VIII. TELEPORTACJA KWANTOWA Janusz Adamowski
|
|
- Bogusław Górecki
- 8 lat temu
- Przeglądów:
Transkrypt
1 VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1
2 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy gdyby bowiem były znane to zjawisko to polegałoby na trywialnym odtwarzaniu zmierzonych wcześniej stanów. Jest to zjawisko z pewnością zadziwiające a nawet pozornie tajemnicze. Teleportacja kwantowa jest jednak oparta na fundamentalnych prawach mechaniki kwantowej. Pomimo konotacji z literaturą science fiction teleportacja kubitów jest zjawiskiem realnym i została zrealizowana w wielu eksperymentach głównie z udziałem fotonów. Podczas teleportacji przesyłanie informacji odbywa się przy użyciu klasycznego kanału przekazu informacji który łączy nadawcę i odbiorcę. Natomiast do przekształcania kubitów używane są bramki kwantowe. Procedura teleportacji kwantowej odbywa się w czterech krokach które w przypadku teleportacji pojedynczego kubitu wyglądają następująco: (1) Nadawca i odbiorca otrzymują po jednej cząstce z pary która znajduje się w stanie splątanym. () Nadawca poddaje układ złożony z otrzymanej cząstki w stanie splątanym i teleportowanej cząstki w nieznanym stanie paru prostym operacjom kwantowym i dokonuje pomiaru otrzymanego stanu końcowego. (3) Nadawca wysyła odbiorcy wynik pomiaru za pośrednictwem klasycznego kanału przekazu informacji. (4) W zależności od otrzymanego wyniku odbiorca wykonuje odpowiednią transformację unitarną stanu splątanego posiadanej przez niego cząstki. W wyniku tej procedury zostaje zrealizowana teleportacja kwantowa w tym sensie że stan końcowy cząstki odbiorcy staje się identyczny ze stanem początkowym cząstki nadawcy. Natomiast stan początkowy cząstki będącej w posiadaniu nadawcy ulega nieodwracalnemu zniszczeniu. A zatem teleportacja nie jest kopiowaniem (klonowaniem) kubitu. Teleportacja pojedynczego kubitu Zajmiemy się procedurą teleportacji pojedynczego kubitu. Nadawca (Alicja A) i odbiorca (Bartek B) wytwarzają wspólnie splątany dwukubitowy stan kwantowy. Następnie dzielą się pojedynczymi kubitami przy czym A zabiera pierwszy kubit a B drugi kubit. Po rozdzieleniu się A i B przebywają w dużej odległości od siebie (znacznie większej niż zasięg oddziaływania między cząstkami). Przyjmijmy że pierwotnie wytworzony stan splątany jest stanem Bella β 00 który zapisujemy w postaci β 00 = 0 A 0 B + 1 A 1 B (1)
3 Rysunek 1: Obwód kwantowy do teleportacji kubitu. gdzie wskaźniki A i B oznaczają kubity należące odpowiednio do Alicji i Bartka. Alicja podejmuje się następującego zadania: ma przekazać Bartkowi nieznany jej kubit ψ za pośrednictwem wyłącznie klasycznego kanału przekazu informacji. Obwód kwantowy do teleportacji kubitu pokazany jest na rysunku 8.1. Kubit który ma przekazać Alicja ma postać ψ = a a 1 1 () przy czym amplitudy a 0 i a 1 nie są znane. Alicja tworzy następujący stan na wejściu obwodu kwantowego Rozpisujemy stan wejściowy (3) ψ 0 = ψ β 00. (3) ψ 0 = 1 [a 0 0 A ( 0 A 0 B + 1 A 1 B ) +a 1 1 A ( 0 A 0 B + 1 A 1 B )]. (4) Alicja działa na swoje kubity bramką CNOT i otrzymuje stan ψ 1 = 1 [a 0 0 A ( 0 A 0 B + 1 A 1 B ) +a 1 1 A ( 1 A 0 B + 0 A 1 B )]. (5) Następnie Alicja działa na swój pierwszy kubit bramką Hadamarda i otrzymuje ψ = 1 [a 0( 0 A + 1 A )( 0 A 0 B + 1 A 1 B ) +a 1 ( 0 A 1 A )( 1 A 0 B + 0 A 1 B )]. (6)
