METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2"

Transkrypt

1 METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2

2 - Cel ćwiczeń - Komunikacja w temacie - mopi - Konsultacje: pokój: 428, dzień: poniedziałki godz.:

3 Zasady uzyskania zaliczenia MOPI Dopuszczalna liczba nieobecności 2 Zaliczenie projektu Zaliczenie kolokwiów 2 kolokwia Oceny z aktywności -5 (+) ocena bdb. -5 (-) ocena ndst. Ostateczny wynik średnia ocen zaokrąglona w dół do 2 miejsc po przecinku.

4 Projekt 1. W wersji elektronicznej oraz drukowanej; a. Część opisowa (edytor tekstu) b. Cześć rachunkowa (arkusz kalkulacyjny) z zastosowaniem wzoru; c. Wydruk podpisany przez osoby sporządzające projekt d. Prezentuje przedstawiciel zespołu 2. Podział na grupy; A. Myjnia samochodowa, B. Warsztat samochodowy, C. Pizzeria, E. Salon Kosmetyczny 3. W trakcie pracy nad projektem na zajęciach jeden komputer na grupę.

5 Ważne Proszę na każde zajęcia przynosić kalkulatory

6 Literatura Rogowski W Rachunek efektywnościowy przedsięwzięć inwestycyjnych, Kraków, Oficyna Ekonomiczna, Pazio W Analiza finansowa i ocena efektywności projektów inwestycyjnych. Kraków, Oficyna Ekonomiczna. Marcinek K Finansowa ocena przedsięwzięć inwestycyjnych przedsiębiorstw. Warszawa, Politechnika Warszawska.

7 Harmonogram pracy na ćwiczeniach Temat MOPI Realizacja 1 Ćwiczenia wprowadzające Wprowadzenie 2 Wartość pieniądza w czasie Wprowadzenia i zadania 3 WACC, montaż finansowy, koszt kredytu Wprowadzenia i zadania 4 Szacowanie kosztów i przychodów działalności Wprowadzenia i zadania 5 Przepływy finansowe Wprowadzenia i zadania 6 Sprawozdania finansowe - ćwiczenia Wprowadzenia i zadania 7 Statyczne i dynamiczne metody oceny projektów Wprowadzenia i zadania 8 Statyczne i dynamiczne metody oceny projektów Wprowadzenia i zadania 9 Kolokwium r. Test + Zadania 10 Projekt Praca z projektem 11 Projekt Praca z projektem 12 Projekt Praca z projektem 13 Projekt Praca z projektem 14 Projekt Praca z projektem 15 Projekt + Zaliczenia Prezentacja projektów.

8 (1) Definicje

9 Inwestycja / Przedsięwzięcie inwestycyjne / projekt inwestycyjny Długookresowe obarczone ryzykiem alokowanie zasobów ekonomicznych (nakładów inwestycyjnych) w celu osiągnięcia korzyści w przyszłości. (Waldemar Rogowski, Rachunek efektywności inwestycji, Oficyna, Kraków 2008 r.) Czas, ryzyko, nakłady, korzyść

10 Inwestycja / Przedsięwzięcie inwestycyjne / projekt inwestycyjny Kompleksowo ujęty, fizyczny zakres inwestycji przewidziany do zrealizowania w określonym celu, miejscu i czasie

11 Inwestycja / Przedsięwzięcie inwestycyjne / projekt inwestycyjny Opracowanie, które jest podstawą realizacji inwestycji

12 Rodzaje inwestycji podział ze względu na cel Inwestycje odtworzeniowe Inwestycje modernizacyjne Inwestycje innowacyjne Inwestycje rozwojowe Inwestycje strategiczne Inwestycje dot. ustroju społecznego Inwestycje dot. interesu publicznego

13 Rodzaje inwestycji podział ze względu na: relacje, czas i efekty Relacje miedz korzyściami: - Niezależne - Zależne Czas życia przedsięwzięcia - krótkoterminowe do 5 lat - średnioterminowe od 5 10 lat - długoterminowe pow. 10 lat Efekty z działalności inwestycyjnej - produkcyjne - nieprodukcyjne

14 Wartość pieniądza vs. czas Wartość pieniądza w czasie jest zmienna. Pieniądze mają określoną wartość. Z upływem czasu na skutek wydarzeń i działań praw ekonomii wartość posiadanych pieniędzy może ulec zmianie tzn. być większa lub mniejsza od wartości aktualnej. Inflacja, kurs walut Ryzyko Ludzka natura - zaspokojenie popytu Koszt utraconych możliwości

15 wartość obecna vs. wartość przyszła Wartość obecna wartość środków pieniężnych jakimi dysponujemy w danej chwili (PV) CZAS Współczynnik Wartość przyszła wartość środków pieniężnych otrzymana lub płacona w przyszłości, lub rozpatrywana ze względu na określony moment w przyszłości (FV)

16 WARTOŚĆ PRZYSZŁA Zasoby finansowe inwestowane są na podstawie stopy procentowej ( r) w okresie rocznym. Dochody dopisywane są do kapitału (kapitalizowane) na koniec okresu inwestycji. FV =PV(1+r) FV wartość przyszła na koniec okresu PV wartość początkowa sumy pieniężnej r stopa procentowa

17 PRZYKŁAD Firma nabyła obligację w styczniu 2012 za zł. z terminem wykupu styczeń 2017 r. Odsetki według stopy 5,5 % będą dopisywane do kapitału (kapitalizowane) na koniec okresu inwestycji. Jaka będzie wartość obligacji w dniu jej wykupu? Odpowiedź: ,00 zł

18 WARTOŚĆ PRZYSZŁA PRZY KAPITALIZACJI ROCZNEJ Zasoby finansowe inwestowane są na okres n lat na podstawie stopy procentowej r. Dochody dopisywane są do kapitału rocznie (kapitalizowane). FV n =PV(1+r) n FV n wartość przyszła po n latach PV wartość początkowa sumy pieniężnej r stopa procentowa (w skali rocznej) n liczba lat

19 PRZYKŁAD Firma nabyła obligację w styczniu 2012 za zł. z terminem wykupu styczeń 2017 r. Odsetki według stopy 5,5 % rocznie będą kapitalizowane po zakończeniu każdego roku. Jaka będzie wartość obligacji w dniu jej wykupu? Odpowiedź: ,00 zł

20 WARTOŚĆ PRZYSZŁA PRZY KAPITALIZACJI CZĘSTSZEJ NIŻ ROCZNA Środki finansowe są inwestowane na okres n lat według stopy procentowej r, a odsetki dopisywane są do kapitału (kapitalizowane) częściej niż raz w roku. FV n =PV(1+r/m) nm m liczba kapitalizacji w ciągu roku

21 PRZYKŁAD Firma nabyła obligację w styczniu 2012 za zł. z terminem wykupu styczeń 2017 r. Odsetki według stopy 5,5 % będą kapitalizowane po zakończeniu każdego kwartału. Jaka będzie wartość obligacji w dniu jej wykupu? Odpowiedź: ,66 zł

22 EFEKTYWNA STOPA PROCENTOWA Dopisywanie odsetek do kapitału w trakcie roku oznacza wyższą procentową stopę efektywną. Określa ją następujący wzór: r e =(1+r/m) m -1 r e efektywna stopa procentowa (w skali rocznej)

23 PRZYKŁAD Firma rozważa inwestycję: 1. Obligacje. Zakup w styczniu 2012 za zł z terminem wykupu styczeń 2013 r. Oprocentowanie według stopy 5,6 %. Odsetki będą dopisane do kapitału (kapitalizacja) na koniec okresu inwestycji. 2. Lokata bankowa. Rozpoczęcie lokaty w styczniu 2012 r. Zakończenie lokaty w styczniu 2013 r. Wartość lokaty zł, oprocentowanie według stopy 5,5 %. Odsetki będą dopisane do kapitału (kapitalizowane) kwartalnie Czy firma powinna zainwestować w obligacje czy w lokatę? Odpowiedź: lokata efektywna stopa procentowa wynosi 5,614 %

24 Wartość bieżąca przy rocznej kapitalizacji Wartość bieżąca jest to zagadnienie odwrotne do zagadnienia wartości przyszłej FV n =PV(1+r) n. Określamy ile warta jest dziś suma pieniędzy otrzymana po n latach, przy inwestowaniu według stopy procentowej (r ) i rocznej kapitalizacji dochodów. PV FV ( 1 n r) n Wartość bieżąca definiowana jest również jako wartością zdyskontowana. Czynnik wartości bieżącej (r) definiowany jest również jako współczynnik dyskonta.

25 PRZYKŁAD Firma chcę nabyć obligacje oprocentowane 5,5 % w skali roku z roczną kapitalizacją odsetek, tak aby w dniu ich wykupu wartość obligacji wynosiła zł. Jaką kwotę firma musi zainwestować? Odpowiedź: ,68 zł

26 Wartość bieżąca przy kapitalizacji częstszej niż roczna Wartość bieżąca jest to zagadnienie odwrotne do zagadnienia wartości przyszłej FV n =PV(1+r/m) nm Określamy ile warta jest dziś suma pieniędzy otrzymana po n latach, przy inwestowaniu według stopy procentowej r i częstszej niż roczna kapitalizacji dochodów. PV ( 1 FV n r ) m nm Wartość bieżąca definiowana jest również jako wartością zdyskontowana. Czynnik wartości bieżącej r definiowany jest również jako współczynnik dyskonta.

27 PRZYKŁAD Firma chce nabyć obligacje oprocentowane 5,5 % w skali roku z kwartalną kapitalizacją odsetek, tak aby w dniu ich wykupu wartość obligacji wynosiła zł. Jaką kwotę firma musi zainwestować? Odpowiedź: zł

28 ZADANIA 1. Przedsiębiorstwo zdeponowało na rachunku bankowym kwotę zł. Po trzech latach stwierdzono, że na rachunku znajduje się kwota zł. W jakiej wysokości oprocentowany był rachunek bankowy jeżeli wiadomo, że odsetki nie były kapitalizowane? 2. Zamierzamy zainwestować kwotę w wysokości zł na 3 lata. Instytucja finansowa euro oferuje stopę procentową 5% i kwartalną kapitalizację natomiast bank dolar 7 % stopę i półroczną kapitalizację. Która oferta jest korzystniejsza? 3. Ile należy zainwestować na lokacie terminowej, aby po 5 latach uzyskać zł, przy stopie procentowej wynoszącej 6 % i kapitalizacji rocznej? 4. Inwestor zakupił papiery wartościowe o wartości zł z terminem wykupu 10 lat, oprocentowane według stopy rocznej 8% i kapitalizacji rocznej. Jaka będzie wartość papierów wartościowych w dniu wykupu? 5. Kowalski ulokował w banku zł. Po trzech latach kwota lokaty wyniosła zł. Firma B zainwestowała zł. i po pięciu latach jej kapitał wyniósł zł. Kto miał bardziej atrakcyjniej oprocentowaną lokatę? W obu przypadkach kapitalizacja na koniec okresu. 6. Jaka jest aktualna wartość kwoty zł, którą zamierza uzyskać przedsiębiorstwo z pewnej inwestycji po upływie roku? Stopa procentowa wynosi 4 %.

29 ZADANIA 7. Malinowski ma zamiar sprzedać samochód. Otrzymał następujące propozycje: a) zapłata gotówką teraz zł. b) zapłata po roku zł. c) zapłata po dwóch latach zł. d) zapłata po trzech latach zł. Kupcy są wiarygodni i wypłacalni. Która z ofert jest najbardziej korzystna, jeżeli Malinowski może zainwestować środki finansowe przy oprocentowaniu wynoszącym 7% rocznie? Kapitalizacja na koniec okresu. 8. Student pożyczył koledze zł na 2 lata. Pożyczka jest oprocentowana 10% w skali roku, a odsetki kapitalizowane w okresach półrocznych. Jaką kwotę będziemy musiał zwrócić kolega na koniec drugiego roku. 9. Która z instytucji finansowych oferuje lepsze warunki do zaciągnięcia kredytu jeśli w banku A roczna stopa oprocentowania wynosi 10 %, a odsetki należy płacić co kwartał, w banku B oprocentowanie kredytu wynosi 11% a odsetki należy płacić w okresach półrocznych. 10. Janek jest winny Grzegorzowi 3000 zł. Poinformował Grzegorza, że może oddać pożyczkę w terminie. Jednoczenie zaproponował, że jeśli Grzegorz się zgodzi i przedłuży termin zwrotu o 3 lata, to Janek odda mu 3600 zł. Czy Grzegorz powinien się zgodzić? Oprocentowanie lokaty trzyletniej z kapitalizacją półroczną w banku Grzegorza wynosi 5%.

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy

Bardziej szczegółowo

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska:

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska: Prawie wszyscy wiedzą, że pewna suma pieniędzy ma dziś większą wartość niż ta sama suma w przyszłości. Mówi się, że pieniądz traci na wartości. Używając bardziej precyzyjnej terminologii trzeba powiedzieć

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2 Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

WACC Montaż finansowy Koszt kredytu

WACC Montaż finansowy Koszt kredytu WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Temat 1: Wartość pieniądza w czasie

Temat 1: Wartość pieniądza w czasie Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

ZADANIE 1. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

ZADANIE 1.  NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Na budowę domu możesz zaciagn ać pożyczkę w wysokości 63450 e. Do wyboru sa dwa warianty spłaty: I w każdym miesiacu spłacasz równe raty, każda w wysokości 2% pożyczonej kwoty. II pierwsza rata

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

OPŁACALNOŚĆ INWESTYCJI

OPŁACALNOŚĆ INWESTYCJI 3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

b) PLN/szt. Jednostkowa marża na pokrycie kosztów stałych wynosi 6PLN na każdą sprzedają sztukę.

b) PLN/szt. Jednostkowa marża na pokrycie kosztów stałych wynosi 6PLN na każdą sprzedają sztukę. Poniżej znajdują się przykłady rozwiązań tylko niektórych, spośród prezentowanych na zajęciach, zadań. Wszystkie pochodzą z podręcznika autorstwa Kotowskiej, Sitko i Uziębło. Kolokwium swoim zakresem obejmuje

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE Projekt Nakłady inwestycyjne, pożyczka + WACC Prognoza przychodów i kosztów Prognoza rachunku wyników Prognoza przepływów finansowych Wskaźniki

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent Pojęcie renty Wartość początkowa i końcowa renty Renty o stałych ratach Renta o zmiennych ratach Renta uogólniona Zadanie 1 Przez 2 lata na koniec każdego miesiąca wpłacamy 1 000 PLN

Bardziej szczegółowo

Analiza opłacalności inwestycji v.

Analiza opłacalności inwestycji v. Analiza opłacalności inwestycji v. 2.0 Michał Strzeszewski, 1997 1998 Spis treści 1. Cel artykułu...1 2. Wstęp...1 3. Prosty okres zwrotu...2 4. Inflacja...2 5. Wartość pieniądza w czasie...2 6. Dyskontowanie...3

Bardziej szczegółowo

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,

Bardziej szczegółowo

Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości

Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości Scenariusz zajęć z przedmiotu podstawy przedsiębiorczości Temat: Dochody z kapitału Opracowała Grażyna Drożdżowska Uwagi realizacyjne Lekcja jest przewidziana jako jednostka 2- godzinna stanowiąca utrwalenie

Bardziej szczegółowo

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona.

Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Temat: Rachunek rent. Pojęcie renty. Wartość początkowa i końcowa renty. Renty o stałych ratach. Renta o zmiennych ratach. Renta uogólniona. Zadanie Przez 2 lata na koniec każdego miesiąca wpłacamy 200

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI

RACHUNEK EFEKTYWNOŚCI INWESTYCJI RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY PROSTE STATYCZNE 4 maj 2015 r. Metody oceny efektywności projektu inwestycyjnego Wybór metody oceny Przygotowanie danych (prognozy) Wyliczenie wskaźników Wynik analizy

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Inwestowanie w obligacje

Inwestowanie w obligacje Inwestowanie w obligacje Ile zapłacić za obligację aby uzyskać oczekiwaną stopę zwrotu? Jaką stopę zwrotu uzyskamy kupując obligację po danej cenie? Jak zmienią się ceny obligacji, kiedy Rada olityki ieniężnej

Bardziej szczegółowo

Harmonogram pracy na ćwiczeniach MOPI

Harmonogram pracy na ćwiczeniach MOPI Przepływy finansowe Harmonogram pracy na ćwiczeniach Temat MOPI Realizacja 1 Ćwiczenia wprowadzające Wprowadzenie 2 Wartość pieniądza w czasie Wprowadzenia i zadania 3 WACC, montaż finansowy, koszt kredytu

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym

Zarządzanie portfelem inwestycyjnym Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska Wykład 5, 6 Renata Karkowska, Wydział Zarządzania 1 Wykład 5 - cel 5. Tradycyjne i awangardowe miary efektywności portfelowej Pojęcie benchmarku,

Bardziej szczegółowo

Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk

Podstawy teorii oprocentowania. Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Podstawy teorii oprocentowania Łukasz Stodolny Radosław Śliwiński Cezary Kwinta Andrzej Koredczuk Cykl produkcyjny zakładów ubezpieczeń Ryzyko działalności zakładu ubezpieczeń Ryzyko finansowe działalności

Bardziej szczegółowo

dr hab. Marcin Jędrzejczyk

dr hab. Marcin Jędrzejczyk dr hab. Marcin Jędrzejczyk Przez inwestycje należy rozumieć aktywa nabyte w celu osiągnięcia korzyści ekonomicznych, wynikających z przyrostu wartości tych zasobów, uzyskania z nich przychodów w postaci

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy

Bardziej szczegółowo

Zajęcia 8 - Równoważność warunków oprocentowania

Zajęcia 8 - Równoważność warunków oprocentowania Zajęcia 8 - Równoważność warunków oprocentowania Zadanie 1 Mając roczną stopę oprocentowania prostego 18% wyznaczyć równoważną stopę: 1. miesięczną. 2. tygodniową. 3. 2-letnią. Uzasadnić wyniki. Czy czas

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

Oszczędzanie a inwestowanie..

Oszczędzanie a inwestowanie.. Oszczędzanie a inwestowanie.. Oszczędzanie to zabezpieczenie nadmiaru środków finansowych niewykorzystanych na bieżącą konsumpcję oraz czerpanie z tego tytułu korzyści w postaci odsetek. Jest to czynność

Bardziej szczegółowo

ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU. Sabina Rokita

ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU. Sabina Rokita ZARZĄDZANIE FINANSAMI W PROJEKTACH C.D. OCENA FINANSOWA PROJEKTU METODY OCENY EFEKTYWNOŚCI FINANSOWEJ PROJEKTU Sabina Rokita Podział metod oceny efektywności finansowej projektów 1.Metody statyczne: Okres

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

KONSPEKT ZAJĘĆ Temat: Charakterystyka biznesplanu plan finansowy. Cel ogólny kształcenia: Cele szczegółowe zajęć:

KONSPEKT ZAJĘĆ Temat: Charakterystyka biznesplanu plan finansowy. Cel ogólny kształcenia: Cele szczegółowe zajęć: KONSPEKT ZAJĘĆ Temat: Charakterystyka biznesplanu plan finansowy. Cel ogólny kształcenia: zapoznanie z treściami planu finansowego. Cele szczegółowe zajęć: 1) uzasadnić znaczenie planu finansowego, 2)

Bardziej szczegółowo

Wartość pieniądza w czasie (time value of money)

Wartość pieniądza w czasie (time value of money) Opracował Marcin Reszka Doradca Inwestycyjny nr 335 marcin@reszka.edu.pl Zeszyt I Wartość pieniądza w czasie (time value of money) Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania bez pisemnej

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Wykład 2-3 Kontrakt forward na przyszłą stopę procentową Kontrakty futures na długoterminowe instrumenty procentowe Swapy procentowe Przykład 1 Inwestor

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Planowanie finansów osobistych

Planowanie finansów osobistych Planowanie finansów osobistych Osoby, które planują znaczne wydatki w perspektywie najbliższych kilku czy kilkunastu lat, osoby pragnące zabezpieczyć się na przyszłość, a także wszyscy, którzy dysponują

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady Wydział Matematyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady Łódź 2006 Rozdział 1 Oprocentowanie lokaty

Bardziej szczegółowo

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne. Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

WSTĘP ZAŁOŻENIA DO PROJEKTU

WSTĘP ZAŁOŻENIA DO PROJEKTU UNIWERSYTET ZIELONOGÓRSKI WYDZIAŁ ZARZĄDZANIA Przykład analizy opłacalności przedsięwzięcia inwestycyjnego WSTĘP Teoria i praktyka wypracowały wiele metod oceny efektywności przedsięwzięć inwestycyjnych.

Bardziej szczegółowo

Darmowa publikacja dostarczona przez PatBank.pl - bank banków

Darmowa publikacja dostarczona przez PatBank.pl - bank banków Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:

Bardziej szczegółowo

Darmowa publikacja dostarczona przez ebooki24.org

Darmowa publikacja dostarczona przez ebooki24.org Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez ebooki24.org Copyright by Złote Myśli &, rok 2008 Autor: Tytuł:

Bardziej szczegółowo

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014

EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 EFEKTYWNE OSZCZĘDZANIE Jędrzej Stachura 18.10.2014 Jak oszczędzać pieniądze? Przykładowe sposoby na zaoszczędzenie pieniędzy Zmień przekonania, zostań freeganem Za każdym razem gaś światło w pokoju Co

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

KARTA PRACY Z PROCENTÓW - nowa

KARTA PRACY Z PROCENTÓW - nowa KARTA PRACY Z PROCENTÓW - nowa ZADANIE 1. Zamień procenty na ułamki ( : 100 ) 25%= 50%= % % 62%= 16 % 138%= 11 % 2%= 33 % 2340%= 3 % 0,4%= 66 % 0,35%= % 1,05%= 1%= 2,3%= 4%= 27,4%= 16%= 0,004%= 28%= %

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI. METODY PROSTE STATYCZNE r.

RACHUNEK EFEKTYWNOŚCI INWESTYCJI. METODY PROSTE STATYCZNE r. RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY PROSTE STATYCZNE 10.04.2017 r. PYTANIA KONTROLNE Czym różni się sprawozdanie rachunku wyników od sprawozdania przepływów gotówkowych? Z jakich rodzajów działalności

Bardziej szczegółowo

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu Załącznik nr 3 do Uchwały Nr 8/Z/2014 Zarządu BS w Podegrodziu z dnia 14.01.2014r Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH Dla klientów indywidualnych w Banku Spółdzielczym

Bardziej szczegółowo

Praktyczne Seminarium Inwestowania w Nieruchomości

Praktyczne Seminarium Inwestowania w Nieruchomości Praktyczne Seminarium Inwestowania w Nieruchomości Kalkulator finansowy 10BII pierwsze kroki www.edukacjainwestowania.pl Kalkulator finansowy 10BII, oprócz typowych funkcji matematycznych i statystycznych,

Bardziej szczegółowo

Finansowanie działalności przedsiebiorstwa. Finanse 110630-1165

Finansowanie działalności przedsiebiorstwa. Finanse 110630-1165 Finansowanie działalności przedsiebiorstwa przedsiębiorstw-definicja Przepływy pieniężne w przedsiębiorstwach Decyzje finansowe przedsiębiorstw Analiza finansowa Decyzje finansowe Krótkoterminowe np. utrzymanie

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 6 listopada 2017 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty

Bardziej szczegółowo

Podstawy finansów i inwestowania w biznesie. Wykład 6

Podstawy finansów i inwestowania w biznesie. Wykład 6 Podstawy finansów i inwestowania w biznesie Wykład 6 Plan wykładu Cechy inwestycji finansowych: dochód ryzyko płynność Depozyty bankowe Fundusze inwestycyjne 2015-11-05 2 Najważniejszymi cechami inwestycji

Bardziej szczegółowo

V. Analiza strategiczna

V. Analiza strategiczna V. Analiza strategiczna 5.1. Mocne i słabe strony nieruchomości Tabela V.1. Mocne i słabe strony nieruchomości 5.2. Określenie wariantów postępowania Na podstawie przeprowadzonej analizy nieruchomości

Bardziej szczegółowo

Matematyka I dla DSM zbiór zadań

Matematyka I dla DSM zbiór zadań I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu Załącznik nr 1 do Uchwały Nr 27/Z/2014 Zarządu Banku Spółdzielczego w Podegrodziu z dnia 09-10-2014 r Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH Dla klientów indywidualnych

Bardziej szczegółowo

Specjalista do spraw tworzenia biznes planów. Ocena projektów inwestycyjnych oraz wycena projektów inwestycyjnych

Specjalista do spraw tworzenia biznes planów. Ocena projektów inwestycyjnych oraz wycena projektów inwestycyjnych Specjalista do spraw tworzenia biznes planów CEL GŁÓWNY: Ocena projektów inwestycyjnych oraz wycena projektów inwestycyjnych Zdobycie umiejętności w zakresie oceny projektów inwestycyjnych dla potrzeb

Bardziej szczegółowo

Konkurs wiedzy ekonomicznej

Konkurs wiedzy ekonomicznej POZIOMO: 1. zdolność pieniądza do przechowywania wartości 2. pośrednik giełdowy 3. stan rachunku lub konta 4. punkt wymiany walut 5. waluta zjednoczonej Europy 6. spadek cen kursu papierów wartościowych

Bardziej szczegółowo

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Funkcje w MS Excel. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Funkcje w MS Excel Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie Funkcje matematyczne Funkcje logiczne Funkcje finansowe Podsumowanie 2/27 Wprowadzenie Funkcje: Są elementami

Bardziej szczegółowo

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 1 Rodzaje i źródła ryzyka stopy procentowej: Ryzyko niedopasowania terminów przeszacowania, np. 6M kredyt o stałym oprocentowaniu finansowany miesięcznymi lokatami o zmiennym oprocentowaniu. Ryzyko podstawy

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. obowiązująca od dnia

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. obowiązująca od dnia Załącznik nr 1 do Uchwały Nr 13./Z/2013 Zarządu BS w Podegrodziu z dnia 11.04.2013 r Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH Dla klientów indywidualnych w Banku Spółdzielczym

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Strategie inwestycyjne na rynku kapitałowym Inwestowanie na rynku dr Piotr Stobiecki Uniwersytet Ekonomiczny w Poznaniu 13 października 2011 r. PLAN WYKŁADU I. Wprowadzenie

Bardziej szczegółowo

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych

Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Zadania do wykładu Rachunek efektywności projektów inwestycyjnych Dorota Klim Instytut Nauk Ekonomicznych i Informatyki, Państwowa Wyższa Szkoła Zawodowa w Płocku E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. Dla klientów indywidualnych. w Banku Spółdzielczym w Podegrodziu Załącznik nr 1 do Uchwały Nr 27/Z/2013 Zarządu BS w Podegrodziu z dnia 24.07.2013 Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH Dla klientów indywidualnych w Banku Spółdzielczym

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje

System finansowy gospodarki. Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje System finansowy gospodarki Zajęcia nr 7 Krzywa rentowności, zadania (mat. fin.), marża w handlu, NPV i IRR, obligacje Krzywa rentowności (dochodowości) Yield Curve Krzywa ta jest graficznym przedstawieniem

Bardziej szczegółowo

Metody szacowania opłacalności projektów (metody statyczne, metody dynamiczne)

Metody szacowania opłacalności projektów (metody statyczne, metody dynamiczne) Metody szacowania opłacalności projektów (metody statyczne, metody dynamiczne) punkt 6 planu zajęć dr inż. Agata Klaus-Rosińska 1 OCENA EFEKTYWNOŚCI PROJEKTÓW INWESTYCYJNYCH 2 Wartość pieniądza w czasie

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: ZZP s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: ZZP s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Finanse przedsiębiorstwa Rok akademicki: 2030/2031 Kod: ZZP-1-502-s Punkty ECTS: 4 Wydział: Zarządzania Kierunek: Zarządzanie Specjalność: - Poziom studiów: Studia I stopnia Forma i tryb

Bardziej szczegółowo

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. w Banku Spółdzielczym w Podegrodziu

Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH. w Banku Spółdzielczym w Podegrodziu Załącznik nr 1 do Uchwały Nr 54/Z/2015 Zarządu BS w Podegrodziu z dnia 29.12.2015 r Bank Spółdzielczy w Podegrodziu TABELA OPROCENTOWANIA PRODUKTÓW BANKOWYCH w Banku Spółdzielczym w Podegrodziu obowiązująca

Bardziej szczegółowo

Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r.

Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r. Informacja prasowa Warszawa, 13 lutego 2014 r. Wyniki sprzedaży obligacji skarbowych w styczniu 2014 r. W styczniu 2014 roku inwestorzy kupili obligacje skarbowe o łącznej wartości 256,2 mln zł to trzeci

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekonomiczny Uniwersytet Dziecięcy Temat spotkania: Finanse dla sprytnych Dlaczego inteligencja finansowa popłaca? Prowadzący: dr Anna Miarecka Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie 28 maj

Bardziej szczegółowo

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania

Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Finanse przedsiębiorstw mgr Kazimierz Linowski WyŜsza Szkoła Marketingu i Zarządzania Wstęp Celem wykładu jest przedstawienie podstawowych pojęć oraz zaleŝności z zakresu zarządzania finansami w szczególności

Bardziej szczegółowo

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN

[1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN LITERATURA: [1 ] M. Podgórska, J. Klimkowska, Matematyka finansowa, PWN [2 ] E. Smaga, Arytmetyka finansowa, PWN [3 ] M. Sobczyk, Matematyka finansowa, Placet [4 ] M. Szałański, Podstawy matematyki finansowej,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) EiLwPTM program wykładu 03. Kredyt. Plan spłaty kredytu metodą tradycyjną i za pomocą współczynnika

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3 Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności

Bardziej szczegółowo

Podstawowym celem szkolenia jest zaznajomienie uczestników z metodologią planowania finansowego przedsięwzięć inwestycyjnych.

Podstawowym celem szkolenia jest zaznajomienie uczestników z metodologią planowania finansowego przedsięwzięć inwestycyjnych. Opis szkolenia Dane o szkoleniu Kod szkolenia: 892416 Temat: Planowanie finansowe przedsięwzięć inwestycyjnych. Warsztaty praktyczne. 28-29 Listopad Warszawa, Centrum miasta lub siedziba BDO, Kod szkolenia:

Bardziej szczegółowo

Szacowanie kosztów i przychodów działalności gospodarczej. 20 marzec 2017 r.

Szacowanie kosztów i przychodów działalności gospodarczej. 20 marzec 2017 r. Szacowanie kosztów i przychodów działalności gospodarczej 20 marzec 2017 r. PYTANIA KONTROLNE 1. Z czego składa się rata kredytowa? 2. Od jakiej wartości obliczamy odsetki kredytowe? 3. Co oznacza pojęcia

Bardziej szczegółowo

Średnio ważony koszt kapitału

Średnio ważony koszt kapitału Średnio ważony koszt kapitału WACC Weighted Average Cost of Capital 1 Średnio ważony koszt kapitałuwacc Weighted Average Cost of Capital Plan wykładu: I. Koszt kapitału a metody dyskontowe II. Źródła finansowania

Bardziej szczegółowo

TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW

TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW Załącznik Nr 1 do Uchwały Nr 02/III/2014 Zarządu Banku Spółdzielczego w Mszanie Dolnej z dnia 05-03-2014r. Bank Spółdzielczy w Mszanie Dolnej TABELA OPROCENTOWANIA DEPOZYTÓW I KREDYTÓW W BANKU SPÓŁDZIELCZYM

Bardziej szczegółowo