Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski"

Transkrypt

1 Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski

2 Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić w zbiorze dopuszczalnych wartości W ( τ ) { }, R t = P U = W τ t Niezawodność jest to prawdopodobieństwo zdarzenia, że zmienna będzie nie mniejsza do pewnego ustalonego czasu t. R( t) = P ( t)

3 Zawodność Zawodnośćjest prawdopodobieństwem wystąpienia uszkodzenia w przedziale czasu t, czyli jest to prawdopodobieństwo wystąpienia zdarzenia przeciwnego do niezawodności tj. Stąd: Q( t) = P( < t) + Q( t) = 1 R t

4 Przykład Eksploatowane jest 1 samolotów. W okresie pierwszego roku eksploatacji żaden z samolotów nie uległ uszkodzeniu. W okresie drugiego roku 2 samoloty uległy uszkodzeniu. W kolejnych latach ilość uszkodzeń przedstawiono w tab.: Lata Liczba uszkodzeń Określić prawdopodobieństwo zawodności i niezawodności samolotów w poszczególnych latach eksploatacj

5 gdy Gęstość prawdopodobieństwa uszkodzeń f(t) ( + ) ( + ) R t t R t Q t t Q t f ( t) = lim = lim t t t t t f ( t) dr t = = dt dq ( t ) Oszacować gęstość prawdopodobieństwa uszkodzeń samolotów w poszczególnych latach eksploatacji f ( t) = dt R( t ) R t 2 1 t t 2 1

6 Intensywność uszkodzeń, funkcja ryzyka λ( t) dr( t) 1 dr( t) 1 dq( t) 1 dq t = dt = = = R( t) R t dt 1 Q t dt R t dt Oszacować intensywność uszkodzeń (funkcję ryzyka uszkodzeń) samolotów w poszczególnych latach eksploatacji λ( t) dr( t) dt 1 R t R t = R( t) R t t t

7 Skumulowana funkcja ryzyka uszkodzeń Λ(t) Λ( Λ t = λ ( t) dt Oszacować skumulowaną funkcję ryzyka uszkodzeń samolotów w poszczególnych latach eksploatacji t Λ t = λ ( t) dt Λ t + λ ( t ) λ ( t ) t t t

8 Oczekiwany średni czas pracy do wystąpienia uszkodzenia to = R( t) dt Można to oszacować analizując skumulowaną funkcję ryzyka wystąpienia uszkodzenia. Szacowany czas średni do wystąpienia uszkodzenia ocenia się poprzez ocenę czasu w którym Λ osiągnie wartość 1. t = ( Λ t = 1) sr

9 Przykład wyznaczania parametrów eksploatacyjnych dla wybranych modeli rozkładu intensywności uszkodzeń (rozwiązania szczególne)

10 Intensywność uszkodzeń ma stałą λ ( t) = const wartość Funkcja gęstości prawdopodobieństwa uszkodzeń: f ( t) = λ t exp λ t dt = λ e λ * Funkcja niezawodności: R( t) = exp λ t dt = e λ Skumulowana funkcja ryzyka: Λ ( t) = λ t dt = λ * λ* Oczekiwany średni czas pracy do wystąpienia uszkodzenia: λt t R( t) dt e dt o = = = 1 λ

11 Przykład obliczeń dla stałej intensywności λ ( t) =,4 rozkładu uszkodzeń np. λ=4% Funkcja gęstości prawdopodobieństwa uszkodzeń: f ( t) = λ t exp t dt =,4 e,4* λ Funkcja niezawodności: R( t) = exp t dt = e Ilość miesięcy Gęstość prawdopodobieństwa uszkodzeń Skumulowana funkcja ryzyka:,4* λ λ Λ ( t) = t dt =,4 Niezawodność Skumulowana funkcja ryzyka 1,384,961,4 1,268,67,4 48,59,15 1,92

12 Średni czas zdatnej pracy t sr = tf t dt = R t dt,4 t 1,4 1,4 = = + = tsr = e dt = e + e =,4,4 25 Skumulowana funkcja ryzyka: Λ ( t = 25) =, 4 25 = 1 R t,4* ( = 25) = e =,3679

13 Przyczyny wykorzystania modelu Prezentowany model dobrze opisuje normalny okres pracy obiektu nieodnawialnego, gdzie uszkodzenia są wynikiem oddziaływań głownie z przyczyn bodźców zewnętrznych, powtarzających się przypadkowo, ale ze stałą częstotliwością. Istnieje poważna grupa obiektów, których czas zdatności ma rozkład wykładniczy, lub nieistotnie różniący się od wykładniczego Pozwala o wiele łatwiej rozwiązywać zadania, a niżeli w przypadku innych rozkładów, gdzie nierzadko nie można znaleźć rozwiązania

