Akademia Młodego Ekonomisty

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Akademia Młodego Ekonomisty"

Transkrypt

1 Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Matematyka finansowa wokół nas dr Agnieszka Bem Uniwersytet Ekonomiczny we Wrocławiu 20 listopada 2017 r.

2 Wartość pieniądzaw czasie Wartość pieniądza w czasie się zmienia Z upływem czasu -na skutek wydarzeń i działań praw ekonomii wartość posiadanych pieniędzy może być znacznie mniejsza od wartości dzisiejszej

3 Wartość pieniądza w czasie OPROCENTOWANIE (KAPITALIZOWANIE) DYSKONTOWANIE

4 Dlaczego wartość pieniądza się zmienia? inflacja ryzyko możliwość inwestowania preferencje znajdują odzwierciedlenie w stopie procentowej

5 Oprocentowanie Stopa procentowa koszt kapitału -opłata za możliwość korzystania z kapitału Odsetki cena, jaką trzeba zapłacić za pożyczenie określonej kwoty pieniędzy Oprocentowanie może być: proste (procent prosty) złożone (procent składany)

6 Oprocentowanie proste Procent prostyto sposób oprocentowania polegający na tym, że dochód w postaci odsetek od wkładu początkowego jest wyznaczany proporcjonalnie do długości okresu oprocentowania i nie jest doliczany do wkładu (nie podlega kapitalizacji) Jak obliczyć? FV = PV (1+ r n) PV - wartość bieżąca kapitał początkowy FV - wartość przyszła kapitał końcowy r - roczna stopa procentowa n - czas oprocentowania w latach

7 Procent składany Sposób oprocentowania lokaty polegający na tym, że odsetki za dany okres są doliczane do kapitału (podlegają kapitalizacji) i w ten sposób składają się" na zysk wypracowywany w okresie następnym Im częstsza kapitalizacja, tym kapitał wzrasta szybciej Jak obliczyć? FV = PV (1+ r/m) n m m liczba kapitalizacji w ciągu roku

8 Procent składany i procent prosty Procent składany daje szybszy wzrost wartości kapitału niż procent prosty Przykład: zł odkładamy na lokatę na 5%. Jaką kwotę będziemy mieli za 3 lata przy oprocentowaniu prostym a ile przy składanym? Procent prosty: Procent składany: FV = (1+0,05 3) = po pierwszym roku: FV = (1+0,05) = po drugim roku: FV = (1+0,05) = 1.102,5 po trzecim roku: FV = 1.102,5 (1+0,05) = 1.157,6

9 Czy to jest korzystna lokata? Nominalna stopa procentowa stopa procentowa okresu bazowego (najczęściej rok) bez uwzględnienia inflacji

10 Efektywna stopa procentowa Efektywna stopa procentowa jest to faktycznie uzyskiwana stopa procentowa, która uwzględnia kapitalizację odsetek Jak obliczyć? r efektywna = (1+r/m) m 1

11 Realna stopa procentowa Realna stopa procentowa nominalna stopa procentowa skorygowana o przewidywany poziom inflacji Jak obliczyć? r realna = (r nominalna i)/(1+i) i stopa inflacji

12 Kredyt czy pożyczka? Kredyt może być udzielony tylko przez bank lub SKOK a pożyczka przez każdego Umowa kredytu musi być zawsze sporządzona na piśmie Termin zwrotu kredytu jest zawsze określony Pożyczka staje się własnością pożyczkobiorcy a kredyt to środki przekazane do czasowej dyspozycji kredytobiorcy

13 Koszty kredytu lub pożyczki Co składa się na koszt kredytu/pożyczki? odsetki opłata przygotowawcza prowizja za udzielenie kredytu ubezpieczenie

14 Rata malejąca czy stała? Każda rata kredytu składa się z dwóch części: odsetkowej kapitałowej Odsetkowa część raty to zapłata za pożyczenie pieniędzy od banku W ramach części kapitałowej dłużnik systematycznie zwraca sumę, którą pożyczył

15 Rata malejąca czy stała? Przy racie malejącej kapitał jest spłacany w równych częściach a odsetki maleją Przy stałej racie jej wysokość nie zmienia się w całym okresie kredytowania Wraz z upływem czasu dłużnik spłaca jednak coraz mniej odsetek a na początku stanowią one zdecydowaną większość raty

16 Czy ten kredyt jest drogi? Rzeczywista roczna stopa oprocentowanie (RRSO) RRSO odzwierciedla relację pomiędzy całkowitymi kosztami ponoszonymi przez kredytobiorcę (bez ubezpieczenia), a kwotą otrzymanego kredytu Oprocentowanie rzeczywiste uwzględnia nie tylko koszty odsetek, opłaty przygotowawczej oraz dodatkowych opłat, bierze również pod uwagę zmianę wartości pieniądza w czasie

17 Bank czy parabank? Banki działają w oparciu o Prawo Bankowe Banki i ich działalność jest szczegółowo regulowana oraz nadzorowana przez prawo bankowe i Komisję Nadzoru Finansowego Pieniądze klientów chroni Bankowy Fundusz Gwarancyjny Parabanki działają w oparciu o Kodeks Cywilny Parabanki nie są przez nikogo kontrolowane a klienci nie mają żadnych gwarancji

18 Jak więc nie dać się nabrać? Dowiedz się jak najwięcej o instytucji Rozpoznaj wszystkie koszty, spytaj o RRSO Rozpoznaj ile możesz zyskać (efektywna, realna stopa procentowa) lub stracić (jakie jest ryzyko?) Nie podpisuj niczego, jeśli nie rozumiesz Zachowaj zdrowy rozsądek (!)

19 Warsztaty Pracujemy w grupach Grupy (1 6) przygotowują plakat reklamowy, informujący o warunkach udzielenia kredytu / pożyczki, który dostarcza klientowi rzetelnej informacji o produkcie Grupy (7 11) przygotowują plakat, którego celem jest wywołanie zainteresowania produktem i ukrycie jego ewentualnych słabości Miłej pracy

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 20 października 2014 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Michał Trzęsiok Uniwersytet Ekonomiczny w Katowicach 6 listopada 2017 r. Czym jest pieniądz? Pieniądz - dobro, które jest powszechnie akceptowane

Bardziej szczegółowo

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1.

Akademia Młodego Ekonomisty Matematyka finansowa dla liderów Albert Tomaszewski Grupy 1-2 Zadanie 1. Grupy 1-2 Zadanie 1. Sprawdźcie ofertę dowolnych 5 banków i wybierzcie najlepszą ofertę oszczędnościową (lokatę lub konto oszczędnościowe). Obliczcie, jaki zwrot przyniesie założenie jednej takiej lokaty

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka Finansowa dla liderów dr Aneta Kaczyńska Uniwersytet Ekonomiczny w Poznaniu 30 listopada 2017 r. Dr Tomaszie Projektami EKONOMICZNY UNIWERSYTET DZIECIĘCY Copywrite

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Temat spotkania: Matematyka finansowa dla liderów Temat wykładu: Matematyka finansowa wokół nas Prowadzący: Szkoła Główna Handlowa w Warszawie 14 października 2014 r. Matematyka finansowa dla liderów Po

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 5 Matematyka finansowa System finansowy gospodarki Zajęcia nr 5 Matematyka finansowa Wartość pieniądza w czasie 1 złoty posiadany dzisiaj jest wart więcej niż 1 złoty posiadany w przyszłości, np. za rok. Powody: Suma posiadana

Bardziej szczegółowo

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa

System finansowy gospodarki. Zajęcia nr 6 Matematyka finansowa System finansowy gospodarki Zajęcia nr 6 Matematyka finansowa Rachunek rentowy (annuitetowy) Mianem rachunku rentowego określa się regularne płatności w stałych odstępach czasu przy założeniu stałej stopy

Bardziej szczegółowo

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski

Nauka o finansach. Prowadzący: Dr Jarosław Hermaszewski Nauka o finansach Prowadzący: Dr Jarosław Hermaszewski WARTOŚĆ PIENIĄDZA W CZASIE Wykład 4 Prawda ekonomiczna Pieniądz, który mamy realnie w ręku, dziś jest wart więcej niż oczekiwana wartość tej samej

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Matematyka finansowa wokół nas Uniwersytet Szczeciński 7 grudnia 2017 r. Wartość pieniądza w czasie, siła procentu składanego, oprocentowanie rzeczywiste, nominalne i realne

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 2 Ćwiczenia 2 Wartość pieniądza w czasie Zmienna wartość pieniądza w czasie jest pojęciem, które pozwala porównać wartość różnych sum pieniężnych otrzymanych w różnych okresach czasu. Czy 1000 PLN otrzymane

Bardziej szczegółowo

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE

Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Paulina Drozda WARTOŚĆ PIENIĄDZA W CZASIE Zmianą wartości pieniądza w czasie zajmują się FINANSE. Finanse to nie to samo co rachunkowość. Rachunkowość to opowiadanie JAK BYŁO i JAK JEST Finanse zajmują

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE

WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE WPROWADZENIE PYTANIA KONTROLNE Różnica pomiędzy: inwestycją, projektem inwestycyjnym, przedsięwzięciem inwestycyjnym Rodzaje inwestycji ze względu na cel Wartość pieniądza w

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekonomiczny Uniwersytet Dziecięcy Bank zaufanie na całe życie Czy warto powierzać pieniądze bankom? nna Chmielewska Miasto Bełchatów 24 listopada 2010 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY Uniwersytet Dziecięcy,

Bardziej szczegółowo

Wartość przyszła pieniądza: Future Value FV

Wartość przyszła pieniądza: Future Value FV Wartość przyszła pieniądza: Future Value FV Jeśli posiadamy pewną kwotę pieniędzy i mamy możliwość ulokowania ich w banku na ustalony czas i określony procent, to kwota w przyszłości (np. po 1 roku), zostanie

Bardziej szczegółowo

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014

Jak wybrać kredyt? Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej. 22 listopada 2014 Waldemar Wyka Instytut Matematyki Politechniki Łódzkiej 22 listopada 2014 Plan prezentacji 1 Powtórzenie 2 3 Plany spłaty długu - stałe raty Plany spłaty długu - stałe raty kapitałowe Plany spłaty długu

Bardziej szczegółowo

Elementy matematyki finansowej w programie Maxima

Elementy matematyki finansowej w programie Maxima Maxima-03_windows.wxm 1 / 8 Elementy matematyki finansowej w programie Maxima 1 Wartość pieniądza w czasie Umiejętność przenoszenia kwot pieniędzy w czasie, a więc obliczanie ich wartości na dany moment,

Bardziej szczegółowo

Darmowa publikacja dostarczona przez PatBank.pl - bank banków

Darmowa publikacja dostarczona przez PatBank.pl - bank banków Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez PatBank.pl - bank banków Copyright by Złote Myśli &, rok 2008 Autor:

Bardziej szczegółowo

Darmowa publikacja dostarczona przez ebooki24.org

Darmowa publikacja dostarczona przez ebooki24.org Powered by TCPDF (www.tcpdf.org) Ten ebook zawiera darmowy fragment publikacji "Finanse dla każdego" Darmowa publikacja dostarczona przez ebooki24.org Copyright by Złote Myśli &, rok 2008 Autor: Tytuł:

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy

Bardziej szczegółowo

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min.

zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. zaliczenie na ocenę z elementarnej matematyki finansowej I rok MF, 21 czerwca 2012 godz. 8:15 czas trwania 120 min. Imię nazwisko:... numer indeksu:... nr zadania zad.1 zad.2 zad.3 zad.4 zad.5 zad.6 zad.7

Bardziej szczegółowo

Licz i zarabiaj matematyka na usługach rynku finansowego

Licz i zarabiaj matematyka na usługach rynku finansowego Licz i zarabiaj matematyka na usługach rynku finansowego Przedstawiony zestaw zadań jest przeznaczony dla uczniów szkół ponadgimnazjalnych i ma na celu ukazanie praktycznej strony matematyki, jej zastosowania

Bardziej szczegółowo

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane

Zajęcia 1. Pojęcia: - Kapitalizacja powiększenie kapitału o odsetki, które zostały przez ten kapitał wygenerowane Zajęcia 1 Pojęcia: - Procent setna część całości; w matematyce finansowej korzyści płynące z użytkowania kapitału (pojęcie używane zamiennie z terminem: odsetki) - Kapitalizacja powiększenie kapitału o

Bardziej szczegółowo

WACC Montaż finansowy Koszt kredytu

WACC Montaż finansowy Koszt kredytu WACC Montaż finansowy Koszt kredytu PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Zdefiniuj stopę procentową i dyskontową Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we

Bardziej szczegółowo

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3

Procent prosty Def.: Procent prosty Zad. 1. Zad. 2. Zad. 3 Procent prosty Zakładając konto w banku, decydujesz się na określone oprocentowanie tego rachunku. Zależy ono między innymi od czasu, w jakim zobowiązujesz się nie naruszać stanu konta, czyli tzw. lokaty

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 06 MSTiL niestacjonarne (II stopień) program wykładu 06. Rola współczynnika procentowego i współczynnika dyskontowego

Bardziej szczegółowo

Wartość przyszła pieniądza

Wartość przyszła pieniądza O koszcie kredytu nie można mówić jedynie na podstawie wysokości płaconych odsetek. Dla pożyczającego pieniądze najważniejszą kwestią jest kwota, jaką będzie musiał zapłacić za korzystanie z cudzych środków

Bardziej szczegółowo

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu)

WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) WARTOŚĆ PIENIĄDZA W CZASIE c.d. (WACC + Spłata kredytu) PYTANIA KONTROLNE Co oznacza pojęcie kapitalizacja odsetek? Co oznacza pojęcie wartość przyszła i bieżąca? Jakimi symbolami we wzorach oznaczamy

Bardziej szczegółowo

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II

Dariusz Wardowski Katedra Analizy Nieliniowej. Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Wydział Matematyki i Informatyki Uniwersytetu Łódzkiego w Łodzi Dariusz Wardowski Katedra Analizy Nieliniowej Bankowość i metody statystyczne w biznesie - zadania i przykłady część II Łódź 2008 Rozdział

Bardziej szczegółowo

Matematyka Finansowa

Matematyka Finansowa Matematyka Finansowa MATERIAŁY DO WYKŁADU Procent to jedna setna. 1% = 0,01. Promil to jedna tysięczna. 1 = 0,001 = 0,1%. -procent od wartości to 0,01. Na przykład dwadzieścia trzy procent i cztery promile

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Instytut Matematyki i Informatyki, PWSZ w Płocku E-mail address: klimdr@math.uni.ldz.pl http://math.uni.lodz.pl/ klimdr/ Bibliografia [1] M. Podgórska,

Bardziej szczegółowo

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2

METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE. Ćwiczenia nr 1 i 2 METODY OCENY PROJEKTÓW INWESTYCYJNYCH WPROWADZENIE WARTOŚĆ PIENIĄDZA W CZASIE Ćwiczenia nr 1 i 2 - Cel ćwiczeń - Komunikacja email: i.ratuszniak@efficon.pl, w temacie - mopi - Konsultacje: pokój: 428,

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Temat 1: Wartość pieniądza w czasie

Temat 1: Wartość pieniądza w czasie Temat 1: Wartość pieniądza w czasie Inwestycja jest w istocie bieżącym wyrzeczeniem się dla przyszłych korzyści. Ale teraźniejszość jest względnie dobrze znana, natomiast przyszłość to zawsze tajemnica.

Bardziej szczegółowo

ZADANIE 1. NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

ZADANIE 1.  NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Na budowę domu możesz zaciagn ać pożyczkę w wysokości 63450 e. Do wyboru sa dwa warianty spłaty: I w każdym miesiacu spłacasz równe raty, każda w wysokości 2% pożyczonej kwoty. II pierwsza rata

Bardziej szczegółowo

Akademia Młodego Ekonomisty

Akademia Młodego Ekonomisty Akademia Młodego Ekonomisty Czy w ekonomii dwa plus dwa równa się cztery? Jak liczą ekonomiści? Mgr Kornelia Bem - Kozieł Wyższa Szkoła Ekonomii, Prawa i Nauk Medycznych w Kielcach 9 kwiecień 2014 r. Co

Bardziej szczegółowo

Matematyka I dla DSM zbiór zadań

Matematyka I dla DSM zbiór zadań I Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. Matematyka I dla DSM zbiór zadań do użytku wewnętrznego dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i 3. i= 5 ( ) i

Bardziej szczegółowo

Niniejszy ebook jest własnością prywatną.

Niniejszy ebook jest własnością prywatną. Niniejszy ebook jest własnością prywatną. Niniejsza publikacja, ani żadna jej część, nie może być kopiowana, ani w jakikolwiek inny sposób reprodukowana, powielana, ani odczytywana w środkach publicznego

Bardziej szczegółowo

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera

www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera www.pokonac-rynek.pl Wzory - matematyka finansowa Opracował: Łukasz Zymiera Wartość pieniądza w czasie MWP mnożnik wartości przyszłej MWO mnożnik wartości obecnej MWPR mnożnik wartości przyszłej renty

Bardziej szczegółowo

Reprezentatywny przykład - kredyt gotówkowy:

Reprezentatywny przykład - kredyt gotówkowy: Reprezentatywny przykład - kredyt gotówkowy: 1) kwota udzielonego kredytu 30.000,00 zł, 2) całkowita kwota kredytu 30.000,00 zł (prowizja i/lub koszt ubezpieczenia płatne ze środków własnych kredytobiorcy),

Bardziej szczegółowo

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych

Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3. Zadanie 1 Amortyzacja środków trwałych Arkusz kalkulacyjny MS EXCEL ĆWICZENIA 3 Uwaga! Każde ćwiczenie rozpoczynamy od stworzenia w katalogu Moje dokumenty swojego własnego katalogu roboczego, w którym będziecie Państwo zapisywać swoje pliki.

Bardziej szczegółowo

Zadania do wykładu Matematyka bankowa 2

Zadania do wykładu Matematyka bankowa 2 Zadania do wykładu Matematyka bankowa 2 Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

NOWOCZESNE I BEZPIECZNE FINANSE SENIORA V EDYCJA

NOWOCZESNE I BEZPIECZNE FINANSE SENIORA V EDYCJA NOWOCZESNE I BEZPIECZNE FINANSE SENIORA V EDYCJA MODUŁ 2 Kredyt konsumencki - wybrane zagadnienia UMOWA O KREDYT KONSUMENCKI 1. Najważniejszym aktem prawnym regulującym kwestie kredytu konsumenckiego jest

Bardziej szczegółowo

Informacja o ryzykach dla kredytobiorców hipotecznych

Informacja o ryzykach dla kredytobiorców hipotecznych Informacja o ryzykach dla kredytobiorców hipotecznych (według zaleceń Rekomendacji S Komisji Nadzoru Finansowego) Spis treści I. Informacja o kształtowaniu się rat kredytu hipotecznego w zależności od

Bardziej szczegółowo

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym) KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym) KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy

Bardziej szczegółowo

Granice ciągów liczbowych

Granice ciągów liczbowych Granice ciągów liczbowych Obliczyć z definicji granicę ciągu o wyrazie, gdzie jest pewną stałą liczbą. Definicja: granicą ciągu jest liczba, jeśli Sprawdzamy, czy i kiedy granica rozpatrywanego ciągu wynosi

Bardziej szczegółowo

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym)

2) roczne oprocentowanie nominalne = 10,00% (oprocentowanie stałe w stosunku rocznym) KREDYT GOTÓWKOWY I. Przykłady dla klientów posiadających w Banku, na dzień zawarcia umowy o kredyt, od co najmniej 12 miesięcy: a) rachunek oszczędnościowo rozliczeniowy wykazujący stałe miesięczne wpływy

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Państwa członkowskie - Zamówienie publiczne na usługi - Dodatkowe informacje - Procedura otwarta. PL-Myszków: Usługi udzielania kredytu

Państwa członkowskie - Zamówienie publiczne na usługi - Dodatkowe informacje - Procedura otwarta. PL-Myszków: Usługi udzielania kredytu 1/5 Niniejsze ogłoszenie w witrynie TED: http://ted.europa.eu/udl?uri=ted:notice:329010-2010:text:pl:html PL-Myszków: Usługi udzielania kredytu 2010/S 215-329010 Powiat Myszkowski reprezentowany przez

Bardziej szczegółowo

NOWOCZESNE I BEZPIECZNE FINANSE SENIORA V EDYCJA

NOWOCZESNE I BEZPIECZNE FINANSE SENIORA V EDYCJA NOWOCZESNE I BEZPIECZNE FINANSE SENIORA V EDYCJA MODUŁ 4 Zagrożenia wynikające z zaciągania szybkich pożyczek (tzw. chwilówek ) INSTYTUCJA POŻYCZKOWA 1. INSTYTUCJA POŻYCZKOWA to podmiot (kredytodawca),

Bardziej szczegółowo

Do grupy podstawowych wskaźników rynku kapitałowego należy zaliczyć: zysk netto liczba wyemitowanych akcji

Do grupy podstawowych wskaźników rynku kapitałowego należy zaliczyć: zysk netto liczba wyemitowanych akcji VIII. Repetytorium Temat 1.6. Wskaźniki rynku kapitałowego Wskaźniki rynku kapitałowego służą do pomiaru efektywności finansowej spółek akcyjnych, notowanych na giełdzie papierów wartościowych. Stanowią

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 W banku A oprocentowanie lokat 4% przy kapitalizacji kwartalnej. W banku B oprocentowanie lokat 4,5% przy kapitalizacji miesięcznej. W banku A ulokowano kwotę 1000 zł. Jaki kapitał należy

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Dziecięcy FINANSE DLA SPRYTNYCH Szkoła Główna Handlowa w Warszawie 21 października 2014 r. Pieniądz to tylko miernik bogactwa Bogactwo może być gromadzone w różnych formach np. akcje, obligacje, nieruchomości,

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Praktyczne Seminarium Inwestowania w Nieruchomości

Praktyczne Seminarium Inwestowania w Nieruchomości Praktyczne Seminarium Inwestowania w Nieruchomości Kalkulator finansowy 10BII pierwsze kroki www.edukacjainwestowania.pl Kalkulator finansowy 10BII, oprócz typowych funkcji matematycznych i statystycznych,

Bardziej szczegółowo

KREDYTY ZABEZPIECZONE HIPOTECZNIE

KREDYTY ZABEZPIECZONE HIPOTECZNIE TABELA OPROCENTOWAŃ KREDYTÓW DLA KLIENTÓW INDYWIDUALNYCH W BANKU SPÓŁDZIELCZYM WE WŁOSZAKOWICACH (OBOWIĄZUJE OD 01.09.2017r.) KREDYTY ZABEZPIECZONE HIPOTECZNIE KREDYTY STANDARD NA CELE MIESZKANIOWE 1)

Bardziej szczegółowo

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k 2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa

Bardziej szczegółowo

Matematyka podstawowa V. Ciągi

Matematyka podstawowa V. Ciągi Matematyka podstawowa V Ciągi Teoria ciąg arytmetyczny - pierwszy wyraz ciągu - różnica Kolejny wyraz ciągu arytmetycznego powstaje przez dodanie do poprzedniego różnicy. = + Np. =2,=3 :2,5,8,11 = 4,=2

Bardziej szczegółowo

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku

1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku 1. Jaką kwotę zgromadzimy po 3 latach na lokacie bankowej jeśli roczna NSP wynosi 4%, pierwsza wpłata wynosi 300 zl i jest dokonana na poczatku miesiąca a każda następna miesięczna wpłata jest (a) Większa

Bardziej szczegółowo

Kredyt nie droższy niż (w okresie od 1 do 5 lat)

Kredyt nie droższy niż (w okresie od 1 do 5 lat) Kredyt nie droższy niż (w okresie od 1 do 5 lat) "Kredyt nie droższy niż to nowa usługa Banku, wprowadzająca wartość maksymalną stawki referencyjnej WIBOR 3M służącej do ustalania wysokości zmiennej stopy

Bardziej szczegółowo

Formularz informacyjny dotyczący kredytu konsumenckiego okazjonalnego sporządzony na podstawie reprezentatywnego przykładu

Formularz informacyjny dotyczący kredytu konsumenckiego okazjonalnego sporządzony na podstawie reprezentatywnego przykładu Formularz informacyjny dotyczący kredytu konsumenckiego okazjonalnego sporządzony na podstawie reprezentatywnego przykładu Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego

Bardziej szczegółowo

Wyciąg z Taryfy prowizji i opłat za czynności bankowe w walucie krajowej

Wyciąg z Taryfy prowizji i opłat za czynności bankowe w walucie krajowej Wyciąg z Taryfy prowizji i opłat za czynności bankowe w walucie krajowej w Ludowym Banku Spółdzielczym w Obornikach PRODUKTY KREDYTOWE (kredyty, pożyczki, gwarancje) A. KREDYTY UDZIELANE PODMIOTOM INSTYTUCJONALNYM

Bardziej szczegółowo

Informacja o ryzykach dla kredytobiorców hipotecznych. (według zaleceń Rekomendacji S Komisji Nadzoru Finansowego)

Informacja o ryzykach dla kredytobiorców hipotecznych. (według zaleceń Rekomendacji S Komisji Nadzoru Finansowego) Informacja o ryzykach dla kredytobiorców hipotecznych (według zaleceń Rekomendacji S Komisji Nadzoru Finansowego) Spis treści I. Informacja o kształtowaniu się rat kredytu hipotecznego w zależności od

Bardziej szczegółowo

Formularz informacyjny dotyczący kredytu konsumenckiego

Formularz informacyjny dotyczący kredytu konsumenckiego Formularz informacyjny dotyczący kredytu konsumenckiego 1.Imię, nazwisko (nazwa) i adres (siedziba) kredytodawcy lub pośrednika kredytowego KREDYTODAWCA: Adres: POLI INVEST Spółka z ograniczoną odpowiedzialnością

Bardziej szczegółowo

Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza

Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza Porównanie opłacalności kredytu w PLN i kredytu denominowanego w EUR Przykładowa analiza Opracowanie: kwiecień 2016r. www.strattek.pl strona 1 Spis 1. Parametry kredytu w PLN 2 2. Parametry kredytu denominowanego

Bardziej szczegółowo

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska:

Pieniądz ma zmienną wartość w czasie również w przypadku zerowej inflacji. Jest kilka przyczyn tego zjawiska: Prawie wszyscy wiedzą, że pewna suma pieniędzy ma dziś większą wartość niż ta sama suma w przyszłości. Mówi się, że pieniądz traci na wartości. Używając bardziej precyzyjnej terminologii trzeba powiedzieć

Bardziej szczegółowo

Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego.

Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego. Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego. 1. Dane identyfikacyjne i kontaktowe dotyczące kredytodawcy Kredytodawca: Pożycz tu sp. z o.o. KRS 0000607024, REGON 363941320 NIP 5732862436

Bardziej szczegółowo

2,00 % 5,00 % 0,00 % 3,01 % 2,58 % 3,12 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z ,29 zł 205,12 zł 203,83 zł. 0,00 zł 0,00 zł 0,00 zł

2,00 % 5,00 % 0,00 % 3,01 % 2,58 % 3,12 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z ,29 zł 205,12 zł 203,83 zł. 0,00 zł 0,00 zł 0,00 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia: 06122015 (23:00) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruchomości:

Bardziej szczegółowo

Materiał porównawczy do ustawy z dnia 29 lipca 2011 r. o zmianie ustawy Prawo bankowe oraz niektórych innych ustaw. (druk nr 1325)

Materiał porównawczy do ustawy z dnia 29 lipca 2011 r. o zmianie ustawy Prawo bankowe oraz niektórych innych ustaw. (druk nr 1325) BIURO LEGISLACYJNE/ Materiał porównawczy Materiał porównawczy do ustawy z dnia 29 lipca 2011 r. o zmianie ustawy Prawo bankowe oraz niektórych innych ustaw (druk nr 1325) USTAWA z dnia 29 sierpnia 1997

Bardziej szczegółowo

Zastosowanie matematyki w finansach i bankowości

Zastosowanie matematyki w finansach i bankowości Zastosowanie matematyki w finansach i bankowości Maciej Wolny I. Kalkulacja wartości pieniądza w czasie... 1 II. Nominalna, efektywna i realna stopa procentowa... 4 III. Spłata kredytów w równych i różnych

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,00 %

Bardziej szczegółowo

OPŁACALNOŚĆ INWESTYCJI

OPŁACALNOŚĆ INWESTYCJI 3/27/2011 Ewa Kusideł ekusidel@uni.lodz.pl 1 OPŁACALNOŚĆ INWESTYCJI www.kep.uni.lodz.pl\ewakusidel 3/27/2011 Inwestycje i ryzyko na rynku nieruchomości 2 Inwestycja Inwestycja Nakład na zwiększenie lub

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,50 % 1 m-c 1,00 % 1,00 % 2 m-ce 1,00 % - 3 m-ce 1,00 %

Bardziej szczegółowo

STOPA PROCENTOWA I STOPA ZWROTU

STOPA PROCENTOWA I STOPA ZWROTU Piotr Cegielski, MAI, MRICS, CCIM STOPA PROCENTOWA I STOPA ZWROTU (Wybrane fragmenty artykułu opublikowanego w C.H. Beck Nieruchomości, numer 9 z 2011 r. Całość dostępna pod adresem internetowym: www.nieruchomosci.beck.pl)

Bardziej szczegółowo

dr Tomasz Łukaszewski Budżetowanie projektów 1

dr Tomasz Łukaszewski Budżetowanie projektów 1 Firma rozważa sfinansowanie projektu kredytem. Kwota kredytu wynosi 100 000 zł, oprocentowanie 15%, spłacany będzie przez 7 lat. A. Ile wyniosą raty przy założeniu, że kredyt będzie spłacany ratą roczną

Bardziej szczegółowo

I. Informacja o kształtowaniu się rat kredytu hipotecznego w zależności od przyjętego okresu kredytowania.

I. Informacja o kształtowaniu się rat kredytu hipotecznego w zależności od przyjętego okresu kredytowania. Broszura informacyjna 3Q/2017 Załącznik nr 1 do IS określającej obowiązki Pracownika DOK i Pośrednika Kredytu Hipotecznego w procesie pozyskiwania Klientów Indywidualnych. Informacja dla kredytobiorców

Bardziej szczegółowo

OGÓLNE INFORMACJE DOTYCZĄCE UMOWY POŻYCZKI HIPOTECZNEJ

OGÓLNE INFORMACJE DOTYCZĄCE UMOWY POŻYCZKI HIPOTECZNEJ Firma (nazwa), siedziba (miejsce zamieszkania) i adres podmiotu publikującego informację; Cele, na które pożyczka hipoteczna może zostać przeznaczona : Formy zabezpieczenia, w tym wskazanie możliwości,

Bardziej szczegółowo

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień)

Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) dr Adam Salomon Ekonomika i Logistyka w Przedsiębiorstwach Transportu Morskiego wykład 03 MSTiL (II stopień) EiLwPTM program wykładu 03. Kredyt. Plan spłaty kredytu metodą tradycyjną i za pomocą współczynnika

Bardziej szczegółowo

Ustawa z dnia.. o sposobach przywrócenia równości stron niektórych umów kredytu i zmianie niektórych innych ustaw

Ustawa z dnia.. o sposobach przywrócenia równości stron niektórych umów kredytu i zmianie niektórych innych ustaw Ustawa z dnia.. o sposobach przywrócenia równości stron niektórych umów kredytu i zmianie niektórych innych ustaw Art. 1. Ustawa określa zasady, na jakich nastąpi przywrócenie ekwiwalentności świadczeń

Bardziej szczegółowo

Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego.

Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego. Standardowy arkusz informacyjny dotyczący kredytu konsumenckiego. 1. Dane identyfikacyjne i kontaktowe dotyczące kredytodawcy Kredytodawca: Mini Money sp. z o.o. KRS 0000627479, REGON 364938313 NIP 5272774474

Bardziej szczegółowo

Standardowy europejski arkusz informacyjny dotyczący kredytu konsumenckiego

Standardowy europejski arkusz informacyjny dotyczący kredytu konsumenckiego Standardowy europejski arkusz informacyjny dotyczący kredytu konsumenckiego 1. Dane identyfikacyjne i kontaktowe dotyczące kredytodawcy/pośrednika kredytowego. Kredytodawca: Adres: Novum Bank Limited Nr

Bardziej szczegółowo

Istotne elementy umowy kredytowej

Istotne elementy umowy kredytowej Załącznik Nr 2 do wniosku z dnia 22 maja 2014 roku o wszczęcie postępowania o udzielenie zamówienia publicznego Istotne elementy umowy kredytowej 1. W wyniku postępowania o zamówienie publiczne Bank udziela

Bardziej szczegółowo

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3

mgr Katarzyna Niewińska; Wydział Zarządzania UW Ćwiczenia 3 Ćwiczenia 3 Rachunek rentowy Jako rachunek rentowy traktuje się regularne płatności płacone w stałych przedziałach czasu przy czym towarzyszy temu stała stopa procentowa. Wykorzystanie: renty; płatności

Bardziej szczegółowo

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne.

Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne. Finansowanie inwestycji rzeczowych w gospodarce rynkowej Sporządzanie planu spłaty kredytu wykład 5. dla 5. roku HM zaoczne dr Adam Salomon Finansowanie inwestycji rzeczowych w gospodarce rynkowej Podręcznik

Bardziej szczegółowo

USTAWA z dnia 5 grudnia 2002 r. o dopłatach do oprocentowania kredytów mieszkaniowych o stałej stopie procentowej. Rozdział 1 Przepisy ogólne

USTAWA z dnia 5 grudnia 2002 r. o dopłatach do oprocentowania kredytów mieszkaniowych o stałej stopie procentowej. Rozdział 1 Przepisy ogólne Kancelaria Sejmu s. 1/7 USTAWA z dnia 5 grudnia 2002 r. Opracowano na podstawie: Dz.U. 2002 r. Nr 230, poz. 1922. o dopłatach do oprocentowania kredytów mieszkaniowych o stałej stopie procentowej Rozdział

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne

LOKATY RENTIERSKIE min. kwota 500 zł oprocentowanie zmienne Okres oszczędzania TABELE OPROCENTOWAŃ LOKAT LOKATY TERMINOWE kwota min. 500 zł oprocentowanie zmienne oprocentowanie stałe Lokata PRIMA 7 dni - 0,25 % 1 m-c 0,75 % 0,75 % 2 m-ce 0,75 % - 3 m-ce 0,75 %

Bardziej szczegółowo

Analiza opłacalności inwestycji v.

Analiza opłacalności inwestycji v. Analiza opłacalności inwestycji v. 2.0 Michał Strzeszewski, 1997 1998 Spis treści 1. Cel artykułu...1 2. Wstęp...1 3. Prosty okres zwrotu...2 4. Inflacja...2 5. Wartość pieniądza w czasie...2 6. Dyskontowanie...3

Bardziej szczegółowo

UMOWA KREDYTOWA NR.. o kredyt obrotowy w rachunku kredytowym

UMOWA KREDYTOWA NR.. o kredyt obrotowy w rachunku kredytowym Załącznik nr 4 do siwz UMOWA KREDYTOWA NR.. o kredyt obrotowy w rachunku kredytowym zawarta w Kielcach w dniu.... 2010 roku pomiędzy: zwanym dalej Bankiem reprezentowanym przez: 1. 2. a Powiatem Kielckim

Bardziej szczegółowo

Ranking kredytów gotówkowych.

Ranking kredytów gotówkowych. . Money.pl wybrał najlepsze oferty kredytów gotówkowych dostępne w 24 bankach. Wzięliśmy pod uwagę, nie tylko oprocentowanie i prowizje, ale także całkowity koszt pożyczki oraz konieczność wykupu ubezpieczenia.

Bardziej szczegółowo

Bank Spółdzielczy w Głogówku

Bank Spółdzielczy w Głogówku Bank Spółdzielczy w Głogówku Grupa BPS Załącznik do Uchwały Nr 110/2014/Z Zarządu Banku Spółdzielczego w Głogówku z dnia 09.10.2014r. Tabela oprocentowania kredytów w Banku Spółdzielczym w Głogówku Głogówek,

Bardziej szczegółowo

Kredyty mieszkaniowe, konsolidacyjne i pożyczki hipoteczne, kredyty mieszkaniowe z dotacją NFOŚiGW, kredyty

Kredyty mieszkaniowe, konsolidacyjne i pożyczki hipoteczne, kredyty mieszkaniowe z dotacją NFOŚiGW, kredyty Tabela prowizji za czynności bankowe i opłat za inne czynności wykonywane przez Deutsche Bank Polska S.A. - DLA KREDYTÓW MIESZKANIOWYCH, KONSOLIDACYJNYCH I POŻYCZEK HIPOTECZNYCH UDZIELANYCH OSOBOM FIZYCZNYM

Bardziej szczegółowo

FORMULARZ ZGŁOSZENIOWY

FORMULARZ ZGŁOSZENIOWY Nazywam się: FORMULARZ ZGŁOSZENIOWY (należy wypełnić wielkimi literami) Nazwisko:.... Imię:. Mieszkam w: Ulica: Nr domu: Nr mieszkania:. Miasto: Kod pocztowy:..... Województwo:.... Tel. kontaktowy: e-mail:...

Bardziej szczegółowo

2,00 % 1,55 % 0,00 % 3,42 % 3,27 % 3,38 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z ,06 zł 205,80 zł 207,23 zł. 0 zł 41,57 zł 33,45 zł

2,00 % 1,55 % 0,00 % 3,42 % 3,27 % 3,38 % ZAKUP podsumowanie najlepszych ofert. Strona 1 z ,06 zł 205,80 zł 207,23 zł. 0 zł 41,57 zł 33,45 zł Jakub Misiewicz email: jakubmisiewicz@homebrokerpl telefon: Oferta przygotowana dnia: 11112015 (22:20) ZAKUP podsumowanie najlepszych ofert Parametry: Waluta: PLN, Kwota: 300 000, Wartość nieruchomości:

Bardziej szczegółowo

Zał. nr 5 do SIWZ WZÓR UMOWY kredytu inwestycyjnego w rachunku kredytowym w walucie polskiej. Zawarta w dniu., pomiędzy:

Zał. nr 5 do SIWZ WZÓR UMOWY kredytu inwestycyjnego w rachunku kredytowym w walucie polskiej. Zawarta w dniu., pomiędzy: Zał. nr 5 do SIWZ WZÓR UMOWY kredytu inwestycyjnego w rachunku kredytowym w walucie polskiej Zawarta w dniu., pomiędzy: (NAZWA BANKU), w imieniu którego działają : 1. 2.... a Gminą Złota z siedzibą : Złota,

Bardziej szczegółowo

Jak bezpiecznie inwestować?

Jak bezpiecznie inwestować? Skrócony opis lekcji Poziom: szkoła ponadgimnazjalna. Przedmiot: podstawy przedsiębiorczości lub godzina wychowawcza. Podstawa programowa kształcenia ogólnego: Podstawy przedsiębiorczości. Człowiek przedsiębiorczy.

Bardziej szczegółowo

Miesięcznie. Każdorazowo. Każdorazowo. Każdorazowo. Każdorazowo

Miesięcznie. Każdorazowo. Każdorazowo. Każdorazowo. Każdorazowo TABELA WARUNKÓW I OPROCENTOWANIA PRODUKTÓW KREDYTOWYCH W RAMACH KONT INTELIGO DLA KLIENTÓW KTÓRZY ZAWARLI UMOWĘ RACHUNKU BANKOWEGO KONTA INTELIGO OD DNIA 11 MAJA 21 R. LUB PRZESZLI NA NOWE WARUNKI CENOWE.

Bardziej szczegółowo

Pojęcie kredytu art. 69 ust. 1 pr. bank

Pojęcie kredytu art. 69 ust. 1 pr. bank Ćwiczenia nr 2 Pojęcie kredytu art. 69 ust. 1 pr. bank Przez umowę kredytu bank zobowiązuje się oddać do dyspozycji kredytobiorcy na czas oznaczony w umowie kwotę środków pieniężnych z przeznaczeniem na

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo