ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich
|
|
- Czesław Nawrocki
- 5 lat temu
- Przeglądów:
Transkrypt
1 ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa przyrody są niezmiennize względem przekształeń wynikająyh z przejśia od jednego inerjalnego układu odniesienia do drugiego II Zasada stałośi prędkośi światła: Prędkość światła w próżni jest taka sama we wszystkih inerjalnyh układah odniesienia i nie zależy od ruhu źródeł i odbiorników światła - = 3 Prędkość światła w próżni jest prędkośią s 8 m granizną Żaden sygnał i żadne działanie jednego iała na drugie nie może zahodzić z większą prędkośią Zdarzenie w relatywistye opisuje się w zasoprzestrzeni przez podanie jego miejsa i zasu: yztw danym układzie współrzędnyh przeprowadza się synhronizaję zegarów: Z punktu A w hwili ta wysyła się sygnał świetlny do punktu B W hwili t B wskazywanej przez zegar B sygnał odbija się od lustra umieszzonego w punkie B i wraa do punktu A w hwili t wskazywanej przez zegar w punkie A Jeśli t B ta = t A tb to zegary A i B są A zsynhronizowane Taka synhronizaja musi być przeprowadzona dla wszystkih punktów układu Do synhronizaji używa się światła ponieważ prędkość światła jest taka sama we wszystkih układah inerjalnyh Czas w relatywistye nie jest wielkośią absolutną i w różnyh układah inerjalnyh może upływać inazej Transformaje Lorentza Bierzemy pod uwagę dwa układy inerjalne OiO z któryh jeden O porusza się z prędkośią wzdłuż os -ów względem układu O W hwili t = t = kiedy obydwa
2 układy pokrywały się z sobą umieszzone w pozątku układu O źródło światła wysłało impuls światła rozhodząego się izotropowo w przestrzeni Czoło impulsu tworzy sferę która w układzie O opisana jest równaniem + + = ( ) (5) y z t W układzie O na moy postulatów Einsteina zoło impulsu też musi tworzyć sferę o równaniu + y + z = ( t) (5) O y y y y t= t = t t R = t R = t O O O z z z z Transformaje są to równania które pozwalają przejść z jednego układu do drugiego Spróbujemy zastosować poznane wześniej transformaje Galileusza w elu przejśia od równania (5) do równania (5): = + t y = y z = z t = t (53) Otrzymamy ( ) ( + t ) + y + z = t (54) Od równania (54) jak widać z jego postai nie można przejść do równania (5) Umożliwiają to natomiast transformaje Lorentza: t + + t = y = y z = z t = (55)
3 Można to sprawdzić t + + t y z + + = + t + t + ( y + z ) = t + t + + t + ( y + z ) = t ( ) y z t + ( y + z ) = t + + = + Odwrotne transformaje Lorentza mają postać t t = y = y z = z t = (56) W przypadku kiedy transformaje Lorentza przehodzą w klasyzne transformaje Galileusza Konsekwenje transformaji Lorentza Skróenie Fitzgeralda Lorentza y y O O z z 3
4 Długość pręta w układzie w którym spozywa oznazymy przez l l = - O jest to długość własna pręta W układzie O względem którego pręt porusza się z prędkośią oznazymy przez l jego długość: l = Aby pomiar był poprawny należy współrzędne końów pręta i mierzyć w tej samej hwili zasu t = t = t Po skorzystaniu z transformaji Lorentza t t = = mamy = l = l (57) gdzie = Długość pręta l mierzona w układzie względem którego pręt się porusza jest mniejsza od jego długośi własnej l Jednozesność zdarzeń w różnyh układah odniesienia Zakładamy że w układzie O w punktah o współrzędnyh i zahodzą jednoześnie dwa zdarzenia w hwili t = t = t Czy zdarzenia te są równozesne w układzie O? t t t = t = ( ) t t = t t jeśli (58) Równanie (58) wyraża zasadę względnośi jednozesnośi zdarzeń niezależnyh 4