14 Wykres parametrów eksploatacyjnych dla stałej intensywności uszkodzeń

15 Funkcja gęstości prawdopodobieństwa uszkodzeń ma rozkład normalny (Gaussa) 1 ( t ) 2 2σ f t = e σ 2π wartość średnia (oczekiwana) pojawienia się niesprawności σ odchylenie standardowe Niesprawności pojawiają się w czasie o ±3σ. W zakresie poza przedziałem o ± 3σ prawdopodobieństwo wystąpienia uszkodzenia jest znikome (Q(o- 3σ)=,14 Funkcja intensywności uszkodzeń monotonicznie rośnie praktycznie od w punkcie o-3σi zbliża się asymptotycznie do funkcji y 1 y( t) = t 2 σ 2

16 Praktyczne rozwiązywanie zagadnień niezawodnościowych dla funkcji gęstości uszkodzeń w postaci rozkładu normalnego Wprowadza się zmienną U: Zawodność : Q( t) = f U du 1 U ( t) = ( t ) σ 2 U f ( U ) 2 Gdzie : f ( U ) = e f ( t) 2π = σ Praktycznie do obliczeń wykorzystuje się dane w AB 2 str. 542:

17 Wyznaczyć dla stałego rozkładu gęstości uszkodzeń podstawowe charakterystyki niezawodnościowe Dokonać porównania wyników R, Q, f(t), Λ(t) i λ(t) dla λ=4%, λ=8% i λ=2% (porównanie na wykresie) Określić oczekiwane czasy pracy urządzenia

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski

Cechy eksploatacyjne statku. Dr inż. Robert Jakubowski Cechy eksploatacyjne statku powietrznego Dr inż. Robert Jakubowski Własności i właściwości SP Cechy statku technicznego, które są sformułowane w wymaganiach taktyczno-technicznych, konkretyzują się w jego

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA WYKŁAD 3 dr inż. Kamila Kustroń Warszawa, 10 marca 2015 24 lutego: Wykład wprowadzający w interdyscyplinarną tematykę eksploatacji statków

Bardziej szczegółowo

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW

ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH dr inż. Kamila Kustroń dr inż. Kamila Kustroń ZAKŁAD SAMOLOTÓW I ŚMIGŁOWCÓW NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH 1. Wykład wprowadzający

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006).

J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Większość zadań pochodzi z podręcznika: J.Bajer, R.Iwanejko,J.Kapcia, Niezawodność systemów wodociagowych i kanalizacyjnych w zadaniach, Politechnika Krakowska, 123(2006). Elementy nieodnawialne. Wskaźniki,

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania

Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu. Zagadnienia niezawodności w procesie projektowania Jakub Wierciak Zagadnienia jakości i niezawodności w projektowaniu Zagadnienia niezawodności w procesie projektowania Produkty tradycyjne i nowoczesne Środki pomocnicze w projektowaniu pomoc specjalistów

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego

Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Podstawowe rozkłady zmiennych losowych Rozkłady zmiennych skokowych Rozkład zero-jedynkowy Rozpatrujemy doświadczenie, którego rezultatem może

Bardziej szczegółowo

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego

Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego IV Sympozjum Bezpieczeństwa Maszyn, Urządzeń i Instalacji Przemysłowych organizowane przez Klub Paragraf 34 Oszacowanie niezawodności elektronicznych układów bezpieczeństwa funkcjonalnego Wpływ doboru

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście)

Rys. 1. Instalacja chłodzenia wodą słodką cylindrów silnika głównego (opis w tekście) Leszek Chybowski Wydział Mechaniczny Politechnika Szczecińska ZASTOSOWANIE DRZEWA USZKODZEŃ DO WYBRANEGO SYSTEMU SIŁOWNI OKRĘTOWEJ 1. Wprowadzenie Stanem systemu technicznego określa się zbiór wartości

Bardziej szczegółowo

A B. 2 5 8 18 2 x x x 5 x x 8 x 18

A B. 2 5 8 18 2 x x x 5 x x 8 x 18 Narzędzia modelowania niezawodności 1 Arkusz kalkulacyjny - jest to program zbudowany na schemacie relacyjnych baz danych. Relacje pomiędzy dwiema (lub więcej) cechami można zapisać na kilka sposobów.

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Andrzej Purczyński PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Materiały szkolenia technicznego, Jakość energii elektrycznej i jej rozliczanie, Poznań Tarnowo Podgórne II/2008, ENERGO-EKO-TECH

Bardziej szczegółowo

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ

OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ 1-2012 PROBLEMY EKSPLOATACJI 79 Joanna RYMARZ, Andrzej NIEWCZAS Politechnika Lubelska OCENA NIEZAWODNOŚCI EKSPLOATACYJNEJ AUTOBUSÓW KOMUNIKACJI MIEJSKIEJ Słowa kluczowe Niezawodność, autobus miejski. Streszczenie

Bardziej szczegółowo

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo

Bardziej szczegółowo

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM

ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM 1-2011 PROBLEMY EKSPLOATACJI 205 Zbigniew ZDZIENNICKI, Andrzej MACIEJCZYK Politechnika Łódzka, Łódź ZASTOSOWANIE SPLOTU FUNKCJI DO OPISU WŁASNOŚCI NIEZAWODNOŚCIOWYCH UKŁADÓW Z REZERWOWANIEM Słowa kluczowe

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU

MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Inż. Małgorzata MROZEK Dr inż. Grzegorz SAWICKI Wojskowa Akademia Techniczna DOI: 10.17814/mechanik.2015.7.274 MODELOWANIE NIEZAWODNOŚCI SYSTEMU SYGNALIZACJI WŁAMANIA I NAPADU Streszczenie: W artykule

Bardziej szczegółowo

Określenie maksymalnego kosztu naprawy pojazdu

Określenie maksymalnego kosztu naprawy pojazdu MACIEJCZYK Andrzej 1 ZDZIENNICKI Zbigniew 2 Określenie maksymalnego kosztu naprawy pojazdu Kryterium naprawy pojazdu, aktualna wartość pojazdu, kwantyle i kwantyle warunkowe, skumulowana intensywność uszkodzeń

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Niezawodność i Diagnostyka

Niezawodność i Diagnostyka Katedra Metrologii i Optoelektroniki Wydział Elektroniki Telekomunikacji i Informatyki Politechnika Gdańska Niezawodność i Diagnostyka Ćwiczenie laboratoryjne nr 3 Struktury niezawodnościowe 1. Struktury

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2012 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2

= = a na podstawie zadania 6 po p. 3.6 wiemy, że. b 1. a 2 ab b 2 64 III. Zienne losowe jednowyiarowe D Ponieważ D (A) < D (B), więc należy wybrać partię A. Przykład 3.4. Obliczyć wariancję rozkładu jednostajnego. Ponieważ a na podstawie zadania 6 po p. 3.6 wiey, że

Bardziej szczegółowo

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk

Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, Otwock-Świerk Narodowe Centrum Badań Jądrowych Dział Edukacji i Szkoleń ul. Andrzeja Sołtana 7, 05-400 Otwock-Świerk ĆWICZENIE L A B O R A T O R I U M F I Z Y K I A T O M O W E J I J Ą D R O W E J Zastosowanie pojęć

Bardziej szczegółowo

System obsługi klienta przy okienku w urzędzie pocztowym

System obsługi klienta przy okienku w urzędzie pocztowym System obsługi klienta przy okienku w urzędzie pocztowym Opracowały: Monika Rozmarynowska Paulina Wałdoch Joanna Wika Specjalność : EPiF Rok akademicki: 2009/2010 1 Spis treści 1. Opis i założenia wstępne

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013

ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 ANALIZA WYNIKÓW NAUCZANIA W GIMNAZJUM NR 3 Z ZASTOSOWANIEM KALKULATORA EWD 100 ROK 2013 OPRACOWAŁY: ANNA ANWAJLER MARZENA KACZOR DOROTA LIS 1 WSTĘP W analizie wykorzystywany będzie model szacowania EWD.

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych 1 Zmienne losowe dyskretne 1.1 Rozkład dwumianowy Zad.1.1.1 Prawdopodobieństwo dziedziczenia pewnej cechy wynosi 0,7. Jakie jest prawdopodobieństwo, że spośród pięciu potomków

Bardziej szczegółowo

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 145. Leszek Knopik

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 145. Leszek Knopik UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY IM. JANA I JÊDRZEJA ŒNIADECKICH W BYDGOSZCZY ROZPRAWY NR 145 Leszek Knopik METODA WYBORU EFEKTYWNEJ STRATEGII EKSPLOATACJI OBIEKTÓW TECHNICZNYCH BYDGOSZCZ 010 REDAKTOR

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ

NAZWA ZMIENNEJ LOSOWEJ PODAJ WARTOŚĆ PARAMETRÓW ROZKŁADU PRAWDOPODOBIEŃSTWA DLA TEJ ZMIENNEJ WAŻNE INFORMACJE: 1. Sprawdzane będą wyłącznie wyniki w oznaczonych polach, nie czytam tego co na marginesie, nie sprawdzam pokreślonych i niedbałych pól. 2. Wyniki proszę podawać z dokładnością do dwóch

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

R-PEARSONA Zależność liniowa

R-PEARSONA Zależność liniowa R-PEARSONA Zależność liniowa Interpretacja wyników: wraz ze wzrostem wartości jednej zmiennej (np. zarobków) liniowo rosną wartości drugiej zmiennej (np. kwoty przeznaczanej na wakacje) czyli np. im wyższe

