Miary splątania kwantowego

Podobne dokumenty
Jacek Jurkowski. Korelacje nieklasyczne Kwantowe splątanie i dyskord

O spl ataniu kwantowym s lów kilka

interpretacje mechaniki kwantowej fotony i splątanie

Wykłady z Mechaniki Kwantowej

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

Zwiększanie losowości

Wykłady z Mechaniki Kwantowej

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Protokół teleportacji kwantowej

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

UNIWERSYTET JAGIELLOŃSKI. Entropie złożonych operacji kwantowych

Splątanie a przesyłanie informacji

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Strategie kwantowe w teorii gier

Seminarium: Efekty kwantowe w informatyce

Klasyczna teoria informacji

bity kwantowe zastosowania stanów splątanych

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

Obliczenia inspirowane Naturą

Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN

Różne oblicza splątania kwantowego

VI. KORELACJE KWANTOWE Janusz Adamowski

Komputery Kwantowe. Sprawy organizacyjne Literatura Plan. Komputery Kwantowe. Ravindra W. Chhajlany. 27 listopada 2006

bity kwantowe zastosowania stanów splątanych

Spl tanie i inne korelacje kwantowe w ukªadach zªo»onych

Postulaty mechaniki kwantowej

Informatyka kwantowa. Karol Bartkiewicz

Wprowadzenie do teorii komputerów kwantowych

WYKŁAD 6 KINEMATYKA PRZEPŁYWÓW CZĘŚĆ 2 1/11

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Akwizycja i przetwarzanie sygnałów cyfrowych

Spis treści. Wstęp 2 Wkład własny do teorii splątania zawarty w pracy... 5

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

O symetrycznej rozszerzalności stanów kwantowych i jej zastosowaniach

Wstęp do Modelu Standardowego

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

O informatyce kwantowej

Wielki rozkład kanoniczny

Procesy stochastyczne

Prawdopodobieństwo i statystyka

IX. MECHANIKA (FIZYKA) KWANTOWA

Wstęp do algorytmiki kwantowej

Statystyka i eksploracja danych

Prawdopodobieństwo i statystyka

Obliczenia inspirowane Naturą

Splątanie w układach wielocząstkowych

Wstęp do komputerów kwantowych

Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?

Rozdział. Symulacyjne badanie splątania w protokołach kryptograficznych Motywacja

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Świat klasyczny i kwantowy por. WYKŁAD nr 2. Splątane stany - EPR. por. WYKŁAD nr 2. Kwantowa kryptografia i teleportacja. Splątanie kwantowe

Procesy stochastyczne

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13

Świat klasyczny i kwantowy

Modelling of quantum informatics systems with the use of quantum programming languages and symbolic computation

Analiza funkcjonalna 1.

W5. Komputer kwantowy

1 Grupa SU(3) i klasyfikacja cząstek

Wstęp do Modelu Standardowego

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Wektory i wartości własne

Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański Gdańsk, Sprawozdanie z pracy naukowej w roku 2005

Formy kwadratowe. Rozdział 10

Komputerowa analiza danych doświadczalnych

Twierdzenie spektralne

1. Matematyka Fizyki Kwantowej: Cześć Druga

Wstęp do informatyki kwantowej

Wektory i wartości własne

Mechanika kwantowa Schrödingera

Gry kwantowe na łańcuchach spinowych

Splątanie w warunkach częściowej depolaryzacji

Wykład 13 Mechanika Kwantowa

Informacja o przestrzeniach Hilberta

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak

Wstęp do komputerów kwantowych

Wprowadzenie do optycznej kryptografii kwantowej

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Niezwykłe cechy informacji kwantowej

Twierdzenie spektralne

Postulaty interpretacyjne mechaniki kwantowej Wykład 6

Seria zadań z Algebry IIR nr kwietnia 2017 r. i V 2 = B 2, B 4 R, gdzie

Historia. Zasada Działania

Język programowania komputerów kwantowych oparty o model macierzy gęstości

Priorytetyzacja przypadków testowych za pomocą macierzy

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017

Wynik pomiaru jako zmienna losowa

Radosław Chrapkiewicz, Piotr Migdał (SKFiz UW) Optyczny wzmacniacz parametryczny jako źródło splątanych par fotonów

Transkrypt:

kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego

Spis treści 1 2 Stany czyste i mieszane Matematyczny opis splątania 3 Rozkład Schmidta 4 Aksjomaty miar splątania Entropia von Neumanna i destylowalność 5 6 Desery Bibliografia kwantowego

Splątanie kwantowe Splątanie kwantowe (quantum entanglement) - najbardziej nieintuicyjne zjawisko kwantowe kwantowego

Splątanie kwantowe Splątanie kwantowe (quantum entanglement) - najbardziej nieintuicyjne zjawisko kwantowe występuje w układach wielu (dwóch lub więcej) cząstek kwantowego

Splątanie kwantowe Splątanie kwantowe (quantum entanglement) - najbardziej nieintuicyjne zjawisko kwantowe występuje w układach wielu (dwóch lub więcej) cząstek istnienie nielokalnych kwantowych korelacji miedzy podukładami (silniejszych niż jakiekolwiek korelacje klasyczne) kwantowego

Splątanie kwantowe Splątanie kwantowe (quantum entanglement) - najbardziej nieintuicyjne zjawisko kwantowe występuje w układach wielu (dwóch lub więcej) cząstek istnienie nielokalnych kwantowych korelacji miedzy podukładami (silniejszych niż jakiekolwiek korelacje klasyczne) lata 30.: paradoks Einsteina-Podolsky ego-rosena, spooky action at a distance kwantowego

Splątanie kwantowe odkryte na nowo po kilkudziesięciu latach w kontekście kwantowej teorii informacji kwantowego

Splątanie kwantowe odkryte na nowo po kilkudziesięciu latach w kontekście kwantowej teorii informacji zastosowania w kryptografii i komunikacji kwantowej, potencjalnie w komputerach kwantowych... kwantowego

Splątanie kwantowe odkryte na nowo po kilkudziesięciu latach w kontekście kwantowej teorii informacji zastosowania w kryptografii i komunikacji kwantowej, potencjalnie w komputerach kwantowych... splątanie jako nowy fizyczny zasób (wykonuje zadania, zużywa sie, nie można go stworzyć za darmo...) kwantowego

Splątanie kwantowe odkryte na nowo po kilkudziesięciu latach w kontekście kwantowej teorii informacji zastosowania w kryptografii i komunikacji kwantowej, potencjalnie w komputerach kwantowych... splątanie jako nowy fizyczny zasób (wykonuje zadania, zużywa sie, nie można go stworzyć za darmo...) źródło nowych problemów matematycznych kwantowego

Paradoks EPR Alicja i Bob mają parę cząstek w stanie: ψ = 1 2 ( ) kwantowego

Paradoks EPR Alicja i Bob mają parę cząstek w stanie: ψ = 1 2 ( ) Jeśli Alicja wykona pomiar spinu i dostanie w wyniku spin, to Bob zawsze otrzyma (i odwrotnie). kwantowego

Paradoks EPR Alicja i Bob mają parę cząstek w stanie: ψ = 1 2 ( ) Jeśli Alicja wykona pomiar spinu i dostanie w wyniku spin, to Bob zawsze otrzyma (i odwrotnie). Pomiary spinów są całkowicie antyskorelowane... kwantowego

Paradoks EPR Alicja i Bob mają parę cząstek w stanie: ψ = 1 2 ( ) Jeśli Alicja wykona pomiar spinu i dostanie w wyniku spin, to Bob zawsze otrzyma (i odwrotnie). Pomiary spinów są całkowicie antyskorelowane...... mimo że Alicja i Bob znajdują się na przeciwległych krańach Wszechświata. kwantowego

