Historia. Zasada Działania
|
|
- Zuzanna Urbańska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia Na możliwość budowy komputerów wykorzystujących prawa fizyki kwantowej zwrócił uwagę na początku lat 80. Paul Benioff z Argonne National Laboratory w Stanach Zjednoczonych. Kompletną teorię działania komputera kwantowego stworzył w połowie lat 80. David Deutsch z brytyjskiego Uniwersytetu Oksfordzkiego. Dołączył doń następnie polski informatyk i fizyk Artur Ekert, też związany na stałe z Oksfordem. Pomysł wzbudził szersze zainteresowanie w 1994 roku, gdy Peter Shor z AT&T Bell Labs w Murray Hill wymyślił algorytm, który przy użyciu komputera kwantowego mógłby szybko rozkładać bardzo duże liczby na iloczyny liczb pierwszych. Zasada Działania Dane w komputerach kwantowych są reprezentowane przez aktualny stan kwantowy układu stanowiącego komputer. Jego ewolucja odpowiada procesowi obliczeniowemu. Odpowiednie zaplanowanie ewolucji układu kwantowego, czyli stworzenie odpowiedniego algorytmu kwantowego pozwala teoretycznie na osiągnięcie wyników w znacznie efektywniejszy sposób, niż za pomocą tradycyjnych komputerów. 1 / 5
2 Podstawowymi elementami budowy kwantowego komputera są kwantowe bramki logiczne. Kwantowy bit, tzw. kubit, zgodnie z prawami mikroświata nie będzie miał ustalonej wartości 1 lub 0, tak jak bit w standardowym komputerze. W trakcie obliczeń będzie się znajdował w jakimś stanie pośrednim. Rządzi tym prawo prawdopodobieństwa, podobnie jak położeniem elektronu w atomie. Kubit jest kwantową superpozycją zera i jedynki. Pojedynczy wynik obliczeń komputera kwantowego będzie niepewny. Istotne staje się wykonanie całej serii obliczeń i dopiero ich średnia wartość z dużą dokładnością określi prawidłowy wynik tym dokładniejszy, im więcej komputer dokona obliczeń. Kubit niesie w sobie naraz o wiele więcej informacji niż zero-jedynkowy bit. Dlatego jest w stanie wykonać równolegle wiele obliczeń. Fizycy od dawna mają kandydatów na kubity cząstki elementarne, np. foton lub elektron. Przełom nastąpił pod koniec 1995 roku. Jednocześnie w kilku ośrodkach udało się skonstruować kwantowe bramki, które przetwarzałyby kubity. Grupa prof. H. Jeffa Kimble'a z Kalifornijskiego Instytutu Technologii w Pasadenie posłużyła się atomem cezu złapanym w optyczną pułapkę pomiędzy lustrami (rolę kubitów grały fotony światła o różnej polaryzacji). Z kolei grupa Chrisa Monroe z Narodowego Instytutu Standardów i Technologii w Boulder w Kolorado wykorzystała atom berylu oświetlany światłem lasera. Jeszcze inną bramkę kwantową, wykorzystując atom rydbergowski, stworzył zespół Serge'a Haroche'a z francuskiego Ecole Normale Superieure. Do tej pory wykonano już kilka prostych (kilku-kubitowych) komputerów, których obliczenia potwierdzają teorię. Już wcześniej tworzono również oprogramowanie dla tych maszyn. 13 lutego 2007 firma D-Wave Systems zaprezentowała układ, nazywany pierwszym na świecie komputerem z rejestrem kwantowym. Nie ma jednak pewności, czy można go tak nazwać: zaprezentowano bowiem jedynie jego działanie, pomijając budowę[1][2]. 2 / 5
3 Rejestry Kwantowe Rejestr kwantowy to np. zespół atomów, z których każdy realizuje jeden z kubitów. Każdy ciąg zer i jedynek, o długości równej rozmiarom rejestru, daje się zapisać w kubitach tego układu (tak samo jak w komórkach pamięci rejestru konwencjonalnego, ale w rejestrze takim w danej chwili może być zapisany jeden tylko ciąg zero-jedynkowy). Rejestr kwantowy, jako złożony z kubitów, może być w stanie będącym dowolną superpozycją wielu ciągów zero-jedynkowych. Jeśli w takim rejestrze kwantowym zapisana by została jakaś duża baza danych, wykonanie pewnej operacji na kubitach tego rejestru byłoby równoznaczne z wykonaniem tej operacji na wszystkich danych naraz. Jeśli rejestr kwantowy zawiera superpozycję bardzo wielu uzyskanych równolegle wyników, to aby wyłuskać z niego potrzebne nam dane, potrzebujemy algorytmów kwantowych. Algorytmy wykonywane przez komputer kwantowy są algorytmami probabilistycznymi. Oznacza to, że uruchamiając ten sam program na komputerze kwantowym dwukrotnie, można by było otrzymać zupełnie różne wyniki ze względu na losowość procesu kwantowego pomiaru. Zalety obliczeń kwantowych Komputer kwantowy, mimo że wykorzystywałby inne właściwości fizyczne niż klasyczne komputery, nie umożliwiałby rozwiązywania nowej klasy problemów. Każdy problem rozwiązywalny przez komputer kwantowy może zostać rozwiązany przez komputer klasyczny. 3 / 5
4 Jednak dzięki specyficznym własnościom komputerów kwantowych pewne problemy można byłoby rozwiązać znacznie szybciej, co w praktyce znacznie poszerzyłoby zakres problemów do jakich mogą być użyte komputery. Klasycznym przykładem jest tutaj algorytm faktoryzacji Shora, służący do rozbijania liczb na czynniki pierwsze. Wykonanie podobnego algorytmu dla kilkudziesięciocyfrowych liczb na współczesnych komputerach przekroczyłoby średnią długość życia człowieka, a dla liczb jeszcze większych czas istnienia wszechświata. Na komputerach kwantowych możliwe byłoby wykonanie tych operacji w bardziej realnym okresie. W najczęściej spotykanym modelu obliczeń kwantowych stan układu kwantowego reprezentowany jest za pomocą wektora w skończeniewymiarowej przestrzeni Hilberta (kubit). Natomiast przeprowadzane operacje są opisywane za pomocą macierzy unitarnych. Ograniczenia obliczeń kwantowych Idea kwantowego komputera też ma swoje słabe strony. Najpoważniejsza z nich nazywa się dekoherencją. Polega ona na tym, że stany kwantowe będące superpozycjami stanów stacjonarnych są nadzwyczaj nietrwałe. Pod wpływem oddziaływania czynników zewnętrznych układ wypada ze stanu superpozycji i przeskakuje do jednego ze stanów stacjonarnych. Dokonuje się to w ciągu drobnego ułamka sekundy. Nawet najmniejszy kontakt z otoczeniem może wpłynąć na wynik pomiaru. Jednym z testowanych sposobów na rozwiązanie tego problemu jest przetrzymywanie atomów w pułapkach magnetycznych i sterowanie nimi za pomocą impulsów światła laserowego. 4 / 5
5 Źródło: Wikipedia 5 / 5
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
Wstęp do algorytmiki kwantowej
Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku Wstęp czyli (próba) odpowiedzi na pewne pytania (Silna) Teza Church
VIII. TELEPORTACJA KWANTOWA Janusz Adamowski
VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Algorytm faktoryzacji Petera Shora dla komputera kwantowego
Algorytm faktoryzacji Petera Shora dla komputera kwantowego Peter Shor (ur. 14 sierpnia 1959 roku w USA Matematyk oraz informatyk teoretyk Autor kwantowego Algorytmu Shora Pracuje w AT&T Bell Laboratories
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie
XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM
XIII Poznański Festiwal Nauki i Sztuki na Wydziale Fizyki UAM XIII Poznański Festival Nauki i Sztuki na Wydziale Fizyki UAM Od informatyki klasycznej do kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja Robert Nowotniak Wydział FTIMS, Politechnika Łódzka XV konferencja SIS, 26 października 2007 Streszczenie Informatyka kwantowa jest dziedziną
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska
dr inż. Andrzej Skorupski Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska Zasilacz pierwszego polskiego komputera UMC1 produkowanego seryjnie w ELWRO opracowanego w katedrze kierowanej
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny
Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017
B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego
KRZYSZTOF WÓJTOWICZ Instytut Filozofii Uniwersytetu Warszawskiego wojtow@uw.edu.pl 1 2 1. SFORMUŁOWANIE PROBLEMU Czy są empiryczne aspekty dowodów matematycznych? Jeśli tak to jakie stanowisko filozoficzne
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą
- nowe wyzwanie. Feliks Kurp
INFORMATYKA KWANTOWA - nowe wyzwanie Feliks Kurp 2006 2 Plan wystąpienia: 1. Dlaczego informatyka kwantowa? 2. Grupy i ludzie zajmujący się informatyką kwantową 3. Fenomeny mechaniki kwantowej 4. Podstawy
Fizyka dla wszystkich
Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1
Informatyka kwantowa. Karol Bartkiewicz
Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational
Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia
Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki
Informatyka kwantowa
VI Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Informatyka kwantowa Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 16 października 2003 Spis treści 1 Rozwój komputerów 4 1.1 Początki..................
Splątanie a przesyłanie informacji
Splątanie a przesyłanie informacji Jarosław A. Miszczak 21 marca 2003 roku Plan referatu Stany splątane Co to jest splątanie? Gęste kodowanie Teleportacja Przeprowadzone eksperymenty Możliwości wykorzystania
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Komputery kwantowe - mit czy rzeczywistość?
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Komputery kwantowe - mit czy rzeczywistość? Wykład 7 Aneta Polewko-Klim Projekt współfinansowany
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
VII Festiwal Nauki i Sztuki. Wydziale Fizyki UAM
VII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM VII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Teleportacja stanów atomowych Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 14 października 2004
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
Seminarium: Efekty kwantowe w informatyce
Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie
Protokół teleportacji kwantowej
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji
Wprowadzenie do teorii komputerów kwantowych
Wprowadzenie do teorii komputerów kwantowych mgr inż. Olga Siedlecka olga@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Wprowadzenie do teorii komputerów kwantowych p.1/35 Plan seminarium
Kod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017
Kwantowe stany splątane w układach wielocząstkowych Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Otton Nikodym oraz Stefan Banach rozmawiają na ławce na krakowskich plantach
1. Matematyka Fizyki Kwantowej: Cześć Druga
. Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej
Symulacja obliczeń kwantowych
Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,
Kwantowe przelewy bankowe foton na usługach biznesu
Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać
Podejścia do realizacji modelu obliczeń kwantowych
Podejścia do realizacji modelu obliczeń kwantowych Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2007 Jak reprezentować qubit? Główne zasady Warunki dla obliczeń kwantowych Spin Oscylator harmoniczny
Ćwiczenia z mikroskopii optycznej
Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia
kondensat Bosego-Einsteina
kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi
interpretacje mechaniki kwantowej fotony i splątanie
mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie
Krótki wstęp do mechaniki kwantowej
Piotr Kowalczewski III rok fizyki, e-mail: piotrkowalczewski@gmailcom Krótki wstęp do mechaniki kwantowej Spotkanie Sekcji Informatyki Kwantowej Mechanika kwantowa w cytatach If quantum mechanics hasn
Quantum Computer I (QC) Zapis skrócony. Zapis skrócony
Quantum Computer I (QC) Jacek Szczytko, Wydział Fizyki UW. Komputery kwantowe a. Logika bramek b. Kwantowe algorytmy c. Jak zbudować taki komputer? "Where a calculator on the Eniac is equipped with vacuum
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Kryptografia kwantowa
Kryptografia kwantowa Krzysztof Maćkowiak DGA SECURE 2006 Plan referatu Wprowadzenie, podstawowe pojęcia Algorytm Grovera Algorytm Shora Algorytm Bennetta-Brassarda Algorytm Bennetta Praktyczne zastosowanie
Komputery kwantowe. Szymon Pustelny Student SMP, Instytut Fizyki UJ
6 FOTON 8, Lato 2003 Komputery kwantowe Szymon Pustelny Student SMP, Instytut Fizyki UJ Wstęp Współcześnie coraz głośniej mówi się o ograniczeniach stojących przed rozwojem klasycznych komputerów. Zakrojone
Piotr Pokora. Politechnika Krakowska. Komputery kwantowe a problemy NP-zupełne.
Piotr Pokora Politechnika Krakowska Komputery kwantowe a problemy NP-zupełne. 1. Teoria komputerów kwantowych. W dzisiejszych czasach ciężko wyobrazić sobie życie bez komputerów. Korzystamy z nich w codziennym
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
o pomiarze i o dekoherencji
o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Tytuł: Dzień dobry, mam na imię Atom. Autor: Ada Umińska. Data publikacji:
Tytuł: Dzień dobry, mam na imię Atom. Autor: Ada Umińska Data publikacji: 13.04.2012 Uwaga: zabrania się kopiowania/ wykorzystania tekstu bez podania źródła oraz autora publikacji! Historia atomu. Już
h 2 h p Mechanika falowa podstawy pˆ 2
Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek
odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
Kto nie zda egzaminu testowego (nie uzyska oceny dostatecznej), będzie zdawał poprawkowy. Reinhard Kulessa 1
Wykład z mechaniki. Prof.. Dr hab. Reinhard Kulessa Warunki zaliczenia: 1. Zaliczenie ćwiczeń(minimalna ocena dostateczny) 2. Zdanie egzaminu z wykładu Egzamin z wykładu będzie składał się z egzaminu TESTOWEGO
Wykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Nanostruktury, spintronika, komputer kwantowy
Nanostruktury, spintronika, komputer kwantowy Wykªad dla uczniów Gimnazjum Nr 2 w Krakowie I. Nanostruktury Skala mikrometrowa 1µm (mikrometr) = 1 milionowa cz ± metra = 10 6 m obiekty mikrometrowe, np.
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
III TUTORIAL Z METOD OBLICZENIOWYCH
III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do
INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE
Temat: Podstawowe pojęcia z logiki rozmytej Instrukcja do ćwiczeń przedmiotu INŻYNIERIA WIEDZY I SYSTEMY EKSPERTOWE Dr inż. Barbara Mrzygłód KISiM, WIMiIP, AGH mrzyglod@ agh.edu.pl 1 Wprowadzenie Sterowanie
Podstawy Informatyki Nowe trendy w informatyce
Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 2 Wprowadzenie Doświadczalny komputer kwantowy Obliczenia kwantowe Podsumowanie Informatyka Plan wykładu W świetle
Podstawy fizyki IV - Optyka, Fizyka wspólczesna - opis przedmiotu
Podstawy fizyki IV - Optyka, Fizyka wspólczesna - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy fizyki IV - Optyka, Fizyka wspólczesna Kod przedmiotu 13.2-WF-FizP-PF4OF-Ć-S14_genGZGG4 Wydział
Fizyka komputerowa(ii)
Instytut Fizyki Fizyka komputerowa(ii) Studia magisterskie Prowadzący kurs: Dr hab. inż. Włodzimierz Salejda, prof. PWr Godziny konsultacji: Poniedziałki i wtorki w godzinach 13.00 15.00 pokój 223 lub
Kryptografia kwantowa. Marta Michalska
Kryptografia kwantowa Marta Michalska Główne postacie Ewa podsłuchiwacz Alicja nadawca informacji Bob odbiorca informacji Alicja przesyła do Boba informacje kanałem, który jest narażony na podsłuch. Ewa
Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację
Naukowiec NASA zasugerował, że żyjemy w sztucznej rzeczywistości stworzonej przez zaawansowaną obcą cywilizację Coraz więcej dowodów wskazuje na to, że nasza rzeczywistość nie jest tak realna jak wydaje
Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA. Nauczyciel przedmiotu: Marzena Kozłowska
Szczegółowe wymagania edukacyjne na poszczególne oceny śródroczne i roczne z przedmiotu: FIZYKA Nauczyciel przedmiotu: Marzena Kozłowska Szczegółowe wymagania edukacyjne zostały sporządzone z wykorzystaniem
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
Numeryczne rozwiązanie równania Schrodingera
Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki
L6.1 Systemy liczenia stosowane w informatyce
L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał
Laboratorium 5: Tablice. Wyszukiwanie binarne
Wojciech Myszka Laboratorium 5: Tablice. Wyszukiwanie binarne 2016-05-07 09:02:17 +0200 1. Tablice Do tej pory nie było potrzeby odwoływać się do zmiennych złożonych. Programy były bardzo proste i korzystały
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Edukacja przez badania Hoża 69: 1921-2014 r. 2014-09-25
- wiązki pompująca & próbkująca oddziaływanie selektywne prędkościowo widma bezdopplerowskie T. 0 k. z L 0 k. L 0 k
Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa - wiązki pompująca & próbkująca oddziaływanie selektywne
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl
Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się
Arytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Edukacja przez badania. Internet dla Szkół 20 lat! Wolność, prywatność, bezpieczeństwo
Wolność, prywatność i bezpieczeństwo o polskiej szlachcie, Internecie, komputerach kwantowych i teleportacji Edukacja przez badania Hoża 69: 1921 2014 r. Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW Wydział
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 12 - Algorytmy i protokoły kwantowe Jarosław Miszczak IITiS PAN Gliwice 19/05/2016 1 / 39 1 Motywacja rozwoju informatyki kwantowej. 2 Stany kwantowe. 3 Notacja Diraca.
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F
SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne
Zasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:
Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn
Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński
Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
I. Poziom: poziom rozszerzony (nowa formuła)
Analiza wyników egzaminu maturalnego wiosna 2017 + poprawki Przedmiot: FIZYKA I. Poziom: poziom rozszerzony (nowa formuła) 1. Zestawienie wyników. Liczba uczniów zdających - LO 6 Zdało egzamin 4 % zdawalności
Atomy w zewnętrznym polu magnetycznym i elektrycznym
Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka
Architektura komputerów Wykład 2
Architektura komputerów Wykład 2 Jan Kazimirski 1 Elementy techniki cyfrowej 2 Plan wykładu Algebra Boole'a Podstawowe układy cyfrowe bramki Układy kombinacyjne Układy sekwencyjne 3 Algebra Boole'a Stosowana
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową
prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA (nie tyko w informatyce) kod znak wiadomość ENTROPIA forma przekaz
WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (nie tyko w informatyce) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? TAK Bo używamy nowego rodzaju maszyn maszyn
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 07 - Podstawy obliczeń kwantowych Jarosław Miszczak IITiS PAN Gliwice 27/10/2016 1 / 29 1 Wprowadzenie Obliczanie Motywacja fizyczna Motywacja kryptograficzna 2 2 /
Podstawy Automatyki. Wykład 12 - synteza i minimalizacja funkcji logicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki
Wykład 12 - synteza i minimalizacja funkcji logicznych Instytut Automatyki i Robotyki Warszawa, 2017 Synteza funkcji logicznych Terminy - na bazie funkcji trójargumenowej y = (x 1, x 2, x 3 ) (1) Elementarny
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział