CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013)

Wielkość: px
Rozpocząć pokaz od strony:

Download "CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie I (luty, 2013)"

Transkrypt

1 CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie I (luty, 2013)

2 u Wyprowadzenie transformacji Lorentza u Relatywistyczna transformacja prędkości u Dylatacja czasu u Skrócenie długości u Równoczesność zdarzeń

3 X = ( ct,x,y,z ) X = ( ct,x,y,z ) X = ( ct 2,x 2,y 2,z ) 2 Przedział czasoprzestrzenny pomiędzy zdarzeniami X 2! X 1 = ( c(t 2 ), x 2, y 2! y 1, z 2! z ) 1 Odległość w czasie i przestrzeni pomiędzy zdarzeniami (X 2! X 1 ) 2 = c 2 (t 2 ) 2! (x 2 ) 2! (y 2! y 1 ) 2! (z 2! z 1 ) 2

4 x = x! vt y = y z = z t = t x = x + vt = x + vt y = y z = z t = t K K x 2 x 1 v x 1 x 2 = x 1! vt 1 ; t 1 = t 1 = x 2! vt 2 ; t 2 = t 2 L d = x 2 ; T d = t 2 x 2 x 1 x 1 = x 1 + vt 1 ; t 1 = t 1 x 2 = x 2 + vt 2 ; t 2 = t 2 L d = x 2! x 1 ; T d = t 2

5 L d = x 2 = (x 2! vt 2 )! (x 1! vt 1 ) = (x 2 ) = L d t 2 = t 1!T d = 0!T d = 0! t 2 = t 1 Tak więc w fizyce klasycznej: L d T d = L d = T d

6 D = L 2 + v 2 T 2 T = T = D c D L D L T = L c vt vt v x x c = D T = cd L = c L2 + v 2 T 2 L =! L$ c L 2 + v 2 " # c % & L 2 = c 2 + v 2 = c 1+ v 2 c 2! c

7 Z doświadczenia więc wynika, że c = const (1) Prędkość światła w próżni ma zawsze stałą wartość, która nie zależy od ruchu ani źródła, ani odbiornika światła. (2) W dwóch układach odniesienia poruszających się względem siebie ruchem jednostajnym wszystkie prawa przyrody są ściśle takie same i nie ma sposobu wyróżnienia bezwzględnego ruchu jednostajnego. (3) Położenia i prędkości zmieniają się przy przejściu od jednego układu inercjalnego do drugiego zgodnie z transformacją klasyczną. Mamy więc jawną sprzeczność. Nie można pogodzić z sobą (1), (2) i (3). 1) oraz 2) wyklucza transformacje Galileusza, a 3) ja akceptuje

8 T = D c D = L 2 + v 2 T 2 D L D L T = L c vt vt v x x W układzie K W układzie K X 1 = (0,0,0,0); X 2 = (c2t,0,0,0) L 2 (X 2! X 1 ) 2 = c 2 (2T) 2 = 4c 2 c = 2 4L2 (X 2 X 1 = (0,0,0,0); X 2 = (c2t,!v2t,0,0) D 2! X 1 ) 2 = 4c 2 T 2! 4v 2 T 2 = 4c 2 c! 4v 2 T 2 ) = 2 = 4(L 2 + v 2 T 2! v 2 T 2 ) = 4L 2

9 (X 2! X 1 )2 = (X 2! X 1 ) 2 Odległość czasoprzestrzenna pomiędzy zdarzeniami jest identyczna w każdym układzie odniesienia T = D c = L2 + v 2 T 2 T = s = 1! v 2 L c 2! v 2 = L c c c 2 T 2 = L 2 + v 2 T 2 1 1! v 2 c = T"! = 1 s " 1 1# v 2 =$ 1 T 2 (c 2! v 2 ) = L 2 T = st c 2 c " 1 2! T

10 Jak zmienić transformacje Galileusza aby w każdym układzie odniesienia prędkość światła była taka sama? x = x! vt t = t Trzeba podejrzewać czas mówił Einstein. Zakładamy więc, że zachodzi: x =! x + " t t = # t + $ x Gdy x=0 oraz t=0, to także x =0 oraz t =0 i postaramy się znaleźć parametry!,",#,$. Mogą one zależeć jedynie od względnej szybkości dwóch układów odniesienia, v.

11 K K v W układzie K początek układu K (x = 0) porusza się z szybkością v: x = 0! " x + # t = 0! x t = $ # " = v; czyli! = "v# W układzie K początek układu K (x = 0) porusza się z szybkością v:!v = x t = " x + # t czyli $ t + % x = # $ ;! = "v#! = "

12 Skorzystamy z równości przedziałów czasoprzestrzennych w obydwu układach: (X 2! X 1 ) 2 = c 2 (t! 0) 2! (x! 0) 2 = c 2 t 2! x 2 (X 2! X 1 ) 2 = c 2 (t! 0) 2! (x! 0) 2 = c 2 t 2! x 2 czyli c 2 t 2! x 2 = c 2 t 2! x 2 x =! x + " t t = # t + $ x! = " x =! x " v! t =!(x " vt)! = "v# t =! t + # x =!(t + #! x) c 2 (! t + " x) 2 # (! x # v! t) 2 = c 2 t 2 # x 2 c 2 (! 2 t 2 + 2! " t x + " 2 x 2 ) #! 2 (x 2 # 2 v x t + v 2 t 2 ) = c 2 t 2 # x 2

13 c 2 (! 2 t 2 + 2! " t x + " 2 x 2 ) #! 2 (x 2 # 2 v x t + v 2 t 2 ) = c 2 t 2 # x 2 Aby to równanie było spełnione muszą być spełnione relacje: 1) c 2! 2 " v 2! 2 = c 2 Z relacji 1) 2) 2c 2!# + 2! 2 v = 0! 2 = c 2 c 2 " v = 1 2 Ze związku 2) 1" v 2 c 2 #! = 1 1" v 2 c 2 $ % 3) c 2 # 2 "! 2 = "1! = " #v c 2 $ "% v c 2 Relacja 3) jest wtedy spełniona automatycznie.

14 x = x! vt y = y z = z t = t x =! (x " vt) y = y z = z t =! (t " v c x) 2! = 1 1" v 2 c 2 Transformacje odwrotne otrzymamy zamieniając prędkość v na -v Gdy wzajemna prędkość układów v jest mała w porównaniu z prędkością światła, wtedy transformacja Lorentza przechodzi w transformację Galileusza: v c! 0! " 1; v c 2 " 0.

15 Otrzymamy dwóch układów poruszających się wzdłuż osi x: x = γ (x vt ), x = γ (x + vt), y = y, y = y, z = z, t = γ (t v c x ). 2 z t = z, = γ (t + v c 2 x).! = Hendrik Lorentz ( ) 1 1" v 2 c 2 Związki te nazywają się transformacją Lorentza, wynikają z nich: q Skrócenie długości, q Wydłużenia czasu, q Względność równoczesności zdarzeń.

16 Dla prędkości wzdłuż osi x: u =!x!t = u =!x!t!x " v!t!t " v c 2!x =!x!t " v 1" v c 2!x!t u =!x!t = u " v 1" vu c 2 Związek odwrotny: v è - v u = u + v 1+ vu c 2 u = c + v 1+ vc c 2 = c + v (c + v) / c = c Widać, że spełniony jest pierwszy postulat Einsteina, prędkość światła jest zawsze równa c

17 Wzory do wyprowadzenie relacji na skrócenie długości i wydłużenie (dylatację) czasu: 1) x 2 = " [x 2! v(t 2 )] 2) t 2 = " [t 2! v c 2 (x 2 )] 3) x 2 = " [x 2 + v(t 2 )] 4) t 2 = " [t 2 + v c (x 2 2 )]

18 Te same relacje w fizyce klasycznej mają zupełnie inną postać: 1) x 2 2) t 2 = [x 2! v(t 2 )] = [t 2 ] 3) x 2 = [x 2 + v(t 2 )] 4) t 2 = [t 2 ]

19 1) x 2 2) t 2 = " [x 2! v(t 2 )] = " [t 2! v c 2 (x 2 )] 3) x 2 = " [x 2 + v(t 2 )] 4) t 2 = " [t 2 + v c (x 2 2 )] 1) x 2 = [x 2! v(t 2 )] 2) t 2 = [t 2 ] 3) x 2 = [x 2 + v(t 2! t 1 )] 4) t 2 = [t 2! t 1 ]

20 K K Nieruchomy zegar w układzie K x v Z układu K mierzymy czas upływający w K Z relacji 4) gdzie wstawiamy: T = t 2! t; T = t 2 ; x 2 = x 1 = x Otrzymamy: T =!T "! = 1 s T = st! T s! 1 Obserwując ruchomy zegar, widzę, że na nim czas płynie wolniej

21 I odwrotnie, z układu K obserwuje nieruchomy zegar w układzie K. Zegar spoczywa w układzie K a więc: x 2 = x 1 = x Muszę skorzystać z relacji 2), otrzymam: T =!T " T = st! T I ponownie wniosek jest ten sam, jeżeli względem mnie zegar się porusza to widzę, że czas na nim płynie wolniej

22 K K t 1 x 1 = t L d t 2 = t x 2 v Z układu K dokonuję pomiaru długości pręta w układzie K L d = x 2 L d = x 2 Korzystamy z relacji 3) gdzie wstawiam: otrzymujemy: L d =! L d " L d t 2 = t 1 = t = sl d! L d Mierząc z układu K pręt spoczywający w K, widzę że jest on krótszy L d! L d

23 I odwrotnie, z układu K dokonujemy pomiaru pręta spoczywającego w układzie K. Tym razem musimy w tym samym czasie w układzie K zmierzyć położenie końców, czyli muszę przyjąć: t 2 = t 1 = t Wtedy musimy wykorzystać równanie 1) i otrzymamy: L d =! L! L = sl d d d! L d A więc zupełnie symetrycznie otrzymamy, iż pręt mierzony w układzie ruchomym jest krótszy od pręta spoczywającego. L d! L d

24 K K t 1 x 1 = t t 2 = t x 2 v W różnych punktach ( x ) w układzie K w tym samym czasie t 2 = t 1 = t 1! x 2 zachodzą dwa zdarzenia. Te dwa zdarzenia będą zachodziły w różnym czasie w układzie K. Korzystamy z relacji 4) i mamy t 2 = " [ v c (x 2 2 )] # 0

25 I podobnie. W tym samym miejscu w układzie K ( x 1 = x 2 = x ) zachodzą dwa zdarzenia w różnym czasie. t 1! t 2 Podobnie jak w fizyce klasycznej zdarzenia te, w układzie K, zajdą w różnym miejscu w przestrzeni. Korzystamy z relacji 3) i otrzymamy: x 2 = " [v(t 2 )] # 0 Zdarzenia zachodzą więc w różnym miejscu: x 2 W przypadku klasycznym jest podobnie, tylko czynnik γ =1

26 Jakie wnioski wynikają z faktu, że przedział czasoprzestrzenny jest identyczny w każdym układzie odniesienia (X 2! X 1 ) 2 = c 2 (t 2 ) 2! (x 2 ) 2 (X 2! X 1 ) 2 = c 2 (t 2 ) 2! (x 2 ) 2 P 12 = c 2 (t 2 ) 2! (x 2 ) 2 = c 2 (t 2 ) 2! (x 2 ) 2 Możemy rozróżnić trzy przypadki: 1) P 12 > 0 2) P 12 = 0 3) P 12 < 0

27 Najpierw przypadek 1). Skoro P 12 > 0, to zawsze mogę znaleźć taki układ odniesienia, w którym opisywane dwa zdarzenia zachodzą w tym samym miejscu x 2 = x 1 = x w różnym czasie, wtedy: t 2 = (t 2 ) 2! 1 c 2 (x 2 )2 Nie istnieje jednak układ, w którym zdarzenia te mogłyby zajść w tym samym czasie, zawsze musi zachodzić: t 2 " 0 Tak więc takie zdarzenia, skoro mogą zajść w tym samym miejscy w różnym czasie, to jedno z nich może być skutkiem drugiego, jeżeli: t 2 > 0 to zdarzenia 2 może być skutkiem zdarzenia 1

28 Przypadek 2). Teraz zawsze P 12 =0, a więc w każdym układzie zachodzi: c 2 (t 2 ) 2 = (x 2 ) 2 A więc w każdym układzie mamy: x 2 = c(t 2 ) Dowolne dwa zdarzenia, dla których zachodzi P 12 =0 mogą być połączone sygnałem świetlnym, ten sam foton może być obecny przy obydwu zdarzeniach

29 I wreszcie przypadek 3). Skoro P 12 < 0, to zawsze mogę znaleźć taki układ odniesienia, w którym zdarzenia zachodzą w tym samym czasie t 2 = t 1, wtedy: x 2 =!c 2 (t 2 ) 2 + (x 2 ) 2 Jest odległością pomiędzy zdarzeniami zachodzącymi w danym układzie odniesienia w tym samym czasie. W omawianej sytuacji nie ma układu odniesienia, w którym jakiekolwiek dwa zdarzenia mogą zajść w tym samym miejscu w przestrzeni, zawsze bowiem x 2. Tak więc w zbiorze zdarzeń P 12 < 0 nie ma dwóch, dla których jedno może być skutkiem drugiego.

30 ct P 12 = 0 Teraźniejszość P 12 > 0 Przyszłość (0,0) Teraźniejszość P 12 < 0 x P 12 < 0 Przeszłość P 12 > 0 P 12 = 0

31 c Przedział czasoprzestrzenny 2 (t t P ) 2 (x x P ) 2 = Δ 2 ( x, P); Z podręcznika Fizyka, spojrzenie na czas, przestrzeń i materię ; PWN, Warszawa B Δ 2 > 0 Δ 2 < 0 Δ 2 ( x, P) Δ 2 = 0 A C może wpływać na nas (P) My (P) możemy wpływać na B Δ 2 > 0 C A nie ma wpływu na nas (P), i my nie mamy wpływu na A Stożek świetlny Geometrię o opisanych własnościach nazywamy geometrią pseudoeuklidesową

Zasady względności w fizyce

Zasady względności w fizyce Zasady względności w fizyce Mechanika nierelatywistyczna: Transformacja Galileusza: Siły: Zasada względności Galileusza: Równania mechaniki Newtona, określające zmianę stanu ruchu układów mechanicznych,

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności Fizyka wykład 2 dla studentów kierunku Informatyka Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska 15 października 2007r.

Bardziej szczegółowo

Elementy fizyki relatywistycznej

Elementy fizyki relatywistycznej Elementy fizyki relatywistycznej Transformacje Galileusza i ich konsekwencje Transformacje Lorentz'a skracanie przedmiotów w kierunku ruchu dylatacja czasu nowe składanie prędkości Szczególna teoria względności

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

Fizyka 1 (mechanika) AF14. Wykład 12

Fizyka 1 (mechanika) AF14. Wykład 12 Fizyka 1 (mechanika) 1100-1AF14 Wykład 12 Jerzy Łusakowski 18.12.2017 Plan wykładu Doświadczenie Michelsona - Morley a Transformacja Lorentza Synchronizacja zegarów Wnioski z transformacji Lorentza Doświadczenie

Bardziej szczegółowo

Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości

Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości III.3 Transformacja Lorentza położenia i pędu cd. Interwał, geometria czasoprzestrzeni Konsekwencje tr. Lorentza: dylatacja czasu i kontrakcja długości Jan Królikowski Fizyka IBC 1 Geometria czasoprzestrzeni-

Bardziej szczegółowo

III.2 Transformacja Lorentza położenia i czasu.

III.2 Transformacja Lorentza położenia i czasu. III.2 Transformacja Lorentza położenia i czasu. Transformacja Lorentza Geometria czasoprzestrzeni interwał. Konsekwencje transformacji Lorentza: dylatacja czasu i skrócenie długości. Jan Królikowski Fizyka

Bardziej szczegółowo

FIZYKA 2. Janusz Andrzejewski

FIZYKA 2. Janusz Andrzejewski FIZYKA 2 wykład 9 Janusz Andrzejewski Albert Einstein ur. 14 marca 1879 w Ulm, Niemcy, zm. 18 kwietnia 1955 w Princeton, USA) niemiecki fizyk żydowskiego pochodzenia, jeden z największych fizyków-teoretyków

Bardziej szczegółowo

Podstawy fizyki wykład 9

Podstawy fizyki wykład 9 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 4, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności Szczególna teoria względności Rakieta zbliża się do Ziemi z prędkością v i wysyła sygnały świetlne (ogólnie w postaci fali EM). Z jaką prędkością sygnały te docierają do Ziemi? 1. Jeżeli światło porusza

Bardziej szczegółowo

ver teoria względności

ver teoria względności ver-7.11.11 teoria względności interferometr Michelsona eter? Albert Michelson 1852 Strzelno, Kujawy 1931 Pasadena, Kalifornia Nobel - 1907 http://galileoandeinstein.physics.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

III.1 Ruch względny. III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego

III.1 Ruch względny. III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego III.1 Ruch względny III.1 Obserwacja położenia z dwóch różnych układów odniesienia. Pchnięcia (boosts) i obroty.metoda radarowa. Wykres Minkowskiego Jan Królikowski Fizyka IBC 1 III.1 Obserwacja położenia

Bardziej szczegółowo

Czym zajmuje się teoria względności

Czym zajmuje się teoria względności Teoria względności Czym zajmuje się teoria względności Głównym przedmiotem zainteresowania teorii względności są pomiary zdarzeń (czegoś, co się dzieje) ustalenia, gdzie i kiedy one zachodzą, a także jaka

Bardziej szczegółowo

Postulaty szczególnej teorii względności

Postulaty szczególnej teorii względności Teoria Względności Pomiary co, gdzie, kiedy oraz w jakiej odległości w czasie i przestrzeni Transformowanie (przekształcanie) wyników pomiarów między poruszającymi się układami Szczególna teoria względności

Bardziej szczegółowo

Czy można zobaczyć skrócenie Lorentza?

Czy można zobaczyć skrócenie Lorentza? Czy można zobaczyć skrócenie Lorentza? Jacek Jasiak Festiwal Nauki wrzesień 2004 Postulaty Szczególnej Teorii Względności Wszystkie inercjalne układy odniesienia są sobie równoważne Prędkość światła w

Bardziej szczegółowo

Temat XXXIII. Szczególna Teoria Względności

Temat XXXIII. Szczególna Teoria Względności Temat XXXIII Szczególna Teoria Względności Metoda radiolokacyjna Niech w K znajduje się urządzenie nadawcze o okresie T, mierzonym w układzie K Niech K oddala się od K z prędkością v wzdłuż osi x i rejestruje

Bardziej szczegółowo

Transformacja Lorentza Wykład 14

Transformacja Lorentza Wykład 14 Transformacja Lorentza Wykład 14 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/43 Względność Galileusza Dotychczas

Bardziej szczegółowo

MECHANIKA RELATYWISTYCZNA. Rys. Transformacja Galileusza

MECHANIKA RELATYWISTYCZNA. Rys. Transformacja Galileusza MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Wstęp Jeden z twórców mechaniki (klasycznej).

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 2 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI)

MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI) MECHANIKA RELATYWISTYCZNA Wykład 9 MECHANIKA RELATYWISTYCZNA (SZCZEGÓLNA TEORIA WZGLĘDNOŚCI) Pamiętaj, że najmniejszy krok w stronę celu jest więcej wart niż maraton dobrych chęci. H. J. Brown Rys. Albert

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności Szczególna teoria względności Wykład III: prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Postulaty Einsteina i transformacja Lorenza

Bardziej szczegółowo

XXXV. TEORIA WZGLĘDNOŚCI

XXXV. TEORIA WZGLĘDNOŚCI XXXV. TEORIA WZGLĘDNOŚCI 35.1. Równoczesność i dylatacja czasu Teoria względności zajmuje się pomiarami zdarzeń, gdzie i kiedy zdarzenia zachodzą oraz odległością tych zdarzeń w czasie i przestrzeni. Ponadto

Bardziej szczegółowo

Podstawy fizyki sezon 1 XI. Mechanika relatywistyczna

Podstawy fizyki sezon 1 XI. Mechanika relatywistyczna Podstawy fizyki sezon 1 XI. Mechanika relatywistyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Fizyka

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności Szczególna teoria względności Wykład II: Transformacja Galileusza prof. dr hab. Aleksander Filip Żarnecki Zakład Czastek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Ogólna postać transformacji

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) ZADANIA

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) ZADANIA CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 2013) ZADANIA Nierelatywistyczne Relatywistyczne Masa M = m 1 + m 2 M = m 1 + m 2 Zachowana? zawsze tylko w zderzeniach

Bardziej szczegółowo

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał. ZASADY DYNAMIKI Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał Dynamika klasyczna zbudowana jest na trzech zasadach podanych przez Newtona w 1687 roku I zasada dynamiki Istnieją

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoria względności (wybrane zagadnienia) Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 4 M. Przybycień (WFiIS AGH) Szczególna Teoria Względności

Bardziej szczegółowo

Czy da się zastosować teorię względności do celów praktycznych?

Czy da się zastosować teorię względności do celów praktycznych? Czy da się zastosować teorię względności do celów praktycznych? Witold Chmielowiec Centrum Fizyki Teoretycznej PAN IX Festiwal Nauki 24 września 2005 Mapa Ogólna Teoria Względności Szczególna Teoria Względności

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Spis treści 1 Transformacja Lorentza 1.1 Ogólna postać transformacji 1.2 Transformacja Galileusza 1.3 Transformacja Lorentza 1.4 Składanie prędkości 1.5 Uogólnienie 2 Wykres

Bardziej szczegółowo

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich

ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI. I. Zasada względności: Wszystkie prawa przyrody są takie same we wszystkich ELEMENTY SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI Postulaty Einsteina (95 r) I Zasada względnośi: Wszystkie prawa przyrody są takie same we wszystkih inerjalnyh układah odniesienia lub : Równania wyrażająe prawa

Bardziej szczegółowo

Czas i przestrzeń, od Arystotelesa do skali Plancka

Czas i przestrzeń, od Arystotelesa do skali Plancka Czas i przestrzeń, od Arystotelesa do skali Plancka (streszczenie) Trzeba podejrzewać czas mówił Einstein zapytany jak doszedł do bardzo rewolucyjnej idei o strukturze czasu i przestrzeni. Jak to się stało,

Bardziej szczegółowo

ELEMENTY MECHANIKI RELATYWISTYCZNEJ

ELEMENTY MECHANIKI RELATYWISTYCZNEJ ELEMENTY MECHANIKI RELATYWISTYCZNEJ Wykład 9 ELEMENTY MECHANIKI RELATYWISTYCZNEJ What I'm really interested in is whether God could have made the world in a different way; that is, whether the necessity

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności 5.04.08 Szczególna teoria względności Gdzie o tym więcej poczytać? Katarzyna Sznajd Weron Dlaczego ta teoria jest szczególna? Albert Einstein (905) Dotyczy tylko inercjalnych układów odniesienia. Spełnione

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (B+C) Wykład VI: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (Mechanika) Wykład IV: Transformacja Lorentza Względność równoczesności i przyczynowość Dylatacja czasu i skrócenie Lorentza Paradoks bliźniat Efekt Dopplera Postulaty

Bardziej szczegółowo

Wykłady z Fizyki. Teoria Względności

Wykłady z Fizyki. Teoria Względności Wykłady z Fizyki 14 Zbigniew Osiak Teoria Względności OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (B+C) Wykład V: Prędkość światła historia pomiarów doświadczenie Michelsona-Morleya prędkość graniczna Teoria względności Einsteina Dylatacja czasu Prędkość światła

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (B+C) Wykład VIII: Paradoks bliźniat Relatywistyczny efekt Dopplera Przypomnienie Transformacja Lorenza dla różnicy współrzędnych dwóch wybranych zdarzeń A i B: t x

Bardziej szczegółowo

Równania dla potencjałów zależnych od czasu

Równania dla potencjałów zależnych od czasu Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności

Bardziej szczegółowo

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Dynamika relatywistyczna

Dynamika relatywistyczna Dynamika relatywistyczna Fizyka I (B+C) Wykład XVIII: Energia relatywistyczna Transformacja Lorenza energii i pędu Masa niezmiennicza Energia relatywistyczna Dla ruchu ciała pod wpływem stałej siły otrzymaliśmy:

Bardziej szczegółowo

Konsultacje. Poniedziałek 9-11 Piątek 11-13

Konsultacje. Poniedziałek 9-11 Piątek 11-13 Konsultacje Poniedziałek 9-11 Piątek 11-13 Tom 1: https://openstax.org/details/books/fizyka-dlaszkół-wyższych-tom-1 Tom 2: https://openstax.org/details/books/fizyka-dlaszkół-wyższych-tom-2 Tom 3: https://openstax.org/details/books/fizyka-dlaszkół-wyższych-tom-3

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności Szczególna teoria względności Zdarzenia i czasoprzestrzeń Zdarzenia Doświadczenie to (najczęściej) pomiar jakiejś wielkości fizycznej lub (rzadziej) obserwacja jakiegoś zjawiska (np. zmiany stanu skupienia).

Bardziej szczegółowo

V.6 Pęd i energia przy prędkościach bliskich c

V.6 Pęd i energia przy prędkościach bliskich c r. akad. 005/ 006 V.6 Pęd i energia przy prędkościach bliskich c 1. Relatywistyczny pęd. Relatywistyczne równanie ruchu. Relatywistyczna energia kinetyczna 3. Relatywistyczna energia całkowita i energia

Bardziej szczegółowo

Elementy mechaniki relatywistycznej

Elementy mechaniki relatywistycznej Podstawy Proesów i Konstrukji Inżynierskih Elementy mehaniki relatywistyznej 1 Czym zajmuje się teoria względnośi? Teoria względnośi to pomiary zdarzeń ustalenia, gdzie i kiedy one zahodzą, a także jaka

Bardziej szczegółowo

Przeszłość i perspektywy protofizyki

Przeszłość i perspektywy protofizyki Jan Czerniawski Przeszłość i perspektywy protofizyki Koncepcje protofizyki: dział protonauki (przednaukowa refleksja poprzedzająca powstanie dojrzałej postaci fizyki lub teorii fizykalnej) 2 Koncepcje

Bardziej szczegółowo

KINEMATYKA czyli opis ruchu. Marian Talar

KINEMATYKA czyli opis ruchu. Marian Talar KINEMATYKA czyli opis ruchu 1 października 2006 2 Kinematyka czyli opis ruchu 1 Podstawowe pojęcia Kinematyka jest działem fizyki, który zajmuje się tylko opisem ruchu ciał. W ruchu postępowym ciało zastępuje

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 2 tomu I O Richardzie P. Feynmanie

Bardziej szczegółowo

MiBM sem. III Zakres materiału wykładu z fizyki

MiBM sem. III Zakres materiału wykładu z fizyki MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego

Plan wynikowy. z fizyki dla klasy pierwszej liceum profilowanego Plan wynikowy z fizyki dla klasy pierwszej liceum profilowanego Kurs podstawowy z elementami kursu rozszerzonego koniecznymi do podjęcia studiów technicznych i przyrodniczych do programu DKOS-5002-38/04

Bardziej szczegółowo

5.1 POJĘCIE CZASU. Rozdział należy do teorii pt. "Teoria Przestrzeni" autorstwa Dariusza Stanisława Sobolewskiego. Http:

5.1 POJĘCIE CZASU. Rozdział należy do teorii pt. Teoria Przestrzeni autorstwa Dariusza Stanisława Sobolewskiego. Http: 5.1 POJĘCIE CZASU Rozdział należy do teorii pt. "Teoria Przestrzeni" autorstwa Dariusza Stanisława Sobolewskiego. http: www.theoryofspace.info Obserwując zjawisko fizyczne w małym otoczeniu punktu charakter

Bardziej szczegółowo

Szczególna teoria względności

Szczególna teoria względności Fizyka:Wykład z Fizyki I/Kinematyka relatywistyczna 1 Fizyka:Wykład z Fizyki I/Kinematyka relatywistyczna Szczególna teoria względności Home Zdarzenia i czasoprzestrzeń Zdarzenia Doświadczenie to (najczęściej)

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego -  - zadania z fizyki, wzory fizyczne, fizyka matura B C D D B C C B B B B B A Zadanie 5 (1 pkt) Astronauta podczas zbierania próbek skał z powierzchni Księżyca upuścił szczypce z wysokości 1m. Przyspieszenie grawitacyjne przy powierzchni Księżyca ma wartość

Bardziej szczegółowo

Symetrie i prawa zachowania Wykład 6

Symetrie i prawa zachowania Wykład 6 Symetrie i prawa zachowania Wykład 6 Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/29 Rola symetrii Największym

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (Mechanika) Wykład IX: Zdarzenia i czasoprzestrzeń Transformacja Galileusza Prędkość światła Postulaty Einsteina Transformacja Lorentza Zdarzenia i czasoprzestrzeń Doświadczenie

Bardziej szczegółowo

teoria wzgl wzgl dności

teoria wzgl wzgl dności ver-8.6.7 teoria względnośi interferometr Mihelsona eter? Albert Mihelson 85 Strzelno, Kujawy 93 Pasadena, Kalifornia Nobel - 97 http://galileoandeinstein.physis.virginia.edu/more_stuff/flashlets/mmexpt6.htm

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 6.X.017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

Eksperymenty myślowe Einsteina

Eksperymenty myślowe Einsteina Podręcznik dla uczniów Eksperymenty myślowe Einsteina Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348 63 70 http://e-doswiadczenia.mif.pg.gda.pl

Bardziej szczegółowo

Wykład Zasada względności Galileusza. WARIANT ROBOCZY Względność.

Wykład Zasada względności Galileusza. WARIANT ROBOCZY Względność. Wykład z fizyki Piotr Posmykiewicz 1 Wykład 9 WARIANT ROBOCZY Względność. Teoria względności składa się właściwie z dwóch różnych teorii: szczególnej teorii względności i ogólnej teorii względności. Szczególna

Bardziej szczegółowo

Efekt Dopplera Dla Światła

Efekt Dopplera Dla Światła Władysław Darowski wdarowski@gmail.com Efekt Dopplera Dla Światła Długość fali jest to odległość między dwoma powtarzającymi się fragmentami fali, czyli odległość między dwoma następującymi po sobie grzbietami

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI

POLE MAGNETYCZNE W PRÓŻNI POLE MAGNETYCZNE W PRÓŻNI Oprócz omówionych już oddziaływań grawitacyjnych (prawo powszechnego ciążenia) i elektrostatycznych (prawo Couloma) dostrzega się inny rodzaj oddziaływań, które nazywa się magnetycznymi.

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 1 WSTEP KINEMATYKA - OPIS RUCHU DYNAMIKA - OPIS ODDZIAŁYWAŃ Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis

Bardziej szczegółowo

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty.

III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. III.4 Ruch względny w przybliżeniu nierelatywistycznym. Obroty. Newtonowskie absolutna przestrzeń i absolutny czas. Układy inercjalne Obroty Układów Współrzędnych Opis ruchu w UO obracających się względem

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (Mechanika) Wykład XII: Transformacja Lorentza Względność równoczesności i przyczynowość Dylatacja czasu i skrócenie Lorentza Paradoks bliźniat Efekt Dopplera Postulaty

Bardziej szczegółowo

Praca jest wykonywana podczas przesuwania się ciała pod wpływem siły. Wartość pracy możemy oblicz z wzoru:

Praca jest wykonywana podczas przesuwania się ciała pod wpływem siły. Wartość pracy możemy oblicz z wzoru: Energia mechaniczna Energia mechaniczna jest związana ruchem i położeniem danego ciała względem dowolnego układu odniesienia. Jest sumą energii kinetycznej i potencjalnej. Aby ciało mogło się poruszać

Bardziej szczegółowo

Ogólna teoria względności - wykład dla przyszłych uczonych, r. Albert Einstein

Ogólna teoria względności - wykład dla przyszłych uczonych, r. Albert Einstein W dobrej edukacji nie chodzi o wkuwanie wielu faktów, lecz o wdrożenie umysłu do myślenia Albert Einstein ELEMENTY OGÓLNEJ TEORII WZGLĘDNOŚCI Podstawa tej teorii zasada równoważności Zakrzywienie przestrzeni

Bardziej szczegółowo

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski.

PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA. Piotr Nieżurawski. PODSTAWY FIZYKI - WYKŁAD 2 DYNAMIKA: MASA PED SIŁA MOMENT PEDU ENERGIA MECHANICZNA Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/

Bardziej szczegółowo

Owo uzgadnianie poglądów pomiędzy ma w istocie dwie warstwy, które dość mylą się części osób:

Owo uzgadnianie poglądów pomiędzy ma w istocie dwie warstwy, które dość mylą się części osób: Teoria względności dla humanistów Wstęp Teoria względności Einsteina jest jednym z najciekawszych zjawisk współczesnej nauki i cywilizacji. Prawie każdy o niej słyszał, wzór E = mc 2 jest najsłynniejszym

Bardziej szczegółowo

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego

Tadeusz Lesiak. Podstawy mechaniki Newtona Kinematyka punktu materialnego Mechanika klasyczna Tadeusz Lesiak Wykład nr 2 Podstawy mechaniki Newtona Kinematyka punktu materialnego Kinematyka punktu materialnego Kinematyka: zajmuje się matematycznym opisem ruchów układów mechanicznych

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

Mechanika. Wykład 2. Paweł Staszel

Mechanika. Wykład 2. Paweł Staszel Mechanika Wykład 2 Paweł Staszel 1 Przejście graniczne 0 2 Podstawowe twierdzenia o pochodnych: pochodna funkcji mnożonej przez skalar pochodna sumy funkcji pochodna funkcji złożonej pochodna iloczynu

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka 1- Mechanika Wykład 4 27.X.2016 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ III zasada dynamiki Zasada akcji i reakcji Każdemu działaniu

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z FIZYKI I ASTRONOMII KLASIE PIERWSZEJ W LICEUM PROFILOWANYM

ROZKŁAD MATERIAŁU Z FIZYKI I ASTRONOMII KLASIE PIERWSZEJ W LICEUM PROFILOWANYM ROZKŁAD MATERIAŁU Z FIZYKI I ASTRONOMII KLASIE PIERWSZEJ W LICEUM PROFILOWANYM W trzyletnim cyklu nauczania fizyki 4godziny rozdzielono po ( 1, 2, 1) w klasie pierwszej, drugiej i trzeciej. Obowiązujący

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii

Fizyka. Program Wykładu. Program Wykładu c.d. Kontakt z prowadzącym zajęcia. Rok akademicki 2013/2014. Wydział Zarządzania i Ekonomii Fizyka Wydział Zarządzania i Ekonomii Kontakt z prowadzącym zajęcia dr Paweł Możejko 1e GG Konsultacje poniedziałek 9:00-10:00 paw@mif.pg.gda.pl Rok akademicki 2013/2014 Program Wykładu Mechanika Kinematyka

Bardziej szczegółowo

Theory Polish (Poland)

Theory Polish (Poland) Q3-1 Wielki Zderzacz Hadronów (10 points) Przeczytaj Ogólne instrukcje znajdujące się w osobnej kopercie zanim zaczniesz rozwiązywać to zadanie. W tym zadaniu będą rozpatrywane zagadnienia fizyczne zachodzące

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna 1/8 Cele kursu Podstawowe

Bardziej szczegółowo

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował.

Ruch. Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Kinematyka Ruch Kinematyka zajmuje się opisem ruchu różnych ciał bez wnikania w przyczyny, które ruch ciał spowodował. Ruch rozumiany jest jako zmiana położenia jednych ciał względem innych, które nazywamy

Bardziej szczegółowo

Prawa ruchu: dynamika

Prawa ruchu: dynamika Prawa ruchu: dynamika Fizyka I (B+C) Wykład X: Równania ruchu Więzy Rozwiazywanie równań ruchu oscylator harminiczny, wahadło ruch w jednorodnym polu elektrycznym i magnetycznym spektroskop III zasada

Bardziej szczegółowo

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Isaak Newton (1686 r.) Zasady dynamiki Isaak Newton (1686 r.) I (zasada bezwładności) Istnieje taki układ odniesienia, w którym ciało pozostaje w spoczynku lub porusza się ruchem jednostajnym prostoliniowym, jeśli nie działają

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Kinematyka relatywistyczna

Kinematyka relatywistyczna Kinematyka relatywistyczna Fizyka I (Mechanika) Wykład III: Zdarzenia i czasoprzestrzeń Transformacja Galileusza Prędkość światła Postulaty Einsteina Transformacja Lorentza Zdarzenia i czasoprzestrzeń

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Obowiązkowa znajomość zagadnień Charakterystyka drgań gasnących i niegasnących, ruch harmoniczny. Wahadło fizyczne, długość zredukowana

Bardziej szczegółowo

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki

MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki MECHANIKA KLASYCZNA I RELATYWISTYCZNA Cele kursu dla studentów geofizyki Karol Kołodziej Instytut Fizyki Uniwersytet Śląski, Katowice http://kk.us.edu.pl Karol Kołodziej Mechanika klasyczna i relatywistyczna

Bardziej szczegółowo

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016

Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Fizyka I dla ZFBM-FMiNI+ Projektowanie Molek. i Bioinformatyka 2015/2016 Streszczenie Wykład przedstawia podstawowe zagadnienia mechaniki klasycznej od kinematyki punktu materialnego, przez prawa Newtona

Bardziej szczegółowo

Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej

Doświadczalne wyznaczanie ogniskowej cienkiej soczewki skupiającej Doświadczalne wyznaczanie ogniskowej cienkiej skupiającej Wprowadzenie Soczewka ciało przezroczyste dla światła ograniczone zazwyczaj dwiema powierzchniami kulistymi lub jedną kulistą i jedną płaską 1.

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Galilean Electrodynamics

Galilean Electrodynamics 22 maja 2015 r. Galilean Electrodynamics Nierelatywistyczne przybliżenia elektrodynamiki klasycznej Seminarium IF WIMiM ZUT Dlaczego elektrodynamika klasyczna NIE JEST niezmiennicza względem transformacji

Bardziej szczegółowo

Wstęp do równań różniczkowych

Wstęp do równań różniczkowych Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014

Fizyka. Program Wykładu. Program Wykładu c.d. Literatura. Rok akademicki 2013/2014 Program Wykładu Fizyka Wydział Zarządzania i Ekonomii Rok akademicki 2013/2014 Mechanika Kinematyka i dynamika punktu materialnego Zasady zachowania energii, pędu i momentu pędu Podstawowe własności pola

Bardziej szczegółowo

PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE

PRACOWNIA FIZYCZNA DLA UCZNIÓW WAHADŁA SPRZĘŻONE PRACOWNA FZYCZNA DLA UCZNÓW WAHADŁA SPRZĘŻONE W ćwiczeniu badać będziemy drgania dwóch wahadeł sprzężonych za pomocą sprężyny. Wahadła są jednakowe (mają ten sam moment bezwładności, tę samą masę m i tę

Bardziej szczegółowo

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski Zasady dynamiki Newtona dr inż. Romuald Kędzierski Czy do utrzymania ciała w ruchu jednostajnym prostoliniowym potrzebna jest siła? Arystoteles 384-322 p.n.e. Do utrzymania ciała w ruchu jednostajnym prostoliniowym

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Transformacja Lorentza - Wyprowadzenie

Transformacja Lorentza - Wyprowadzenie Transformacja Lorentza - Wyprowadzenie Rozważmy obserwatorów zwiazanych z różnymi inercjalnymi uk ladami odniesienia, S i S. Odpowiednie osie uk ladów S i S sa równoleg le, przy czym uk lad S porusza sie

Bardziej szczegółowo