Problemy teorii splątania Które stany są splątane, a które nie? Które stany są bardziej splątane od innych (tytułowe ilościowe miary splątania)? Czy mogą istnieć różne rodzaje splątania? kwantowego

Stany czyste Stany czyste i mieszane Matematyczny opis splątania Stan układu N cząstek opisujemy przez wektor z przestrzeni Hilberta ψ H 1... H N (skończenie wymiarowej) (unormowany do 1) W najprostszym przypadku ψ H H (np. dwie cząstki o spinie 1/2) Każdy stan w ustalonej bazie możemy zapisać jako ψ = a ijk... ijk... i,j,k... ψ ψ - operator rzutowy na stan ψ kwantowego

Stany czyste i mieszane Matematyczny opis splątania Stany mieszane Macierz gęstości ρ B(H 1... H N ) opisuje mieszaninę statystyczną różnych stanów czystych: ρ = ρ, ρ 0 Tr ρ = 1 kwantowego

Stany czyste i mieszane Matematyczny opis splątania Stany mieszane Macierz gęstości ρ B(H 1... H N ) opisuje mieszaninę statystyczną różnych stanów czystych: ρ = ρ, ρ 0 Tr ρ = 1 Każda macierz gęstości jest kombinacją wypukłą stanów czystych: ρ = k p i ψ i ψ i i=1 k p i = 1, i=1 ψ i H 1... H N kwantowego

Stany mieszane Stany czyste i mieszane Matematyczny opis splątania Stanom czystym odpowiadają operatory rzutowe ρ ψ = ψ ψ kwantowego

Stany czyste i mieszane Matematyczny opis splątania Stany mieszane Stanom czystym odpowiadają operatory rzutowe ρ ψ = ψ ψ W ogólnosci macierz gęstości nie jest rzutem na żaden stan czysty kwantowego

Stany czyste i mieszane Matematyczny opis splątania Stany mieszane Stanom czystym odpowiadają operatory rzutowe ρ ψ = ψ ψ W ogólnosci macierz gęstości nie jest rzutem na żaden stan czysty Przykłady: (mieszanina stanów 0 i 1 ) ρ = p 0 0 + (1 p) 1 1 ρ = 1 N N i i i=1 (stan maksymalnie mieszany) kwantowego

Definicja splątania - stany czyste Stany czyste i mieszane Matematyczny opis splątania Stan ψ H A H B nazywamy separowalnym, jeśli da się zapisać jako ψ = ψ A ψ B kwantowego

Stany czyste i mieszane Matematyczny opis splątania Definicja splątania - stany czyste Stan ψ H A H B nazywamy separowalnym, jeśli da się zapisać jako ψ = ψ A ψ B Stan jest splątany, jesli nie jest separowalny kwantowego

Stany czyste i mieszane Matematyczny opis splątania Definicja splątania - stany czyste Stan ψ H A H B nazywamy separowalnym, jeśli da się zapisać jako ψ = ψ A ψ B Stan jest splątany, jesli nie jest separowalny Przykład: stany Bella (pary EPR) ψ = 1 2 ( 00 ± 11 ) ψ = 1 2 ( 01 ± 10 ) kwantowego

Stany czyste i mieszane Matematyczny opis splątania Definicja splątania - stany czyste Stan ψ H A H B nazywamy separowalnym, jeśli da się zapisać jako ψ = ψ A ψ B Stan jest splątany, jesli nie jest separowalny Przykład: stany Bella (pary EPR) ψ = 1 2 ( 00 ± 11 ) ψ = 1 2 ( 01 ± 10 ) Można je uważać za najbardziej splątane dla układów dwóch cząstek kwantowego

Definicja splątania Stany czyste i mieszane Matematyczny opis splątania Ogólniej, dla układu N cząstek splątanie oznacza, że: ψ ψ 1... ψ N kwantowego

Definicja splątania Stany czyste i mieszane Matematyczny opis splątania Ogólniej, dla układu N cząstek splątanie oznacza, że: ψ ψ 1... ψ N Jak (prosto) rozpoznać, czy dany stan jest splątany? kwantowego

Rozkład Schmidta Rozkład Schmidta Zaczynamy od układów dwucząstkowych kwantowego

Rozkład Schmidta Rozkład Schmidta Zaczynamy od układów dwucząstkowych Niech ψ = t ij i j, ψ H A H B (w ustalonej bazie) i,j kwantowego

Rozkład Schmidta Rozkład Schmidta Zaczynamy od układów dwucząstkowych Niech ψ = t ij i j, ψ H A H B (w ustalonej bazie) i,j Można zawsze znaleźć takie bazy w H A i H B, że ψ ma postać: ψ = λ k k k k (rozkład osobliwy macierzy {t ij } i,j=1,...,n ) kwantowego

Rozkład Schmidta Rozkład Schmidta Liczby (λ 1, λ 2,..., λ N ) nazywamy wektorem Schmidta kwantowego

Rozkład Schmidta Rozkład Schmidta Liczby (λ 1, λ 2,..., λ N ) nazywamy wektorem Schmidta Dla stanów separowalnych ψ = ψ A ψ B mamy tylko jeden składnik w rozkładzie, czyli: (λ 1, λ 2,..., λ N ) = (1, 0,..., 0) kwantowego

Rozkład Schmidta Rozkład Schmidta Liczby (λ 1, λ 2,..., λ N ) nazywamy wektorem Schmidta Dla stanów separowalnych ψ = ψ A ψ B mamy tylko jeden składnik w rozkładzie, czyli: (λ 1, λ 2,..., λ N ) = (1, 0,..., 0) Więcej niż jedno niezerowe λ i oznacza splątanie! kwantowego

Rozkład Schmidta Rozkład Schmidta Liczby (λ 1, λ 2,..., λ N ) nazywamy wektorem Schmidta Dla stanów separowalnych ψ = ψ A ψ B mamy tylko jeden składnik w rozkładzie, czyli: (λ 1, λ 2,..., λ N ) = (1, 0,..., 0) Więcej niż jedno niezerowe λ i oznacza splątanie! Dla stanu maksymalnie splątanego ψ = 1 N N i i i=1 mamy: ( 1 (λ 1,..., λ N ) = N,..., 1 ). N kwantowego

Rozkład Schmidta Rozkład Schmidta Wektor Schmidta jest niezmienniczy na lokalne unitarne transformacje: ψ U V U V ψ = k λ k U k V k kwantowego

Rozkład Schmidta Rozkład Schmidta Wektor Schmidta jest niezmienniczy na lokalne unitarne transformacje: ψ U V U V ψ = k λ k U k V k Łatwo go obliczyć kwantowego

Rozkład Schmidta Rozkład Schmidta Wektor Schmidta jest niezmienniczy na lokalne unitarne transformacje: ψ U V U V ψ = k λ k U k V k Łatwo go obliczyć Nie ma prostego uogólnienia na więcej niż dwa układy kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Które stany są mniej, a które bardziej splątane? kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Które stany są mniej, a które bardziej splątane? Intuicja: stan ψ = (1 ɛ) 00 + ɛ 11 jest prawie separowalny... kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Które stany są mniej, a które bardziej splątane? Intuicja: stan ψ = (1 ɛ) 00 + ɛ 11 jest prawie separowalny... W zastosowaniach (teleportacja stanu kwantowego, protokoły kryptograficzne) potrzebne jest możliwie czyste splątanie kwantowego

Aksjomaty Aksjomaty miar splątania Entropia von Neumanna i destylowalność Czego oczekujemy od dobrej miary splątania E? kwantowego

Aksjomaty Aksjomaty miar splątania Entropia von Neumanna i destylowalność Czego oczekujemy od dobrej miary splątania E? nieujemna, E( ψ ) 0 kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Aksjomaty Czego oczekujemy od dobrej miary splątania E? nieujemna, E( ψ ) 0 znika dla stanów separowalnych, E( ψ sep ) = 0 kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Aksjomaty Czego oczekujemy od dobrej miary splątania E? nieujemna, E( ψ ) 0 znika dla stanów separowalnych, E( ψ sep ) = 0 nie wzrasta przy lokalnych operacjach i klasycznej komunikacji, E(Λ( ψ )) E( ψ ) kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Lokalne operacje i klasyczna komunikacja (LOCC) Typowy protokół komunikacyjny: Alicja i Bob są w odległych laboratoriach, posiadają po jednej cząstce kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Lokalne operacje i klasyczna komunikacja (LOCC) Typowy protokół komunikacyjny: Alicja i Bob są w odległych laboratoriach, posiadają po jednej cząstce Alicja wykonuje pomiar, przesyła wynik Bobowi (klasycznym kanałem, np. przez telefon) kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Lokalne operacje i klasyczna komunikacja (LOCC) Typowy protokół komunikacyjny: Alicja i Bob są w odległych laboratoriach, posiadają po jednej cząstce Alicja wykonuje pomiar, przesyła wynik Bobowi (klasycznym kanałem, np. przez telefon) w zależności od wyniku Bob wykonuję jakąś operację, np. ewolucję unitarna kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Lokalne operacje i klasyczna komunikacja (LOCC) Typowy protokół komunikacyjny: Alicja i Bob są w odległych laboratoriach, posiadają po jednej cząstce Alicja wykonuje pomiar, przesyła wynik Bobowi (klasycznym kanałem, np. przez telefon) w zależności od wyniku Bob wykonuję jakąś operację, np. ewolucję unitarna Bob wykonuje pomiar, przesyła wynik Alicji kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Lokalne operacje i klasyczna komunikacja (LOCC) Typowy protokół komunikacyjny: Alicja i Bob są w odległych laboratoriach, posiadają po jednej cząstce Alicja wykonuje pomiar, przesyła wynik Bobowi (klasycznym kanałem, np. przez telefon) w zależności od wyniku Bob wykonuję jakąś operację, np. ewolucję unitarna Bob wykonuje pomiar, przesyła wynik Alicji... kwantowego

LOCC - c. d. Aksjomaty miar splątania Entropia von Neumanna i destylowalność Protokół może wytworzyć klasyczne korelacje pomiędzy układami Alicji i Boba kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność LOCC - c. d. Protokół może wytworzyć klasyczne korelacje pomiędzy układami Alicji i Boba Miara splątania powinna mierzyć korelacje niemożliwe do odtworzenia klasycznie... kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność LOCC - c. d. Protokół może wytworzyć klasyczne korelacje pomiędzy układami Alicji i Boba Miara splątania powinna mierzyć korelacje niemożliwe do odtworzenia klasycznie...... dlatego ma nie wzrastać przy wykonywaniu operacji tylko na jednym podukładzie i przy klasycznej komunikacji (entanglement monotone) kwantowego

Częściowy ślad Aksjomaty miar splątania Entropia von Neumanna i destylowalność Załóżmy, że mamy układ dwóch cząstek ρ na przestrzeni H A H B. kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Częściowy ślad Załóżmy, że mamy układ dwóch cząstek ρ na przestrzeni H A H B. Operacja częściowego śladu polega na odrzuceniu drugiego układu (interesuje nas tylko opis stanu pierwszego układu): Tr B ρ = i i ρ i, i H B kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Częściowy ślad Załóżmy, że mamy układ dwóch cząstek ρ na przestrzeni H A H B. Operacja częściowego śladu polega na odrzuceniu drugiego układu (interesuje nas tylko opis stanu pierwszego układu): Tr B ρ = i i ρ i, i H B Np. ρ = ρ A E, E - nieznany stan otoczenia (laboratorium, reszty Wszechświata...) kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Częściowy ślad Załóżmy, że mamy układ dwóch cząstek ρ na przestrzeni H A H B. Operacja częściowego śladu polega na odrzuceniu drugiego układu (interesuje nas tylko opis stanu pierwszego układu): Tr B ρ = i i ρ i, i H B Np. ρ = ρ A E, E - nieznany stan otoczenia (laboratorium, reszty Wszechświata...) Interesuje nas tylko stan ρ A, więc uśredniamy po możliwych stanach otoczenia. kwantowego

Stany EPR Aksjomaty miar splątania Entropia von Neumanna i destylowalność Dla separowalnego stanu ψ = 00 mamy: Tr B ψ ψ = 0 0 stan czysty (pełna informacja o stanie) kwantowego

Stany EPR Aksjomaty miar splątania Entropia von Neumanna i destylowalność Dla separowalnego stanu ψ = 00 mamy: Tr B ψ ψ = 0 0 stan czysty (pełna informacja o stanie) Dla stanu EPR ψ = 1 2 ( 00 + 11 ) Tr B ψ ψ = 1 2 0 0 + 1 1 1 2 stan całkowicie mieszany (pełna losowość, brak informacji o stanie) kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Stany EPR Dla separowalnego stanu ψ = 00 mamy: Tr B ψ ψ = 0 0 stan czysty (pełna informacja o stanie) Dla stanu EPR ψ = 1 2 ( 00 + 11 ) Tr B ψ ψ = 1 2 0 0 + 1 1 1 2 stan całkowicie mieszany (pełna losowość, brak informacji o stanie) Z punktu widzenia Alicji stan jej cząstki jest całkowicie losowy. kwantowego

Entropia Aksjomaty miar splątania Entropia von Neumanna i destylowalność Best possible knowledge of a whole does not include best possible knowledge of its parts and this is what keeps coming back to haunt us (Erwin Schrödinger, 1935). kwantowego

Entropia Aksjomaty miar splątania Entropia von Neumanna i destylowalność Best possible knowledge of a whole does not include best possible knowledge of its parts and this is what keeps coming back to haunt us (Erwin Schrödinger, 1935). Miarą losowości jest entropia kwantowego

Entropia von Neumanna Aksjomaty miar splątania Entropia von Neumanna i destylowalność Dla dowolnego stanu ρ określamy jego entropię S(ρ) = Tr(ρ log ρ) kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna Dla dowolnego stanu ρ określamy jego entropię S(ρ) = Tr(ρ log ρ) Dla stanu ψ H A H B określamy entropię von Neumanna: S(ψ) = S (Tr B ψ ψ ) kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna Dla dowolnego stanu ρ określamy jego entropię S(ρ) = Tr(ρ log ρ) Dla stanu ψ H A H B określamy entropię von Neumanna: S(ψ) = S (Tr B ψ ψ ) Mamy: S(ψ) = i λ i 2 log λ i 2 λ i - liczby Schmidta kwantowego

Entropia von Neumanna Aksjomaty miar splątania Entropia von Neumanna i destylowalność Nieujemna kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna Nieujemna Znika dla stanów separowalnych kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna Nieujemna Znika dla stanów separowalnych Maksymalna dla stanów typu EPR kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna Nieujemna Znika dla stanów separowalnych Maksymalna dla stanów typu EPR Jest LOCC-monotoniczna kwantowego

Destylowalność Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna ma wyraźny sens operacyjny kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Destylowalność Entropia von Neumanna ma wyraźny sens operacyjny Wyobraźmy sobie, że mamy m kopii dowolnego stanu ψ, ψ... ψ kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Destylowalność Entropia von Neumanna ma wyraźny sens operacyjny Wyobraźmy sobie, że mamy m kopii dowolnego stanu ψ, ψ... ψ Chcemy za pomocą jakiegoś LOCC-protokołu otrzymać możliwie dużo n stanów EPR (destylacja splątania) ψ m LOCC EPR n kwantowego

Aksjomaty miar splątania Entropia von Neumanna i destylowalność Destylowalność Entropia von Neumanna ma wyraźny sens operacyjny Wyobraźmy sobie, że mamy m kopii dowolnego stanu ψ, ψ... ψ Chcemy za pomocą jakiegoś LOCC-protokołu otrzymać możliwie dużo n stanów EPR (destylacja splątania) ψ m LOCC EPR n Okazuje się, że n lim m m = S(ψ)! kwantowego

Destylowalność Aksjomaty miar splątania Entropia von Neumanna i destylowalność Entropia von Neumanna ma wyraźny sens operacyjny Wyobraźmy sobie, że mamy m kopii dowolnego stanu ψ, ψ... ψ Chcemy za pomocą jakiegoś LOCC-protokołu otrzymać możliwie dużo n stanów EPR (destylacja splątania) ψ m LOCC EPR n n Okazuje się, że lim m m = S(ψ)! Stan EPR służy tu jako jednostka zasobu, jakim jest splątanie kwantowego

Ułlady wielu cząstek Co z układami więcej niż dwóch cząstek (np. H 1 H 2 H 3 )? kwantowego

Ułlady wielu cząstek Co z układami więcej niż dwóch cząstek (np. H 1 H 2 H 3 )? W przeciwieństwie do układów dwóch cząstek nie ma kanonicznego stanu splątanego: GHZ = 1 2 ( 000 + 111 ) W = 1 3 ( 001 + 010 + 100 ) kwantowego

Stany GHZ i W Po odrzuceniu którejkolwiek z cząstek (częściowy ślad) stan GHZ staje się separowalny... kwantowego

Stany GHZ i W Po odrzuceniu którejkolwiek z cząstek (częściowy ślad) stan GHZ staje się separowalny...... a stan W pozostaje splątany! kwantowego

Stany GHZ i W Po odrzuceniu którejkolwiek z cząstek (częściowy ślad) stan GHZ staje się separowalny...... a stan W pozostaje splątany! W stanie GHZ cząstki są splątane tylko wszystkie naraz, a w stanie W są splątane parami kwantowego

Stany GHZ i W Po odrzuceniu którejkolwiek z cząstek (częściowy ślad) stan GHZ staje się separowalny...... a stan W pozostaje splątany! W stanie GHZ cząstki są splątane tylko wszystkie naraz, a w stanie W są splątane parami Co z innymi możliwościami? EPR EPR GHZ W + W GHZ... kwantowego

Desery Bibliografia Desery Splątanie stanów mieszanych Teoria odwzorowań dodatnich, kryterium Horodeckich Niezmienniki wielomianowe Uogólnione stany koherentne...... i wiele innych tematów. kwantowego

Desery Bibliografia Bibliografia K.Horodecki, M. Horodecki, P. Horodecki, R. Horodecki Quantum entanglement (arxiv: quant-ph/0702225) I. Chuang, M. Nielsen Quantum Computation and Quantum Information kwantowego

Desery Bibliografia Bibliografia K.Horodecki, M. Horodecki, P. Horodecki, R. Horodecki Quantum entanglement (arxiv: quant-ph/0702225) I. Chuang, M. Nielsen Quantum Computation and Quantum Information Na deser (niezwiązany z nauką): kwantowego

Desery Bibliografia Bibliografia K.Horodecki, M. Horodecki, P. Horodecki, R. Horodecki Quantum entanglement (arxiv: quant-ph/0702225) I. Chuang, M. Nielsen Quantum Computation and Quantum Information Na deser (niezwiązany z nauką): students.mimuw.edu.pl/~mk249019/konkurs-bosch.html kwantowego