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

Student Bartosz Banaś Dr inż. Wiktor Kupraszewicz Dr inż. Bogdan Landowski Dr inż. Bolesław Przybyliński kierownik zespołu

Student Bartosz Banaś Dr inż. Wiktor Kupraszewicz Dr inż. Bogdan Landowski Dr inż. Bolesław Przybyliński kierownik zespołu I kwartał 2011 Student Bartosz Banaś Dr inż. Wiktor Kupraszewicz Dr inż. Bogdan Landowski Dr inż. Bolesław Przybyliński kierownik zespołu Powołany zespół, jako szczegółowe zadania realizacyjne w projekcie,

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18 Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3

5.Dzienne zużycie energii (1=100kWh) pewnej firmy jest zmienną losową. 0, gdy x 0 lub x 3 LISTA 4 1.Liczba komputerów, które mogą być zarażone wirusem poprzez pewną sieć ma rozkład Poissona z parametrem λ = 7. Prawdopodobieństwo,że wirus uaktywni się w zarażonym komputerze wynosi p. Jakie jest

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności

Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Ćwiczenie: Badanie normalności rozkładu. Wyznaczanie przedziałów ufności Badanie normalności rozkładu Shapiro-Wilka: jest on najbardziej zalecanym testem normalności rozkładu. Jednak wskazane jest, aby

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Rozważania w zakresie analizy uszkodzeń eksploatacyjnych pozwalają uczulić na te problemy we wdrażania nowych konstrukcji lotniczych

Rozważania w zakresie analizy uszkodzeń eksploatacyjnych pozwalają uczulić na te problemy we wdrażania nowych konstrukcji lotniczych Rozważania w zakresie analizy uszkodzeń eksploatacyjnych pozwalają uczulić na te problemy we wdrażania nowych konstrukcji lotniczych Wnioski kreują kierunek tworzenia nowych konstrukcji powinny one być

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski

Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska. Statystyka Mariusz Kaszubowski Mariusz Kaszubowski Katedra Statystyki Wydział Zarządzania i Ekonomii Politechnika Gdańska Zmienna losowa i jej rozkład Statystyka matematyczna Podstawowe pojęcia Zmienna losowa (skokowa, ciągła) Rozkład

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ

PODSTAWY OCENY WSKAŹNIKÓW ZAWODNOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ r inż. Andrzej PURCZYŃSKI Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Kaliszu POSTAWY OCENY WSKAŹNIKÓW ZAWONOŚCI ZASILANIA ENERGIĄ ELEKTRYCZNĄ Streszczenie W opracowaniu przedstawiono elementy

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

POTRZEBA I MOŻLIWOŚCI ZABEZPIECZENIA LOGISTYCZNEGO SYSTEMÓW UZBROJENIA REQUIREMENTS FOR THE WEAPON SYSTEMS LOGISTIC SUPPORT

POTRZEBA I MOŻLIWOŚCI ZABEZPIECZENIA LOGISTYCZNEGO SYSTEMÓW UZBROJENIA REQUIREMENTS FOR THE WEAPON SYSTEMS LOGISTIC SUPPORT dr inż. Eugeniusz MILEWSKI prof. dr hab. inż. Jan FIGURSKI Wojskowy Instytut Techniczny Uzbrojenia POTRZEBA I MOŻLIWOŚCI ZABEZPIECZENIA LOGISTYCZNEGO SYSTEMÓW UZBROJENIA Streszczenie: W artykule przedstawiono

Bardziej szczegółowo

BADANIA OPERACYJNE. dr Adam Sojda Pokój A405

BADANIA OPERACYJNE. dr Adam Sojda  Pokój A405 BADANIA OPERACYJNE dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Przedsięwzięcie - zorganizowanie działanie ludzkie zmierzające do osiągnięcia określonego

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

TRÓJPARAMETROWY MODEL ZDATNOŚCI SYSTEMU Z DWOMA TYPAMI ZAGROŻEŃ

TRÓJPARAMETROWY MODEL ZDATNOŚCI SYSTEMU Z DWOMA TYPAMI ZAGROŻEŃ 1-011 PROBLEMY EKSPLOATACJI 17 Karol ANDRZEJCZAK, Barbara POPOWSKA Politechnika Poznańska, Poznań TRÓJPARAMETROWY MODEL ZDATNOŚCI SYSTEMU Z DWOMA TYPAMI ZAGROŻEŃ Słowa kluczowe Funkcja przetrwania, funkcja

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

NK315 WYKŁAD WPROWADZAJĄCY

NK315 WYKŁAD WPROWADZAJĄCY NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH WYKŁAD WPROWADZAJĄCY NK315 EKSPLOATACJA STATKÓW LATAJĄCYCH CELE PRZEDMIOTU: Głównym celem przedmiotu jest przedstawienie procesu powstawania i ewaluacji programów

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo