: długości bezrobocia długości czasu między zakupami dóbr trwałego

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Zbigniew ZDZIENNICKI Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe Struktury równoległe układów niezawodnościowych,

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH Dr Benedykt R. Jany I Pracownia Fizyczna Ochrona Środowiska grupa F1 Rodzaje Pomiarów Pomiar bezpośredni - bezpośrednio

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Zadanie projektowe: Niezawodność i diagnostyka układów cyfrowych

Zadanie projektowe: Niezawodność i diagnostyka układów cyfrowych Bartłomiej Piekarski 76 Data utworzenia:.6.r. Łukasz Tkacz 73 Łukasz Przywarty 78 Zadanie projektowe: Niezawodność i diagnostyka układów cyfrowych Temat: Ocena niezawodności systemu pomiarowego typu 'z3'

Bardziej szczegółowo

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych.

Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie 1 Metody pomiarowe i opracowywanie danych doświadczalnych. Ćwiczenie ma następujące części: 1 Pomiar rezystancji i sprawdzanie prawa Ohma, metoda najmniejszych kwadratów. 2 Pomiar średnicy pręta.

Bardziej szczegółowo

Estymacja przedziałowa. Przedział ufności

Estymacja przedziałowa. Przedział ufności Estymacja przedziałowa Przedział ufności Estymacja przedziałowa jest to szacowanie wartości danego parametru populacji, ρ za pomocą tak zwanego przedziału ufności. Przedziałem ufności nazywamy taki przedział

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH Jan Kaźmierczak EKSPLOATACJA SYSTEMÓW TECHNICZNYCH dla studentów kierunków: ZARZĄDZANIE Gliwice, 1999 SPIS TREŚCI 1. WPROWADZENIE... 7 2. PRZEGLĄD PODSTAWOWYCH PROBLEMÓW EKSPLOATACJI SYSTEMÓW TECHNICZNYCH...

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Określenie maksymalnego kosztu naprawy pojazdu

Określenie maksymalnego kosztu naprawy pojazdu MACIEJCZYK Andrzej 1 ZDZIENNICKI Zbigniew 2 Określenie maksymalnego kosztu naprawy pojazdu Kryterium naprawy pojazdu, aktualna wartość pojazdu, kwantyle i kwantyle warunkowe, skumulowana intensywność uszkodzeń

Bardziej szczegółowo

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Inż. Małgorzata MROZEK Dr inż. Grzegorz SAWICKI Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.274 MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Streszczenie: W artykule

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Niezawodność i Diagnostyka

Niezawodność i Diagnostyka Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Elementy Rachunek prawdopodobieństwa

Elementy Rachunek prawdopodobieństwa Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Modelowanie systemów liczacych. Ćwiczenie 2.

Modelowanie systemów liczacych. Ćwiczenie 2. Modelowanie systemów liczacych. Ćwiczenie 2. 1. Rozkłady i dystrybuanty w programie MATLAB Do odczytywania wartości prawdopodobieństwa typu P(X = X a ) przy ustalonym rozkładzie oraz zadanej wartości zmiennej

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego

Szkoła z przyszłością. Zastosowanie pojęć analizy statystycznej do opracowania pomiarów promieniowania jonizującego Szkoła z przyszłością szkolenie współfinansowane przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Narodowe Centrum Badań Jądrowych, ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

System obsługi klienta przy okienku w urzędzie pocztowym

System obsługi klienta przy okienku w urzędzie pocztowym System obsługi klienta przy okienku w urzędzie pocztowym Opracowały: Monika Rozmarynowska Paulina Wałdoch Joanna Wika Specjalność : EPiF Rok akademicki: 2009/2010 1 Spis treści 1. Opis i założenia wstępne

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997

Definicje PN ISO Definicje PN ISO 3951 interpretacja Zastosowanie normy PN-ISO 3951:1997 PN-ISO 3951:1997 METODY STATYSTYCZNEJ KONTROI JAKOŚCI WG OCENY ICZBOWEJ ciągła seria partii wyrobów sztukowych dla jednej procedury analizowana jest tylko jedna wartość, która musi być mierzalna w skali

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C

SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C 3-2007 PROBLEMY EKSPLOATACJI 207 Roman STRACHOWSKI, Jan MONIETA Akademia Morska, Szczecin SZACOWANIE NIEZAWODNOŚCI ZAWORÓW WTRYSKOWYCH OKRĘTOWYCH SILNIKÓW SPALINOWYCH TYPU S46MC-C Słowa kluczowe Silniki

Bardziej szczegółowo