4 Stan (6) przepisujemy przegrupowując wyrazy ψ = 1 [ 0 A 0 A (a 0 0 B + a 1 1 B ) + 0 A 1 A (a 0 1 B + a 1 0 B ) + 1 A 0 A (a 0 0 B a 1 1 B ) + 1 A 1 A (a 0 1 B a 1 0 B )]. (7) Stan wynikowy (7) jest superpozycją czterech stanów które występują z równymi prawdopodobieństwami. Pytanie: Jakie to są prawdopodobieństwa? Np. pierwszy wyraz w (7) oznacza że kubity Alicji są w stanie 0 A 0 A a kubit Bartka jest w stanie a 0 0 B + a 1 1 B który jest identyczny z oryginalnym teleportowanym stanem ψ. Jeżeli Alicja wykona pomiar i otrzyma w wyniku stan 0 A 0 A to kubit Bartka znajdzie się na pewno w stanie ψ. Podobnie znając wyniki pomiarów Alicji i korzystając z wyrażenia (7) będziemy mogli jednoznacznie zidentyfikować pozostałe trzy stany kubitu Bartka. Wszystkie te wyniki można przedstawić za pomocą następujących wzorów: 00 f A ψ(00) f B = a 0 0 B + a 1 1 B (8) 01 f A ψ(01) f B = a 0 1 B + a 1 0 B (9) 10 f A ψ(10) f B = a 0 0 B a 1 1 B (10) 11 f A ψ(11) f B = a 0 1 B a 1 0 B (11) gdzie wskaźnik f oznacza kubit końcowy Alicji (A) i Bartka (B). W zależności od wyniku pomiaru wykonanego przez Alicję kubit Bartka znajdzie się w jednym z czterech możliwych stanów końcowych (8) (9) (10) lub (11). Informację o wyniku pomiaru Alicja przesyła Bartkowi za pośrednictwem klasycznego kanału przekazu. Znając tę informację Bartek może odtworzyć teleportowany stan ψ. Poniżej przedstawiam operacje które powinien wykonać Bartek aby otrzymać teleportowany kubit ψ. (1) Jeżeli Alicja otrzyma w wyniku pomiaru stan 00 (8) to stan Bartka jest stanem ψ i Bartek nie potrzebuje wykonywać żadnej operacji. () Jeżeli Alicja otrzyma w wyniku pomiaru stan 01 (9) to Bartek musi poddać swój kubit działaniu bramki X aby otrzymać teleportowany kubit ψ. (3) Jeżeli Alicja otrzyma w wyniku pomiaru stan 10 (10) to Bartek musi poddać swój kubit działaniu bramki Z aby otrzymać teleportowany kubit ψ. 3
5 (4) Jeżeli Alicja otrzyma w wyniku pomiaru stan 11 (11) to Bartek musi poddać swój kubit działaniu po kolei bramek X i Z aby otrzymać teleportowany kubit ψ. W każdym przypadku Bartek powinien zastosować operację U B = Z m1 X m przy zgodnie z regułą mnożenia macierzy operator po prawej działa pierwszy. Potęgi m 1 i m przyjmują wartości 0 1. Wyniki te można podsumować stosując zapis macierzowy. W reprezentacji macierzowej stany końcowe Bartka [por. (8) (9) (10) (11)] mają postać ψ f B = ( a0 a 1 ) ( a1 a 0 ) ( a0 ) ( ) a1. (1) a 1 a 0 Natomiast transformacje unitarne pozwalające Bartkowi odtworzyć teleportowany kubit mają postać ( ) ( ) ( ) ( ) U B =. (13) Dyskusja Procedura teleportacji jest połączeniem operacji kwantowych wykonywanych przez nadawcę (A) i odbiorcę (B) z przesyłaniem informacji kanałem klasycznym. Procedura ta może być uogólniona do przesłania dowolnego stanu n- kubitowego. Szybkość telepotacji nie może przekraczać prędkości światła co wynika z użycia klasycznego kanału przesyłania informacji. Teleportacja kwantowa nie narusza twierdzenia o zakazie klonowania kubitów ponieważ teleportowany kubit jest niszczony w miejscu nadawcy a odtwarzany w miejscu odbiorcy a zatem w wyniku teleportacji nie powstaje kopia stanu kwantowego z zachowaniem stanu oryginalnego. Teleportacja kwantowa została zrealizowana doświadczalnie. W 1997 roku w Innsbrucku dokonano teleportacji stanu polaryzacji fotonu. 575 D. Boumeester J.-W. Pan K. Mattle M. Eibl H. Weinfurter A. Zeilinger Nature 390 (1997) 4
Splątanie a przesyłanie informacji
Splątanie a przesyłanie informacji Jarosław A. Miszczak 21 marca 2003 roku Plan referatu Stany splątane Co to jest splątanie? Gęste kodowanie Teleportacja Przeprowadzone eksperymenty Możliwości wykorzystania
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny
bity kwantowe zastosowania stanów splątanych
bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą
Protokół teleportacji kwantowej
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji
Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 13
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 13 Spis treści 19 Algorytmy kwantowe 3 19.1 Bit kwantowy kubit (qubit)........... 3 19. Twierdzenie
TELEPORTACJA NIEZNANEGO STANU KWANTOWEGO
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 04 Seria: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 905 Marcin SOBOTA Politechnika Śląska Wydział Organizacji i Zarządzania TELEPORTACJA NIEZNANEGO STANU KWANTOWEGO
Fizyka dla wszystkich
Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 12 - Algorytmy i protokoły kwantowe Jarosław Miszczak IITiS PAN Gliwice 19/05/2016 1 / 39 1 Motywacja rozwoju informatyki kwantowej. 2 Stany kwantowe. 3 Notacja Diraca.
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
VI. KORELACJE KWANTOWE Janusz Adamowski
VI. KORELACJE KWANTOWE Janusz Adamowski 1 1 Korelacje klasyczne i kwantowe Zgodnie z teorią statystyki matematycznej współczynnik korelacji definiujemy jako cov(x, y) corr(x, y) =, (1) σ x σ y gdzie x
Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski
V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi
Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017
Kwantowe stany splątane w układach wielocząstkowych Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Otton Nikodym oraz Stefan Banach rozmawiają na ławce na krakowskich plantach
VII Festiwal Nauki i Sztuki. Wydziale Fizyki UAM
VII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM VII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Teleportacja stanów atomowych Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 14 października 2004
Podstawy informatyki kwantowej
Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie
Wstęp do algorytmiki kwantowej
Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Komputer kwantowy - co to właściwie jest? Komputer kwantowy Komputer, którego zasada działania nie może zostać wyjaśniona bez użycia formalizmu mechaniki
Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,
XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM
XIII Poznański Festiwal Nauki i Sztuki na Wydziale Fizyki UAM XIII Poznański Festival Nauki i Sztuki na Wydziale Fizyki UAM Od informatyki klasycznej do kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas
interpretacje mechaniki kwantowej fotony i splątanie
mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek
odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty
Historia. Zasada Działania
Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia
Miary splątania kwantowego
kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW
fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia
Komputery Kwantowe. Sprawy organizacyjne Literatura Plan. Komputery Kwantowe. Ravindra W. Chhajlany. 27 listopada 2006
Sprawy organizacyjne Literatura Plan Ravindra W. Chhajlany 27 listopada 2006 Ogólne Sprawy organizacyjne Literatura Plan Współrzędne: Pokój 207, Zakład Elektroniki Kwantowej. Telefon: (0-61)-8295005 Email:
Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017
B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj
IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski
IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski 1 1 Wstęp Wykład ten stanowi wprowadzenie do kryptografii kwantowej. Kryptografia kwantowa jest bardzo obszerną i szybko rozwijającą się dziedziną obliczeń kwantowych,
Informatyka kwantowa. Karol Bartkiewicz
Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational
Modelowanie Preferencji a Ryzyko. Dlaczego w dylemat więźnia warto grać kwantowo?
Modelowanie Preferencji a Ryzyko Dlaczego w dylemat więźnia warto grać kwantowo? Marek Szopa U n iwe r s y t e t Ś l ą s k i INSTYTUT FIZYKI im. Augusta Chełkowskiego Zakład Fizyki Teoretycznej Klasyczny
Jak wygrywać w brydża znając mechanikę kwantową?
Jak wygrywać w brydża znając mechanikę kwantową? Tomasz Kisielewski 15 grudnia 2014 Podstawowe zasady brydża Brydż jest grą karcianą dla czterech osób grających w drużynach po dwie osoby. Gra składa się
Informatyka kwantowa
VI Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Informatyka kwantowa Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 16 października 2003 Spis treści 1 Rozwój komputerów 4 1.1 Początki..................
Wstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
kondensat Bosego-Einsteina
kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej
W5. Komputer kwantowy
W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu
Symulacja obliczeń kwantowych
Model kwantowych bramek logicznych w NumPy Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 10 października 2007 Plan prezentacji 1 Python
Internet kwantowy. (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak. Instytut Informatyki Teoretycznej i Stosowanej PAN
Internet kwantowy (z krótkim wstępem do informatyki kwantowej) Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej PAN 16. stycznia 2012 Plan wystąpienia 1 Skąd się biorą stany kwantowe? Jak
Kryptografia kwantowa. Marta Michalska
Kryptografia kwantowa Marta Michalska Główne postacie Ewa podsłuchiwacz Alicja nadawca informacji Bob odbiorca informacji Alicja przesyła do Boba informacje kanałem, który jest narażony na podsłuch. Ewa
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan (Uzupełnienie matematyczne II) Abstrakcyjna przestrzeń stanów Podstawowe własności Iloczyn skalarny amplitudy prawdopodobieństwa Operatory i ich hermitowskość Wektory
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
o pomiarze i o dekoherencji
o pomiarze i o dekoherencji Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW pomiar dekoherencja pomiar kolaps nieoznaczoność paradoksy dekoherencja Przykładowy
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja
Informatyka Kwantowa Sekcja Informatyki Kwantowej prezentacja Robert Nowotniak Wydział FTIMS, Politechnika Łódzka XV konferencja SIS, 26 października 2007 Streszczenie Informatyka kwantowa jest dziedziną
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową
Wprowadzenie do teorii komputerów kwantowych
Wprowadzenie do teorii komputerów kwantowych mgr inż. Olga Siedlecka olga@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Wprowadzenie do teorii komputerów kwantowych p.1/35 Plan seminarium
O informatyce kwantowej
O informatyce kwantowej Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN Posiedzenie PTM Gliwice Piotr Gawron (IITiS PAN) O informatyce kwantowej 6 października 009 1 / 33 Plan wystąpienia
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Wprowadzenie do optycznej kryptografii kwantowej
Wprowadzenie do optycznej kryptografii kwantowej o tym jak kryptografia kwantowa jest być może najważniejszym zastosowaniem współczesnej optyki kwantowej prehistoria kryptografii kwantowej 983 (97!) Stephen
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Quantum Computer I (QC) Zapis skrócony. Zapis skrócony
Quantum Computer I (QC) Jacek Szczytko, Wydział Fizyki UW. Komputery kwantowe a. Logika bramek b. Kwantowe algorytmy c. Jak zbudować taki komputer? "Where a calculator on the Eniac is equipped with vacuum
Cząstki elementarne i ich oddziaływania III
Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku
Peter W. Shor - Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. 19 listopada 2004 roku Wstęp czyli (próba) odpowiedzi na pewne pytania (Silna) Teza Church
Kwantowe przelewy bankowe foton na usługach biznesu
Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać
Strategie kwantowe w teorii gier
Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie
SEGMENT TCP CZ. II. Suma kontrolna (ang. Checksum) liczona dla danych jak i nagłówka, weryfikowana po stronie odbiorczej
SEGMENT TCP CZ. I Numer portu źródłowego (ang. Source port), przeznaczenia (ang. Destination port) identyfikują aplikacje wysyłającą odbierającą dane, te dwie wielkości wraz adresami IP źródła i przeznaczenia
Wykorzystanie stanów splątanych w informatyce kwantowej
Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Matematyki i Informatyki Kierunek: Matematyka Przemysław Patryk Jarosz Wykorzystanie stanów splątanych w informatyce kwantowej Praca licencjacka wykonana
Podstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.
VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki
Teleportacja stanów atomowych z wykorzystaniem kwantowej interferencji pól wychodzących z dwóch rezonatorów
Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Grzegorz Chimczak Teleportacja stanów atomowych z wykorzystaniem kwantowej interferencji pól wychodzących z dwóch rezonatorów Praca doktorska
Wstęp do informatyki kwantowej
Wstęp do informatyki kwantowej Marek Góźdź semestr zimowy 2018/2019 wersja z dnia: 21 stycznia 2019 (2018/2019) 21 stycznia 2019 1 / 217 Podręczniki: M.Le Bellac, Wstęp do informatyki kwantowej, PWN, Warszawa
Postulaty mechaniki kwantowej
3.10.2004 11. Postulaty mechaniki kwantowej 120 Rozdział 11 Postulaty mechaniki kwantowej Mechanika kwantowa, jak zresztą każda teoria fizyczna, bazuje na kilku postulatach, które przyjmujemy "na wiarę".
MOŻLIWOŚCI PRZESYŁANIA INFORMACJI W SIECIACH Z WYKORZYSTANIEM EFEKTÓW KWANTOWYCH 1
STUDIA INFORMATICA 003 Volume 4 Number A (53) Jarosław A. MISZCZAK Instytut Informatyki Teoretycznej i Stosowanej PAN MOŻLIWOŚCI PRZESYŁANIA INFORMACJI W SIECIACH Z WYKORZYSTANIEM EFEKTÓW KWANTOWYCH 1
Podejścia do realizacji modelu obliczeń kwantowych
Podejścia do realizacji modelu obliczeń kwantowych Instytut Informatyki Uniwersytetu Wrocławskiego 18 maja 2007 Jak reprezentować qubit? Główne zasady Warunki dla obliczeń kwantowych Spin Oscylator harmoniczny
- nowe wyzwanie. Feliks Kurp
INFORMATYKA KWANTOWA - nowe wyzwanie Feliks Kurp 2006 2 Plan wystąpienia: 1. Dlaczego informatyka kwantowa? 2. Grupy i ludzie zajmujący się informatyką kwantową 3. Fenomeny mechaniki kwantowej 4. Podstawy
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Algorytm faktoryzacji Petera Shora dla komputera kwantowego
Algorytm faktoryzacji Petera Shora dla komputera kwantowego Peter Shor (ur. 14 sierpnia 1959 roku w USA Matematyk oraz informatyk teoretyk Autor kwantowego Algorytmu Shora Pracuje w AT&T Bell Laboratories
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny
POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny Funkcja Falowa Postulat 1 Dla każdego układu istnieje funkcja falowa (funkcja współrzędnych i czasu), która jest ciągła, całkowalna w kwadracie,
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Niezwykłe cechy informacji kwantowej
Niezwykłe cechy informacji kwantowej Michał Horodecki Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański 1. Wstęp Koncepcja informacji kwantowej zrodziła się na pograniczu dwóch dziedzin:
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m P [cm] = ± 0,14 m α
ciężkości. Długości celowych d są wtedy jednakowe. Do wstępnych i przybliżonych analiz dokładności można wykorzystywać wzór: m [cm] = ±,4 m α [cc] d [km] * (9.5) β d 9.7. Zadanie Hansena β d Rys. 9.7.
Bozon Higgsa prawda czy kolejny fakt prasowy?
Bozon Higgsa prawda czy kolejny fakt prasowy? Sławomir Stachniewicz, IF PK 1. Standardowy model cząstek elementarnych Model Standardowy to obecnie obowiązująca teoria cząstek elementarnych, które są składnikami
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEOR OBWODÓW SGNŁÓW LBORTORM KDEM MORSK Katedra Telekomunikacji Morskiej ĆWCENE BDNE ÓW PSWNCH RESTNCJNCH. Cel ćwiczenia Doświadczalne wyznaczenie parametrów macierzowych pasywnych czwórników rezystancyjnych
wyznaczenie zasięgu efektywnego, energii maksymalnej oraz prędkości czastek β o zasięgu maksymalnym,
1 Część teoretyczna 1.1 Cel ćwiczenia Celem ćwiczenia jest zbadanie absorpcji promieniowania β w ciałach stałych poprzez: wyznaczenie krzywej absorpcji, wyznaczenie zasięgu efektywnego, energii maksymalnej
Wykłady z Mechaniki Kwantowej
Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 7 Jesteśmy uczniami w szkole natury i kształtujemy nasze pojęcia z lekcji na lekcję.
Rozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26
Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak
INSTRUKCJA Pakiet zmian w systemie KS-AOW - lipiec 2015 r. ISO 9001:2008 Dokument: Wydanie: 1 Waga: 90. Rys.
Pakiet zmian w systemie KS- - lipiec 2015 r. KS- Rys. 8 Karta leku A. Raportowanie do WIF W ramach zmian dotyczących konieczności raportowania do właściwego miejscowo WIF przez apteki sytuacji, w której
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego
Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
1. Matematyka Fizyki Kwantowej: Cześć Druga
. Matematyka Fizyki Kwantowej: Cześć Druga Piotr Szańkowski I. PRZESTRZEŃ WEKTOROWA Kolejnym punktem naszej jest ogólna struktura matematyczna mechaniki kwantowej, która jest strukturą przestrzeni wektorowej
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski
XI. REALIZACJA FIZYCZNA OBLICZEŃ KWANTOWYCH Janusz Adamowski 1 Rysunek 1: Elektrody (bramki) definiujące elektrostatyczną boczną kropkę kwantową. Fotografia otrzymana przy użyciu elektronowego mikroskopu
Marek Góźdź 2.XII.2017
Kryptografia Marek Góźdź Uniwersytet Marii Curie Skłodowskiej w Lublinie Wydział Matematyki, Fizyki i Informatyki 2.XII.2017 Kryptografia umożliwia szyfrowanie i deszyfrowanie danych. W procesie tym przynajmniej
A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t
B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
O teleportacji i telepatii, czyli jak zostać wróżbitą w Polsce.
O teleportacji i telepatii, czyli jak zostać wróżbitą w Polsce. Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN 25 kwietnia 2009 Piotr Gawron (IITiS PAN) O teleportacji i telepatii... 25
Wykorzystanie metod ewolucyjnych sztucznej inteligencji w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych sztucznej inteligencji w projektowaniu algorytmów kwantowych Robert Nowotniak Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 3 czerwca
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Modelling of quantum informatics systems with the use of quantum programming languages and symbolic computation
Modelling of quantum informatics systems with the use of quantum programming languages and symbolic computation Jarosław Miszczak Instytut Informatyki Teoretycznej i Stosowanej Polskiej Akademii Nauk Wojskowa
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
Świat klasyczny i kwantowy
Kwantowa kryptografia i teleportacja. Splątanie kwantowe Prawo Moore a Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt.4. Prace zaliczeniowe! Zadania Studenckie Do zaliczenia wykładu wymagana
Wykłady z Mechaniki Kwantowej
Wykłady z Mechaniki Kwantowej Mechanika Kwantowa, Relatywistyczna Mechanika Kwantowa Wykład dla doktorantów (2017) Wykład 3 Fakty nie są najważniejsze. Zresztą, aby je poznać, nie trzeba studiować na
Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
Cząstki i siły. Piotr Traczyk. IPJ Warszawa
Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała
XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXIX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D1 Nazwa zadania: Wyznaczenie napięcia. Mając do dyspozycji: trójnóżkowy element półprzewodnikowy, dwie baterie 4,5 V z opornikami zabezpieczającymi
1.6. Falowa natura cząstek biologicznych i fluorofullerenów Wstęp Porfiryny i fluorofullereny C 60 F
SPIS TREŚCI Przedmowa 11 Wprowadzenie... 13 Część I. Doświadczenia dyfrakcyjno-interferencyjne z pojedynczymi obiektami mikroświata.. 17 Literatura... 23 1.1. Doświadczenia dyfrakcyjno-interferencyjne
Rozdział 6. Równania Maxwella. 6.1 Pierwsza para
Rozdział 6 Równania Maxwella Podstawą elektrodynamiki klasycznej są równania Maxwella, które wiążą pola elektryczne E i magnetyczne B ze sobą oraz z ładunkami i prądami elektrycznymi. Pola E i B są funkcjami
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne
LI OLIMPIADA FIZYCZNA ETAP II Zadanie doświadczalne ZADANIE D1 Cztery identyczne diody oraz trzy oporniki o oporach nie różniących się od siebie o więcej niż % połączono szeregowo w zamknięty obwód elektryczny.
Gry kwantowe na łańcuchach spinowych
Gry kwantowe na łańcuchach spinowych Jarosław Miszczak we współpracy z Piotrem Gawronem i Zbigniewem Puchałą Instytut Informatyki Teoretycznej i Stosowanej PAN w Gliwicach J.A.M., Z. Puchała, P. Gawron