5 rozdzielonyh przestrzennie 3 Dylataja zasu Einsteina Załóżmy że w układzie O w tym samym miejsu = = zahodzą dwa zdarzenia w hwilah zasu t i t W układzie spozywająym O zdarzeniom tym odpowiadają hwile zasu t i t t + t + t = t = t t Δt = Δ = t t t (59) Jeśli zdarzenia dotyzą pojedynzej ząstki (iała) to zas mierzony zegarem poruszająym się razem z ząstką nazywamy zasem własnym i oznazamy przez τ (tau) Δτ Δ t = Δ t >Δτ (5) Dylataja zasu Einsteina: Poruszająy się zegar hodzi wolniej od zegara spozywająego Eksperymentalnie: ząstki wtórnego promieniowania kosmiznego miony doierają do powierzhni Ziemi z odległośi około km gdzie powstają Średni zas własny żyia mionu wynosi Δ τ = τ 6 s W tym zasie mion poruszająy się z prędkośią może pokonać dystans ( klasyznie ) τ s 3 = 6 m s 6 8 m Miony jednak pokonują dystans km dzięki wydłużeniu ( dylataji ) zasu: Δ t = τ km 5
6 Relatywistyzne składanie ( dodawanie ) prędkośi Przypuśćmy że źródło światła emituje foton do przodu oraz inny foton do tyłu Ile wynosi prędkość jednego fotonu względem drugiego? Odpowiedź zgodna z fizyką klasyzną to: ( w próżni ) Odpowiedź zgodna z fizyką relatywistyzną jest ozywiśie inna; ząstka nie może mieć prędkośi większej niż wzorami W układzie O składowe prędkość definiujemy = d dy y = dz z = dt dt dt a w układzie O wzorami d dy y dz = = z = dt dt dt Stosują transformaje Lorentza zapisane dla małyh przyrostów dt d d dt + + d = dy = dy dz = dz dt = uzyskamy d + dt + = = = = dt y z y z d (5) Odpowiedź zgodna z fizyką relatywistyzną na pytanie o prędkość jednego fotonu względem drugiego będzie wię następująa: z punktu widzenia fotonu leąego do tyłu: + = = = w = = + W podobny sposób można otrzymać wzory odwrotne do(5) 6
7 y z = y = z = (5) Pęd i energia w relatywistye Klasyzne wyrażenie na pęd p = m nie jest niezmiennize względem przekształeń Lorentza Okazało się że niezmiennize jest wyrażenie p = m (53) gdzie jest prędkośią iała Wyrażenie to można zapisać także w postai: p m dr dr dt d = =m τ (54) gdzie dτ jest odstępem zasu własnego ząstki Niekiedy wyrażenie na pęd przedstawia się w postai p = m r (55) gdzie m r = m/ zależy od prędkośi iała m jest nazywane masą relatywistyzną r W relatywistye drugie prawo Newtona przyjmuje postać d m F = dt (56) Korzystają z wzoru (56) można uzyskać wyrażenie na energię kinetyzną ząstki w sposób podobny jak w fizye klasyznej 7
8 d m m dek Fds = = dt = d (57) dt Z równania (57) wynika że E k m = + onst Ponieważ E = kiedy = mamy = m + onst onst = m wobe zego wzór k na energię kinetyzną przyjmuje postać E k m = m (58) W relatywistye ząste swobodnej opróz energii kinetyznej przypisuje się dodatkową energię E którą nazywa się energią spozynkową jako sumę energii kinetyznej i spozynkowej mamy E m = Definiują energię ałkowitą E = E + E = k m (59) Wzór (59) jest słuszny nie tylko dla ząstki ale i dla iała złożonego z wielu ząstek Energia spozynkowa E takiego iała składa się z : Energii spozynkowej poszzególnyh ząstek Energii kinetyznyh ząstek składowyh względem środka masy iała złożonego 3 Energii wzajemnego oddziaływania ząstek 8
9 Kombinaja wyrażenia na energię (59) i wyrażenia (53) na pęd daje wzór łąząy energię ałkowitą E z pędem p ząstki E = p + m (5) Dla fotonu m = otrzymamy: E = p (5) 9
Elementy mechaniki relatywistycznej
Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka
Bardziej szczegółowoElementy szczególnej teorii względności
Elementy szzególnej teorii względnośi Podstawowe założenia szzególnej teorii względnośi: Albert Einstein 195 Prawa fizyzne są takie same dla wszystkih obserwatorów któryh kłady odniesienia porszają się
Bardziej szczegółowoteoria wzgl wzgl dności
ver-8.6.7 teoria względnośi interferometr Mihelsona eter? Albert Mihelson 85 Strzelno, Kujawy 93 Pasadena, Kalifornia Nobel - 97 http://galileoandeinstein.physis.virginia.edu/more_stuff/flashlets/mmexpt6.htm
Bardziej szczegółowoWykład 30 Szczególne przekształcenie Lorentza
Wykład Szzególne przekształenie Lorentza Szzególnym przekształeniem Lorentza (właśiwym, zahowująym kierunek zasu) nazywa się przekształenie między dwoma inerjalnymi układami odniesienia K i K w przypadku
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szzególna i ogólna teoria względnośi (wybrane zagadnienia) Mariusz Przybyień Wydział Fizyki i Informatyki Stosowanej Akademia Górnizo-Hutniza Wykład 1 M. Przybyień (WFiIS AGH) Szzególna Teoria Względnośi
Bardziej szczegółowoMECHANIKA RELATYWISTYCZNA
MCHANIKA RLATYWISTYCZNA MCHANIKA RLATYWISTYCZNA (SZCZGÓLNA TORIA WZGLĘDNOŚCI TRANSFORMACJA LORNTZA WSPÓŁRZĘDNYCH CZĄSTKI (93r. Rys.. S y y S z z z Układy S i S są inerjalnymi kładami odniesienia z ( m
Bardziej szczegółowoAlbert Einstein SZCZEGÓLNA I OGÓLNA TEORIA WZGLĘDNOŚCI. Szczególna Teoria Względności
Szzególna Teoria Względnośi SZCZEGÓLNA I OGÓLNA TEORIA WZGLĘDNOŚCI Albert Einstein 1879 1955 1905 szzególna teoria względnośi 1915 ogólna teoria względnośi (teoria grawitaji) PRZESTRZEŃ CZAS ŚWIATŁO MASA
Bardziej szczegółowoSzczególna Teoria Względności
Szzególna Teoria Względnośi Prędkość światła klzowa dla fndamentalnyh pytań o natrę Wszehświata Starożytność bardzo dża lb prędkość dźwięk określona (IV w. B.C. Arystoteles = ) XI w. A.D. Arabowie (Awienna)
Bardziej szczegółowoTeoria względności Szczególna teoria względności dr Mikołaj Szopa wykład
Teoria względnośi Szzególna teoria względnośi dr Mikołaj Szopa wykład 9.0.6 Teoria względnośi Transformaje Galileusza Przyspieszenie układu S : a = 0 S S y y t x = x - t y = y z = z t = t () x = x - t
Bardziej szczegółowoFizyka cząstek elementarnych
Wykład II lementy szzególnej teorii względnośi W fizye ząstek elementarnyh mamy zwykle do zynienia z obiektami oruszająymi się z rędkośiami orównywalnymi z rędkośią światła o owoduje koniezność stosowania
Bardziej szczegółowoU.1 Elementy szczególnej teorii względności
UZUPEŁNIENIE Uzupełnienie Elementy szzególnej teorii względnośi U.1 Elementy szzególnej teorii względnośi Mehanika klasyzna oparta na zasadah dynamiki Newtona poprawnie opisuje zjawiska, w któryh prędkośi
Bardziej szczegółowoZrozumieć Einsteina, czyli jak uczę szczególnej teorii względności
strona 1/17 Motto: Geniusz jest potrzebny do tworzenia dzieł, a nie do ih podziwiania. Zrozumieć Einsteina, zyli jak uzę szzególnej teorii względnośi Aleksander Nowik aleksander.nowik@neostrada.pl Szzególna
Bardziej szczegółowoWykład FIZYKA II. 10. Szczególna teoria względności. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYK II 10. Szzególna teoria względnośi Dr hab. inż. Władysław rtur Woźniak Instytut Fizyki Politehniki Wroławskiej http://www.if.pwr.wro.pl/~wozniak/ MECHNIK RELTYWISTYCZN Mehanika newtonowska
Bardziej szczegółowoFizyka relatywistyczna
Fizyka relatywistyzna Zadania z rozwiązaniami Projekt współfinansowany przez Unię uropejską w ramah uropejskiego Funduszu Społeznego Zadanie Na spozywająą ząstkę zazyna działać stała siła. Jaką prędkość
Bardziej szczegółowoMechanika relatywistyczna
Mehanika relatywistyzna Konepja eteru Eter kosmizny miał być speyfiznym ośrodkiem, wypełniająym ałą przestrzeń, który miał być nośnikiem fal świetlnyh (później w ogóle pola elektromagnetyznego). W XIX
Bardziej szczegółowoCZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie I (luty, 2013) u Wyprowadzenie transformacji Lorentza u Relatywistyczna transformacja prędkości u Dylatacja czasu u Skrócenie długości
Bardziej szczegółowoELEMENTY MECHANIKI RELATYWISTYCZNEJ
ELEMENTY MECHANIKI RELATYWISTYCZNEJ Wykład 9 Pamiętaj, że najmniejszy krok w stronę elu jest więej wart niż maraton dobryh hęi. H. J. Brown ELEMENTY MECHANIKI RELATYWISTYCZNEJ Szzególna teoria względnośi
Bardziej szczegółowoElementy dynamiki relatywistycznej r r
Elementy dynamiki relatywistyznej r r F ma - nieaktualne r r d p F - nadal aktualne dt ale pod warunkiem, że r r m r p γ m gdzie m - masa spozynkowa. Możliwa interpretaja: r r m p m gdzie masa zależy od
Bardziej szczegółowo7. Szczególna teoria względności. Wybór i opracowanie zadań : Barbara Kościelska Więcej zadań z tej tematyki znajduje się w II części skryptu.
7 Szzególna eoria względnośi Wybór i opraowanie zadań 7-79: Barbara Kośielska Więej zadań z ej emayki znajduje się w II zęśi skrypu 7 Czy można znaleźć aki układ odniesienia w kórym Chrzes Polski i Biwa
Bardziej szczegółowoWykład 3: Kinematyka - względność ruchów. dr inż. Zbigniew Szklarski
Wykład 3: Kinemayka - względność ruhów dr inż. Zbigniew Szklarski szkla@agh.edu.pl hp://layer.ui.agh.edu.pl/z.szklarski/ Wzgledność ruhów Każdy ruh opisujemy względem jakiegoś układu odniesienia W hwili
Bardziej szczegółowoWykład 4: Względność ruchów. dr inż. Zbigniew Szklarski
Wykład 4: Względność ruhów dr inż. Zbigniew Szklarski szkla@agh.edu.pl hp://layer.ui.agh.edu.pl/z.szklarski/ Wzgledność ruhów Każdy ruh opisujemy względem jakiegoś układu odniesienia W hwili 0 rusza samohód
Bardziej szczegółowoDynamika relatywistyczna, czasoprzestrzeń
Kuala Lupur, Malesia, Febuary 4 W-8 (Jarszewiz) 3 slajdów Na pdstawie prezentaji prf. J. Rutkwskieg Dynaika relatywistyzna, zasprzestrzeń Siła relatywistyzna Pęd relatywistyzny Energia relatywistyzna:
Bardziej szczegółowoMasa relatywistyczna niepotrzebny i szkodliwy relikt
FOTON 14, Wiosna 014 1 Masa relatywistyzna niepotrzebny i szkodliwy relikt Aleksander Nowik Nauzyiel fizyki, matematyki i informatyki Siemianowie Śląskie Ouh! The onept of relatiisti mass is subjet to
Bardziej szczegółowoPodstawy fizyki wykład 9
D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,
Bardziej szczegółowoFIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków
Bardziej szczegółowover teoria względności
ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm
Bardziej szczegółowoElementy fizyki relatywistycznej
Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności
Bardziej szczegółowoKinematyka, Dynamika, Elementy Szczególnej Teorii Względności
Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.
Bardziej szczegółowof s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując
Wykład z fizyki. Piotr Posmykiewiz 63 s = ma s = m v f vi = mvi 7- f W równaniu powyŝszym zastosowano równanie Porównują równania 7-0 i 7- otrzymamy: i a s = v f v i v f = 0 ( Patrz równanie -). f s =
Bardziej szczegółowoDefinicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia
Bardziej szczegółowoTRANFORMACJA GALILEUSZA I LORENTZA
TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym
Bardziej szczegółowoCzym zajmuje się teoria względności
Teoria względności Czym zajmuje się teoria względności Głównym przedmiotem zainteresowania teorii względności są pomiary zdarzeń (czegoś, co się dzieje) ustalenia, gdzie i kiedy one zachodzą, a także jaka
Bardziej szczegółowoTemat XXXIII. Szczególna Teoria Względności
Temat XXXIII Szczególna Teoria Względności Metoda radiolokacyjna Niech w K znajduje się urządzenie nadawcze o okresie T, mierzonym w układzie K Niech K oddala się od K z prędkością v wzdłuż osi x i rejestruje
Bardziej szczegółowoFizyka 1 (mechanika) AF14. Wykład 12
Fizyka 1 (mechanika) 1100-1AF14 Wykład 12 Jerzy Łusakowski 18.12.2017 Plan wykładu Doświadczenie Michelsona - Morley a Transformacja Lorentza Synchronizacja zegarów Wnioski z transformacji Lorentza Doświadczenie
Bardziej szczegółowoRys. 1.2 Transformacja Galileusza
Wykład 9 Kinematyka relatywistyzna 1. Masa i pęd relatywistyzny Pierwsza zasada dynamiki o układah inerjalnyh. Na pomysł I zasady dynamiki wpadł Galileusz. Podobno stało się to podzas podróży. Obserwują
Bardziej szczegółowoSzczególna teoria względności i jej konsekwencje
W-7 (Jaroszewiz) slajdy Na odsawie rezenaji rof. J. Ruowsiego Szzególna eoria względnośi i jej onsewenje Szzególna eoria względnośi Konsewenje wyniająe z ransformaji Lorenza: względność równozesnośi dylaaja
Bardziej szczegółowoKrzywe stożkowe. 1 Powinowactwo prostokątne. 2 Elipsa. Niech l będzie ustaloną prostą i k ustaloną liczbą dodatnią.
Krzywe stożkowe 1 Powinowatwo prostokątne Nieh l będzie ustaloną prostą i k ustaloną lizbą dodatnią. Definija 1.1. Powinowatwem prostokątnym o osi l i stosunku k nazywamy przekształenie płaszzyzny, które
Bardziej szczegółowoPostulaty szczególnej teorii względności
Teoria Względności Pomiary co, gdzie, kiedy oraz w jakiej odległości w czasie i przestrzeni Transformowanie (przekształcanie) wyników pomiarów między poruszającymi się układami Szczególna teoria względności
Bardziej szczegółowoSzczególna teoria względności
Szczególna teoria względności Rakieta zbliża się do Ziemi z prędkością v i wysyła sygnały świetlne (ogólnie w postaci fali EM). Z jaką prędkością sygnały te docierają do Ziemi? 1. Jeżeli światło porusza
Bardziej szczegółowoWyjaśnienie wyników eksperymentu Michelsona-Morleyaa przy pomocy uniwersalnego układu odniesienia
Artykuł ukazał się w języku angielskim w otwartym dostępie w zasopiśmie Journal of Modern Physis Szostek Karol, Szostek Roman 07 The Explanation of the Mihelson-Morley Experiment Results by Means Uniersal
Bardziej szczegółowoKINEMATYKA RELATYWISTYCZNA
KINEMATYKA RELATYWISTYCZNA Wstęp Mehanika klasyzna, hoć daje świetne przewidywania dla rh pojazdów, maszyn zy statków kosmiznyh, zawodzi ałkowiie, gdy opisjemy ząstki porszająe się z wielkimi prędkośiami,
Bardziej szczegółowoCZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)
CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina
Bardziej szczegółowoZasady względności w fizyce
Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,
Bardziej szczegółowoCzy można zobaczyć skrócenie Lorentza?
Czy można zobaczyć skrócenie Lorentza? Jacek Jasiak Festiwal Nauki wrzesień 2004 Postulaty Szczególnej Teorii Względności Wszystkie inercjalne układy odniesienia są sobie równoważne Prędkość światła w
Bardziej szczegółowoZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.
ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją
Bardziej szczegółowoDefinicja szybkości reakcji
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany. v zas zmiana stężenia potrzebny do zajśia
Bardziej szczegółowoInterwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości
III.3 Transformacja Lorentza położenia i pędu cd. Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości Jan Królikowski Fizyka IBC 1 Geometria czasoprzestrzeni-
Bardziej szczegółowoIII.2 Transformacja Lorentza położenia i czasu.
III.2 Transformacja Lorentza położenia i czasu. Transformacja Lorentza Geometria czasoprzestrzeni interwał. Konsekwencje transformacji Lorentza: dylatacja czasu i skrócenie długości. Jan Królikowski Fizyka
Bardziej szczegółowoDefinicja szybkości reakcji. Szybkości reakcji. Równanie kinetyczne reakcji ...
Definija szybkośi reakji Szybkość reakji definiuje się jako stosunek zmiany stężenia substratów lub produktów reakji do zasu potrzebnego do zajśia tej zmiany v zmiana stężenia zas potrzebny do zajśia dx
Bardziej szczegółowoPoczątki fizyki współczesnej
Pozątki fizyki współzesnej 1 Plan 1.1. Promieniowanie iała doskonale zarnego 1.. Foton 1.3. Efekt fotoelektryzny 1.4. Efekt Comptona 1 Trohę historii Gustav Kirhhoff (184-1887) W 1859 rozpozyna się droga
Bardziej szczegółowoANEMOMETRIA LASEROWA
1 Wstęp ANEMOMETRIA LASEROWA Anemometria laserowa pozwala na bezdotykowy pomiar prędkośi zastezek (elementów) rozpraszajayh światło Źródłem światła jest laser, którego wiazka jest dzielona się nadwiewiazki
Bardziej szczegółowo14. Teoria względności
. Teoria wzglęnośi.. Prękość w ukłaah inerjalnyh. Y Z Z Y V V V X X Wzglęe ukłau O unkt aterialny a szybkość x t' Natoiast wzglęe ukłau O a szybkość x t. Skoro x γ (x t ) to x γ (x t ) Natoiast x' x' t
Bardziej szczegółowoWłasności falowe cząstek. Zasada nieoznaczoności Heisenberga.
Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego
Bardziej szczegółowoTransformacja Lorentza Wykład 14
Transformacja Lorentza Wykład 14 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/43 Względność Galileusza Dotychczas
Bardziej szczegółowoV.6 Pęd i energia przy prędkościach bliskich c
r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia
Bardziej szczegółowoMECHANIKA RELATYWISTYCZNA. Rys. Transformacja Galileusza
MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Wstęp Jeden z twórców mechaniki (klasycznej).
Bardziej szczegółowoPoczątki fizyki współczesnej
Pozątki fizyki współzesnej Plan.. Promieniowanie iała doskonale zarnego.. Foton.. Efekt fotoelektryzny.4. Efekt Comptona Trohę historii Gustav Kirhhoff (84-887) W 859 rozpozyna się droga do mehaniki kwantowej
Bardziej szczegółowoXXXV. TEORIA WZGLĘDNOŚCI
XXXV. TEORIA WZGLĘDNOŚCI 35.1. Równoczesność i dylatacja czasu Teoria względności zajmuje się pomiarami zdarzeń, gdzie i kiedy zdarzenia zachodzą oraz odległością tych zdarzeń w czasie i przestrzeni. Ponadto
Bardziej szczegółowoMECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI)
MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI) Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Rys. Albert
Bardziej szczegółowoO prędkościach nadświetlnych
FOTON 94, Jesień 006 17 O prędkośiah nadświetlnyh Leszek M. Sokołowski Obserwatorium Astronomizne UJ Poskarżył się pewien nauzyiel fizyki, że w szkolnym wykładzie szzególnej teorii względnośi (STW) obowiązuje
Bardziej szczegółowoIII.1 Ruch względny. III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego
III.1 Ruch względny III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego Jan Królikowski Fizyka IBC 1 III.1 Obserwacja położenia
Bardziej szczegółowoElementy optyki. Odbicie i załamanie fal Zasada Huygensa Zasada Fermata Interferencja Dyfrakcja Siatka dyfrakcyjna
Elementy optyki Odbiie i załamanie fal Zasada Huygensa Zasada Fermata Interferenja Dyfrakja Siatka dyfrakyjna 1 Odbiie i załamanie fal elektromagnetyznyh na graniah dwóh ośrodków Normalna do powierzhni
Bardziej szczegółowoFIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Bardziej szczegółowoPole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru.
Dywergenja i rotaja pola magnetyznego Linie wektora B nie mają pozątku, ani końa. tąd wynika twierdzenie Gaussa dla wektora B : Φ = B d = B trumień wektora indukji magnetyznej przez dowolną powierzhnię
Bardziej szczegółowoDyskretna transformata falkowa z wykorzystaniem falek Haara. Alfréd Haar
Dyskretna transformata falkowa z wykorzystaniem falek Haara Alfréd Haar 88-9 Przypomnijmy, że istotą DWT jest podział pierwotnego sygnału za pomoą pary filtrów (górnoprzepustowego i dolnoprzepustowego)
Bardziej szczegółowoSIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY
SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY Opracowanie: Agnieszka Janusz-Szczytyńska www.fraktaledu.mamfirme.pl TREŚCI MODUŁU: 1. Dodawanie sił o tych samych kierunkach 2. Dodawanie sił
Bardziej szczegółowoPowstanie i rola Szczególnej Teorii Względności (STW)
Powsanie i rola Szzególnej Teorii Względnośi (STW Co znał Einsein przed 905 rokiem? Równania Maxwella, Problem eeru (doświadzenie Mihelsona Morleya?, Aberaje świała, Wlezenia eeru Fresnela, Znał praę orenza
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 2 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Bardziej szczegółowoZadanie. Oczywiście masa sklejonych ciał jest sumą poszczególnych mas. Zasada zachowania pędu: pozwala obliczyć prędkość po zderzeniu
Zderzenie centralne idealnie niesprężyste (ciała zlepiają się i po zderzeniu poruszają się razem). Jedno z ciał przed zderzeniem jest w spoczynku. Oczywiście masa sklejonych ciał jest sumą poszczególnych
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
Bardziej szczegółowoTransformacja Galileusza ( )
Tansfomaja Galileusza (564-64) z z y y Zasada względnośi Galileusza: pawa mehaniki są jednakowe we wszyskih inejalnyh układah odniesienia. F F a a Uwaga: newonowskie dodawanie pędkośi: u u S S, S S Poblem
Bardziej szczegółowoZasady dynamiki Newtona. dr inż. Romuald Kędzierski
Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym
Bardziej szczegółowoSzczególna teoria względności
5.04.08 Szczególna teoria względności Gdzie o tym więcej poczytać? Katarzyna Sznajd Weron Dlaczego ta teoria jest szczególna? Albert Einstein (905) Dotyczy tylko inercjalnych układów odniesienia. Spełnione
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoTransformacja Galileusza ( )
Tansfomaja Galileusza (564-64) z z y y Zasada względnośi Galileusza: pawa mehaniki są jednakowe we wszyskih inejalnyh układah odniesienia. F F a a Uwaga: newonowskie dodawanie pędkośi: u u S S, S S Poblem
Bardziej szczegółowoSzczególna i ogólna teoria względności (wybrane zagadnienia)
Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności
Bardziej szczegółowoRozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:
Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i
Bardziej szczegółowopobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura
B C D D B C C B B B B B A Zadanie 5 (1 pkt) Astronauta podczas zbierania próbek skał z powierzchni Księżyca upuścił szczypce z wysokości 1m. Przyspieszenie grawitacyjne przy powierzchni Księżyca ma wartość
Bardziej szczegółowoCzy da się zastosować teorię względności do celów praktycznych?
Czy da się zastosować teorię względności do celów praktycznych? Witold Chmielowiec Centrum Fizyki Teoretycznej PAN IX Festiwal Nauki 24 września 2005 Mapa Ogólna Teoria Względności Szczególna Teoria Względności
Bardziej szczegółowoKinematyka: opis ruchu
Kinematyka: opis ruchu Pojęcia podstawowe Punkt materialny Ciało, którego rozmiary można w danym zagadnieniu zaniedbać. Zazwyczaj przyjmujemy, że punkt materialny powinien być dostatecznie mały. Nie jest
Bardziej szczegółowoZiarnista budowa Natury
Ziarnista budowa Natury Autor: Czesław Rodziewiz Spis treśi 1. Geometria ząstki falowej, masa, energia i pole falowe.. Elektromagnetyzm 3. Grawitaja 4. Dualizm korpuskularno falowy 5. Splątanie kwantowe
Bardziej szczegółowoWykład Zasada względności Galileusza. WARIANT ROBOCZY Względność.
Wykład z fizyki Piotr Posmykiewicz 1 Wykład 9 WARIANT ROBOCZY Względność. Teoria względności składa się właściwie z dwóch różnych teorii: szczególnej teorii względności i ogólnej teorii względności. Szczególna
Bardziej szczegółowoRównania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Bardziej szczegółowoOPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Bardziej szczegółowoKinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Bardziej szczegółowoMiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Bardziej szczegółowoElementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski
Elementy dynamiki klasycznej - wprowadzenie dr inż. Romuald Kędzierski Po czym można rozpoznać, że na ciało działają siły? Możliwe skutki działania sił: Po skutkach działania sił. - zmiana kierunku ruchu
Bardziej szczegółowomechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej
mechanika analityczna 1 nierelatywistyczna L.D.Landau, E.M.Lifszyc Krótki kurs fizyki teoretycznej ver-28.06.07 współrzędne uogólnione punkt materialny... wektor wodzący: prędkość: przyspieszenie: liczba
Bardziej szczegółowoWpływ energii mieszania na współczynnik wnikania masy w układzie ciało stałe - ciecz
Wpływ energii mieszania na współzynnik wnikania masy w układzie iało stałe - iez 1.Wprowadzenie Rozpuszzanie iała stałego w mieszalnikah stanowi jedną z prostszyh metod realizaji proesu wymiany masy od
Bardziej szczegółowoI.2 Promieniowanie Ciała Doskonale Czarnego
I. Promieniowanie Ciała Doskonale Czarnego Jan Królikowski Fizyka IVBC 1 CIAŁO DOSKONALE CZARNE (CDCz) CDCz jest to takie iało, którego zdolność absorpyjna a(, T) nie zależy od długośi fali i wynosi 100%.
Bardziej szczegółowoWyznaczenie współczynnika restytucji
1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących
Bardziej szczegółowoSzczególna teoria względności
Szczególna teoria względności Wykład II: Transformacja Galileusza prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Ogólna postać transformacji
Bardziej szczegółowoDla powstania pola magnetycznego konieczny jest ruch ładunków elektrycznych, a więc przepływ prądu elektrycznego, natomiast pole elektryczne powstaje
Pole elektryzne Dla powstania pola magnetyznego koniezny jest ruh ładunków elektryznyh, a wię przepływ prądu elektryznego, natomiast pole elektryzne powstaje zawsze w przestrzeni otazająej ładunki elektryzne,
Bardziej szczegółowoFizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Opis ruchu Opis ruchu Tor, równanie toru Zależność od czasu wielkości wektorowych: położenie przemieszczenie prędkość przyśpieszenie UWAGA! Ważne żeby zaznaczać w jakim układzie
Bardziej szczegółowoSpis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
Bardziej szczegółowoOptyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Bardziej szczegółowoWyznaczanie temperatury i ciśnienia gazu z oddziaływaniem Lennarda Jonesa metodami dynamiki molekularnej
Pojekt n C.4. Wyznazanie tempeatuy i iśnienia gazu z oddziaływaniem Lennada Jonesa metodami dynamiki molekulanej Wpowadzenie Fizyka Rozważamy model gazu zezywistego zyli zbió atomów oddziaływująyh z sobą
Bardziej szczegółowoKinematyka relatywistyczna
Kinematyka relatywistyczna Fizyka I (B+C) Wykład V: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła
Bardziej szczegółowo