Wprowadzenie do optycznej kryptografii kwantowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wprowadzenie do optycznej kryptografii kwantowej"

Transkrypt

1 Wprowadzenie do optycznej kryptografii kwantowej o tym jak kryptografia kwantowa jest być może najważniejszym zastosowaniem współczesnej optyki kwantowej

2 prehistoria kryptografii kwantowej 983 (97!) Stephen Wiesner pierwszy opis kodowania kwantowego Jak drukować banknoty niefalsyfikowalne Jak połączyć -3 wiadomości tak, aby czytając jedną z nich automatycznie zniszczyć pozostałe

3 zakaz klonowania (no-cloning theorem) Wootters i Żurek oraz Dieks (98) Tw. Nie można zrobić idealnej kopii nieznanego stanu kwantowego Tj. jedno z najbardziej fundamentalnych tw. mechaniki kwantowej kryptografia kwantowa jest bezpieczna komunikacja nadświetlna za p. stanów splątanych jest niemożliwa teleportacja kwantowa wydaje się też niemożliwa???

4 zasada nieoznaczoności Heisenberga (97) dotyczy pomiaru wielkości komplementarnych (np. A i B) pojedynczą wielkość można zmierzyć z dowolną dokładnością ALE dokładny pomiar A zaburza B tak, że mierząc B otrzymujemy wartości przypadkowe [ A^, B^] ic^ var np. A^ var B^ var x^ var 4 p^ C^ 4 Tj. uzasadnienie bezpieczeństwa kryptografii kwantowej

5 zasada nieoznaczoności Heisenberga pasywny podsłuch jest niemożliwy.można odróżnić kierunki polaryzacji prostej = o i 9 o. Można odróżnić kierunki polaryzacji ukośnej = 45 o i 35 o 3. Można szybko przestawić ustawienie polarycji (np. w komórce Pockelsa) 4. ALE nie można zmierzyć jednocześnie = o, 9 o, 45 o i 35 o

6 podsłuch układu klasycznego etapy:. Ewa robi kopię nośnika informacji (tzw. klon). i odczytuje informacje z kopii pasywne monitorowanie informacji jest możliwe

7 podsłuch układu kwantowego Ewa nie może klonować informacji jeśli nie wie w jakim stanie jest nośnik informacji monitorowanie zaburza informację kwantową

8 schemat Bennetta i Brassarda (984) = protokół BB84 dwa kanały:. kwantowy prywatny. klasyczny publiczny (np. internet) klucz Alicja Bolek szyfrogram

9 BB84 etapy:. kwantowa dystrybucja klucza. klasyczny kryptaż wykorzystując np. algorytm Vernama PROBLEM: Jak ustalić wspólny klucz kwantowy?

10 umożliwiają rozróżnienie fotonów spolaryzowanych prostopadle względem siebie fotony spol. poziomo kryształy dwójłomne fotony spol. pionowo fotony spol. ukośnie kryształ kalcytu

11 BB84 () umowa (= 9 o ) i \ (= 35 o ) => bit - (= o ) i / (= 45 o ) => bit baza - proste lub ukośne ustawienie kryształu.alicja wysyła fotony x + x x x + x + + x x + x baza - \ / / \ / - \ \ - \ pol.fotonu bit

12 BB84 (). Bolek losowo wybiera typ pomiaru (bazę) \ / / \ / - \ \ - \ pol.fotonu Alicji + x + + x x + + x + x x + + x baza Bolka \ - / / / - / \ - - \ pol.fotonu po pomiarze

13 BB84 (3) 3. Alicja i Bolek publicznie porównują bazy x + x x x + x + + x x + x bazy Alicji + x + + x x + + x + x x + + x bazy Bolka z n n z z z n z z z n z n z z test

14 BB84 (4) 4. Alicja i Bolek zatrzymują tylko te wyniki otrzymane przy zgodnych bazach ciąg Alicji..... ciąg Bolek

15 BB84 (5) 5.Testowanie wyników dla niektórych fotonów np., 5, i 4-go ciąg Alicji..... ciąg Bolka OK OK OK OK

16 BB84 (6) 6. odrzucamy wyniki dla testowanych fotonów ciąg Alicji ciąg Bolka zatem kluczem jest ciąg

17 nasz alfabet cyfrowy A Ą 3 B 4 C Ź... 4.

18 symetryczne algorytmy kryptograficzne tekst jawny tekst prosty kryptogram tekst prosty kryptaż kluczem k dystrybucja klucza dekryptaż tym samym kluczem k tekst jawny

19 szyfr Vernama (98) = szyfr Che Guevary = one-time pad = algorytm z kluczem jednorazowym ) alfabet cyfrowy A Ą 3 B 4 C 5 Ć 6 D 7 E 8 Ę 9 F G H I 3 J 4 K 5 L 6 Ł 7 M 8 N 9 Ń O Ó P 3 Q 4 R 5 S 6 Ś 7 T 8 U 9 V 3 W 3 X 3 Y 33 Z 34 Ż 35 Ź 36 _ 37-38? 39, 4.

20 szyfr Vernama (II) ) KLUCZ wybrany losowo fizycznie bezpieczny nigdy nie używany powtórnie długość klucza >= długość tekstu 3) ALGORYTM dodawanie modulo N (np. 4)

21 szyfr Vernama (III) klucz: (losowy ciąg liczb) tekst jawny A D A M _ M I R A NO W I C Z _ ZO N tekst prosty Suma: Suma mod (4): KRYPTOGRAM

22 Test zgodności. Alicja i Bolek porównują dowolnie wybrany podzbiór danych. Oczywiście ten podzbiór odrzucamy.. Jeśli podzbiór wykazuje ślady podsłuchu, to odrzucamy wszystkie dane i proces ponawiamy 3. Testowanie: (a) bit po bicie (b) porównywanie parzystości np. razy => (/) ~. 4. Pogłębianie tajności (privacy amplification) schemat Bennetta-Brassarda-Roberta

23 strategia podsłuchu Ewy (I) Jakie jest prawdopodobieństwo, że pojedynczy foton został zmierzony przez Ewę a Alicja i Bolek nie zauważyli podsłuchu? Odpowiedź: P=3/4

24 optyczne protokoły dystrybucji klucza kwantowego 984 schemat Ch. Bennetta i G. Brassarda (protokół BB84 ) 99 schemat A. Ekerta z wykorzystaniem splątania kwantowego (protokół E9) 99 schemat Ch. Bennetta (protokół B9)

25 strategia podsłuchu Ewy (II) Alicja Ewa Bob / = / Baza Polar. Prawd. Alicja Ewa Bob + x + / /*/ / = /8 Alicja Ewa Bob + x + \ /*/ / = /8

26 bezpieczeństwo BB84 dla fotonu P =3/4 dla n fotonów P n =(3/4) n zatem P =(3/4) ~.56 P =(3/4) ~.6 P =(3/4) ~.3 P =(3/4) ~ -3 a dla fotonów P =(3/4) ~ -5

27 Informacja ma naturę fizyczną Information is inevitably tied to a physical representation and therefore to restrictions and possibilities related to the laws of physics (R. Landauer) informatyka klasyczna jest dziedziną matematyki informatyka kwantowa jest dziedziną fizyki

28 Wprowadzenie do teleportacji kwantowej

29 Co to jest teleportacja?,,fikcyjna metoda bezcielesnego transportu obiekt jest dematerializowany i następnie idealnie rekonstruowany w odległym miejscu 3D superfaks z niszczarką gdyż obiekt musi być zniszczony w czasie skanowania

30 Co to jest teleportacja kwantowa? przekazanie całej informacji zakodowanej w jednej cząstce do innej cząstki przeniesienie stanu układu A do układu B poprzez pomiar wykonany na układzie A i operacje unitarne na układzie B

31 splątanie/splecenie kwantowe [Schroedinger 935] = niem. Verschrankung, ang. entanglement = korelacje typu EPR (Einsteina-Podolsky ego-rosena) = nieseparowalność kwantowa To są korelacje kwantowe między podukładami realizowane na lub więcej sposobów układ jest w stanie superpozycji różnych możliwości realizacji tych korelacji Stan układu złożonego z kilku podukładów jest splątany jeśli nie można go przedstawić w postaci iloczynu stanów dla każdego z podukładów

32 paradoks Einsteina-Podolsky ego-rosena Jak obejść zasadę nieoznaczoności? Czy można zmierzyć dokładnie składowe spinu? _ ^ ^ h var S x var S y S^ z 4 S S S^ S ^ x S x, S y S y ^ ^ S Zatem zmierzmy S^ x i S^ y, aby wyznaczyć S^ x i S^ y

33 stany Bella (stany EPR) to są maksymalnie splecione stany kubitów y x y x D y x y x C y x y x B y x y x A

34 generacja stanów splątanych w wyniku rozpadu cząstki o spinie na dwie cząstki o spinach za pomocą parametrycznego dzielnika częstotliwości (PDC II) za pomocą płytki światłodzielącej 5:5, gdy na wejściu jest jeden foton y x i y x xy H V e V H y x y x xy y x y x xy przez rzutowanie stanu niesplątanego na stan splątany

35 teleportacja kwantowa [Bennett i in. (993)] Alicja Bob out pomiar w bazie Bella A B C D A B C D operacja unitarna in 3 źródło cząstek EPR

36 uzasadnienie teleportacji Problem: jak teleportować stan kubitu do kubitu 3 Założenie: kubity i 3 są splątane w stanie in b a b a b a b a b a D C B A A 3 A

37 pomiar w bazie Bella ) ( bit flip phase flip bit flip ) ( phase flip OK x x b a i x x b a x x b a b a x y D x C x z B A bit flip = odwrócenie bitu phase flip = odwrócenie fazy bitu

38 eksperyment Zeilingera Alicja Bolek D D D 3 D 4 P BS PC EOM PBS PL 4 BBO 3 F D

39 teleportacja pod Dunajem teleportacja stanu polaryzacyjnego fotonu eksperyment Zeilingera i in. (Nature 4) F PL BBO EOM PC BS PBS D,... Legenda: - światłowód (fibre) o dł. 8m - laser impulsowy emitujący światło o dł. 394 nm (fioletowe) - beta-boran baru - tj. parametryczny dzielnik częstotliwości - elektrooptyczny modulator <-> operacja unitarna Bolka - kontroler/korektor polaryzacji - płytka światłodzieląca (beam splitter) - polaryzacyjna płytka światłodzieląca (polarising beam splitter) - detektory

40 kryształ BBO padający foton `fioletowy' (394 nm) generuje w krysztale BBO typu II dwa splątane fotony `czerwone' (788 nm) (nm) barwa światła czerwona 6-65 pomarańczowa 58-6 żółta żółtozielona zielona zielononiebieska niebieska indygowa fioletowa

41 teleporter Pegga i in. Alicja D ( foton) Bolek out a b D (brak fotonu) BS (5:5) BS (5:5) in a b

42 nożyce kwantowe... e n n! e / n n / N Wyjście: stan kubitowy Wejście: stan koherentny przykład inżynierii optycznych stanów kwantowych za pomocą teleportacji N gdzie

43 nożyce kwantowe Pegga i in. Alicja D ( foton) Bolek out ~ D (brak fotonu) BS (5:5) BS (5:5) in

44 teleportacja kutritów Alicja D ( foton) Bolek out a b c D ( foton) BS (79:) BS (79:) in a b c

45 przeniesienie splątania (entanglement swapping) 4 3 A B C D A B C D 4 3 źródła EPR

46 deterministyczna teleportacja stanów atomowych eksperyment Blatta i in. (4) U X Z pomiar gen. stanów Bella ukryj ukryj pomiar ukryj - ukryj - Z X U X - pomiar

47 eksperyment Blatta i in. (4) 3 jony 4 Ca + stany H S D / 5 / D ( m 5 / J ( m J ( m / ) J / ) 5 / ) U x i,,, Tteleport ms, T Bell. life ms, Tdelay wierność: (66.7%<) 75% (<87%) ms

48 przełomowe odkrycia T 935 splątania kwantowe - Schroedinger oraz Einstein, Podolsky i Rosen T 98 zakaz klonowania Woottersa-Żurka T 993 teleportacja kwantowa - Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters T 993 wymiana splątania - Żukowski, Zeilinger, Horne, Ekert D 997 optyczna teleportacja kwantowa - Zeilinger i in. D 998 bezwarunkowa optyczna teleportacja kwan. - Furusawa, Kimble, Polzik i in. D 998 optyczna wymiana splątania - Zeilinger et al.. T 999 uniwersalne obliczenia kwan. za pomocą teleportacji - Gottesman, Chuang D 4 bezwarunkowa teleportacja stanów atomowych - Barrett, Wineland i in. oraz Riebe, Blatt i in. T - teoria, D - doświadczenie

49 Zastosowania teleportacji t. człowieka ( 7 atomów)? NIE! t. wirusa? NIE t. w celu klonowania? NIE t. w komunikacji nadświetlnej? NIE t. w komputerach kwantowych? TAK! Chuang: ``Dopiero zaczynamy rozumieć dlaczego teleportacja jest w ogóle możliwa

Kryptografia kwantowa. Marta Michalska

Kryptografia kwantowa. Marta Michalska Kryptografia kwantowa Marta Michalska Główne postacie Ewa podsłuchiwacz Alicja nadawca informacji Bob odbiorca informacji Alicja przesyła do Boba informacje kanałem, który jest narażony na podsłuch. Ewa

Bardziej szczegółowo

VIII Festiwal Nauki i Sztuki. Wydziale Fizyki UAM

VIII Festiwal Nauki i Sztuki. Wydziale Fizyki UAM VIII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM VIII Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Kryptografia kwantowa raz jeszcze Ryszard Tanaś http://zon8physdamuedupl/~tanas 13 października 2005

Bardziej szczegółowo

algorytmy kryptograficzne = szyfry

algorytmy kryptograficzne = szyfry algorytmy kryptograficzne = szyfry szyfr podstawieniowy prosty szyfr transpozycyjny (szyfr przestawieniowy) szyfr polialfabetyczny szyfr wędrującego klucza szyfr Vernama klucz szyfrowy (key) zbiór instrukcji

Bardziej szczegółowo

Kryptografia kwantowa

Kryptografia kwantowa Kryptografia kwantowa Wykład popularno-naukowy dla młodzieży szkół średnich Ryszard Tanaś http://zon8physdamuedupl/~tanas 20 marca 2002 Enigma niemiecka maszyna szyfrująca Marian Rejewski Jerzy Różycki

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit kwantowy zawiera więcej informacji niż bit klasyczny

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 24, Radosław Chrapkiewicz, Filip Ozimek odstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 4, 5.05.0 wykład: pokazy: ćwiczenia: Michał Karpiński Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 3 - przypomnienie argumenty

Bardziej szczegółowo

bity kwantowe zastosowania stanów splątanych

bity kwantowe zastosowania stanów splątanych bity kwantowe zastosowania stanów splątanych Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Bit jest jednostką informacji tzn. jest "najmniejszą możliwą

Bardziej szczegółowo

Protokół teleportacji kwantowej

Protokół teleportacji kwantowej Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 9 stycznia 008 Teleportacja kwantowa 1993 Propozycja teoretyczna protokołu teleportacji

Bardziej szczegółowo

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW

fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW wektory pojedyncze fotony paradoks EPR Wielkości wektorowe w fizyce punkt zaczepienia

Bardziej szczegółowo

interpretacje mechaniki kwantowej fotony i splątanie

interpretacje mechaniki kwantowej fotony i splątanie mechaniki kwantowej fotony i splątanie Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Twierdzenie o nieklonowaniu Jak sklonować stan kwantowy? klonowanie

Bardziej szczegółowo

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski

VIII. TELEPORTACJA KWANTOWA Janusz Adamowski VIII. TELEPORTACJA KWANTOWA Janusz Adamowski 1 1 Wprowadzenie Teleportacja kwantowa polega na przesyłaniu stanów cząstek kwantowych na odległość od nadawcy do odbiorcy. Przesyłane stany nie są znane nadawcy

Bardziej szczegółowo

Fizyka dla wszystkich

Fizyka dla wszystkich Fizyka dla wszystkich Wykład popularny dla młodzieży szkół średnich Splątane kubity czyli rzecz o informatyce kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 21 kwietnia 2004 Spis treści 1

Bardziej szczegółowo

Kryptografia kwantowa

Kryptografia kwantowa Kryptografia kwantowa Krzysztof Maćkowiak DGA SECURE 2006 Plan referatu Wprowadzenie, podstawowe pojęcia Algorytm Grovera Algorytm Shora Algorytm Bennetta-Brassarda Algorytm Bennetta Praktyczne zastosowanie

Bardziej szczegółowo

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017

Kwantowe stany splątane. Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 B l i ż e j N a u k i Kwantowe stany splątane Karol Życzkowski Instytut Fizyki, Uniwersytet Jagielloński 25 kwietnia 2017 Co to jest fizyka? Kopnij piłkę! Co to jest fizyka? Kopnij piłkę! Kup lody i poczekaj

Bardziej szczegółowo

Splątanie a przesyłanie informacji

Splątanie a przesyłanie informacji Splątanie a przesyłanie informacji Jarosław A. Miszczak 21 marca 2003 roku Plan referatu Stany splątane Co to jest splątanie? Gęste kodowanie Teleportacja Przeprowadzone eksperymenty Możliwości wykorzystania

Bardziej szczegółowo

Kwantowe przelewy bankowe foton na usługach biznesu

Kwantowe przelewy bankowe foton na usługach biznesu Kwantowe przelewy bankowe foton na usługach biznesu Rafał Demkowicz-Dobrzański Centrum Fizyki Teoretycznej PAN Zakupy w Internecie Secure Socket Layer Bazuje na w wymianie klucza metodą RSA Jak mogę przesłać

Bardziej szczegółowo

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.

Informatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu. Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści

Bardziej szczegółowo

Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka

Kwantowa kooperacja. Robert Nowotniak. Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka Sekcja Informatyki Kwantowej, 17 maja 2007 Materiały źródłowe Prezentacja oparta jest na publikacjach: Johann Summhammer,

Bardziej szczegółowo

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017

Kwantowe stany splątane w układach wielocząstkowych. Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Kwantowe stany splątane w układach wielocząstkowych Karol Życzkowski (UJ / CFT PAN) 44 Zjazd PTF Wrocław, 12 września 2017 Otton Nikodym oraz Stefan Banach rozmawiają na ławce na krakowskich plantach

Bardziej szczegółowo

XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM

XIII Poznański Festiwal Nauki i Sztuki. Wydziale Fizyki UAM XIII Poznański Festiwal Nauki i Sztuki na Wydziale Fizyki UAM XIII Poznański Festival Nauki i Sztuki na Wydziale Fizyki UAM Od informatyki klasycznej do kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas

Bardziej szczegółowo

Miary splątania kwantowego

Miary splątania kwantowego kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW 33/01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI, Instytut Fizyki (wykład w j. angielskim) KARTA PRZEDMIOTU Nazwa w języku polskim Klasyczna i kwantowa kryptografia Nazwa w języku angielskim

Bardziej szczegółowo

W5. Komputer kwantowy

W5. Komputer kwantowy W5. Komputer kwantowy Komputer klasyczny: Informacja zapisana w postaci bitów (binary digit) (sygnał jest albo go nie ma) W klasycznych komputerach wartość bitu jest określona przez stan pewnego elementu

Bardziej szczegółowo

Ż Ź Ź ź Ż Ż Ź Ą Ą Ż ź Ś Ż Ż Ś Ź Ś Ą

Ż Ź Ź ź Ż Ż Ź Ą Ą Ż ź Ś Ż Ż Ś Ź Ś Ą Ś Ą Ó Ś Ś Ą Ś Ó Ż ć Ś Ż Ę ć Ż ź Ż Ź Ź ź Ż Ż Ź Ą Ą Ż ź Ś Ż Ż Ś Ź Ś Ą Ą Ż Ź Ś Ą Ń Ś Ą Ż ć Ż Ż Ż ć Ż Ż Ś Ź Ź Ż Ą Ń ź ź Ł Ę ć ć ć Ń ź ć Ż ź Ż źó ć Ż Ż Ó Ń Ż Ó Ź Ó Ż Ź Ż Ż Ż Ż Ę Ż Ż ć ć Ż ć Ó Ż Ż Ż Ą Ź Ż Ż

Bardziej szczegółowo

IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski

IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski IX. KRYPTOGRAFIA KWANTOWA Janusz Adamowski 1 1 Wstęp Wykład ten stanowi wprowadzenie do kryptografii kwantowej. Kryptografia kwantowa jest bardzo obszerną i szybko rozwijającą się dziedziną obliczeń kwantowych,

Bardziej szczegółowo

Seminarium: Efekty kwantowe w informatyce

Seminarium: Efekty kwantowe w informatyce Seminarium: Efekty kwantowe w informatyce Aleksander Mądry Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Sprawy organizacyjne Spotykamy się w piątki o 12:15 w sali 105. Każdy kto będzie

Bardziej szczegółowo

Informatyka kwantowa. Karol Bartkiewicz

Informatyka kwantowa. Karol Bartkiewicz Informatyka kwantowa Karol Bartkiewicz Informacja = Wielkość fizyczna Jednostka informacji: Zasada Landauera: I A =log 2 k B T ln 2 1 P A R. Landauer, Fundamental Physical Limitations of the Computational

Bardziej szczegółowo

Historia. Zasada Działania

Historia. Zasada Działania Komputer kwantowy układ fizyczny do opisu którego wymagana jest mechanika kwantowa, zaprojektowany tak, aby wynik ewolucji tego układu reprezentował rozwiązanie określonego problemu obliczeniowego. Historia

Bardziej szczegółowo

kondensat Bosego-Einsteina

kondensat Bosego-Einsteina kondensat Bosego-Einsteina Jacek Matulewski Karolina Słowik Jarosław Zaremba Jacek Jurkowski MECHANIKA KWANTOWA DLA NIEFIZYKÓW Podziękowania dla Dr. M. Zawady (Krajowe Laboratorium Fizyki Atomowej, Molekularnej

Bardziej szczegółowo

TELEPORTACJA NIEZNANEGO STANU KWANTOWEGO

TELEPORTACJA NIEZNANEGO STANU KWANTOWEGO ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 04 Seria: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 905 Marcin SOBOTA Politechnika Śląska Wydział Organizacji i Zarządzania TELEPORTACJA NIEZNANEGO STANU KWANTOWEGO

Bardziej szczegółowo

Seminarium Ochrony Danych

Seminarium Ochrony Danych Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner

Bardziej szczegółowo

Ś ź Ś Ś

Ś ź Ś Ś Ś ź Ś Ś Ę Ż Ę ź Ł Ą ź ź Ę ź Ą Ą Ę Ó Ś Ś Ś Ę Ś ź Ś Ś ź ź ź ź Ę Ą Ż Ą ź ź ź Ę ź Ę Ś ź ź ŚĆ Ś Ś ź ź Ą Ą Ą Ą ź ź ź Ż Ś Ą Ś Ą Ś Ń Ś Ą Ż Ś Ń Ś Ą Ą Ę Ś Ą ź ź ź Ą ź ź ź Ą Ż Ą Ą Ę ź Ę Ź ź ź Ą Ś Ą ź ź Ę ź Ą ź Ć

Bardziej szczegółowo

Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć

Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć ń Ż Ę Ń ń ń ć Ę ź ń ń ń ć Ż Ś Ż Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć Ż ć ń ń ń ć Ż ń ć ń ń Ó Ń ź ń ń Ś Ś Ż ć ć ć ć Ż ć ć ń ć ń Ż ć Ó Ż Ż Ż ć Ą ć Ó Ł Ą Ą Ó Ń ń ń ć ć ć ć ń ń ć Ń Ś ć Ś Ż ć ń Ż

Bardziej szczegółowo

Ł Ę Ż Ą Ęć Ń Ń Ł Ę

Ł Ę Ż Ą Ęć Ń Ń Ł Ę Ł Ł Ł Ń Ń Ł Ę Ż Ą Ęć Ń Ń Ł Ę Ł ć ć ć ź ć ć ź ć ć ć ć Ś Ś Ł ć ć ć Ę Ą ć ć Ź ć ć Ó ć ć ź Ł Ń ć Ś ć ć ć ć ć ć ć Ń Ę ć ć ć Ś Ś ć Ę ź Ń Ę ć Ń ć ź ć Ń ć ć ć ć ć ć ć Ę ź ć ć ć ć ć ć ć ŚĆ ć ź ć ć Ł ć ź Ą ć ć Ą

Bardziej szczegółowo

Ą Ś Ó

Ą Ś Ó Ó ź ź Ó Ą ć Ą Ś Ó Ś Ę Ś Ł Ź ć Ś ć Ź Ę Ś Ą Ó Ó ź ć ć Ź Ź Ę ć ź ź Ń Ł Ź Ź ź Ń Ź ć Ś Ę Ą Ś Ź Ń Ń ć Ó Ś Ś ź Ź Ź Ą Ń Ą ź Ń Ł Ń Ń Ń ź Ń ć ć ć ź ć Ś Ń ć ć Ę ć Ę ć Ę Ź Ś Ó Ź Ę Ś Ę Ź Ó Ź Ę Ń ć ź Ź Ó Ę ć Ś Ź Ń ć

Bardziej szczegółowo

Ę ż Ó Ł Ść ą ą ą Ą ć ż ą ż ń ą ć ż ć Ę ą ż ą ą ż ą ź ą ń ą ń ą ą ż ć

Ę ż Ó Ł Ść ą ą ą Ą ć ż ą ż ń ą ć ż ć Ę ą ż ą ą ż ą ź ą ń ą ń ą ą ż ć ż Ś Ą ć ą ą ą ż ż ą ą ć ą ż Ę ą ć ż ć Ó ą ą ń ą ż ń ą Ń ą ą ą Ą ą ż ż Ą ż ą ź ą ą ż ż Ę ź ą ż ą ą ą ż Ź ą ń Ę ż Ó Ł Ść ą ą ą Ą ć ż ą ż ń ą ć ż ć Ę ą ż ą ą ż ą ź ą ń ą ń ą ą ż ć ć ą ż ą ą ą ą ć ć ć ą ą

Bardziej szczegółowo

ś ś Ż ś Ń Ń Ę Ł ć ś Ł

ś ś Ż ś Ń Ń Ę Ł ć ś Ł Ń Ń ś Ń ś ś Ż ś Ń Ń Ę Ł ć ś Ł Ń ś ś Ą ś Ł ś Ń Ą ść ś ś ść ć ś ź ść ść Ą Ń ść ś ść Ń ś ś ć Ń ś ć ć ć Ń Ł Ń ć Ń Ł Ę ś Ł Ł ć ś ź ć ś ś ć ść ś Ł ś Ł Ł Ń Ń Ś ść ś ś ś ść ć Ń ść ść ś ś ść ś ś ś ś ć Ń ść Ł ś

Bardziej szczegółowo

ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę

ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę ć ę ę Ł Ą Ś Ś ę Ś ę ę ć ć ę ę ę ę ć Ś ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę Ą ę Ą ę ć ę ć Ą ć ę ć ć ę Ę ę Ś Ą Ł Ó ę ć ę ę ę ę Ą ć ęć ę ć ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę Ą ę ę ę ę Ń ę Ó

Bardziej szczegółowo

Ł Ł Ę Ż ź

Ł Ł Ę Ż ź Ł Ł Ł Ę Ż ź Ż Ę Ź ć Ź ć ć ć ć ć Ż ć ź Ę Ź Ź Ę Ź Ą Ź Ą Ą Ż Ż Ę Ń Ź Ź ć Ę ć Ę Ę Ę Ę Ę Ą Ę ź ć Ą Ą Ę Ź Ł Ę Ż Ż Ą Ź Ą Ź Ź Ę Ń Ź Ś Ż Ą Ź ź ć ć Ą Ą Ł Ś Ź Ę Ę Ź Ę Ę Ą Ł Ę Ą Ę Ż Ą Ł Ł Ę Ę Ę Ę ź ź ć Ź ź Ś ć Ó

Bardziej szczegółowo

Ó ń ń ń ń ń ź Ł ć ć ź ć ź ć ć ź ź ć Ó ń ć ń ć Ą ź ć ć ź ń ń ń Ę Ś Ł ć ń ń ń Ó Ó Ó Ó Ą Ó ź ć Ó ź ń ć ź ź Ę Ś ć Ę Ż Ś ź Ć ć ź ć ć ń ź ć Ł Ł Ó Ś ć ć ź ć Ś ń Ł Ó Ś ć Ś Ś ć Ó Ś ź ń ź ź ń Ę Ę ń Ó ń ń ź ź ń

Bardziej szczegółowo

ć ć Ę Ó Ś ż ż Ś ż ż ż Ęć ż ć ć ż ż

ć ć Ę Ó Ś ż ż Ś ż ż ż Ęć ż ć ć ż ż Ń ć Ś ż ź ź ź ć ć Ę Ó Ś ż ż Ś ż ż ż Ęć ż ć ć ż ż Ę Ę ć ć ż Ł ż ź ż ż ż ć ż ż Ś ć ż ż ż Ś Ę ż Ó ć Ą ż ż ż ż ż ć ż ć ż ć Ą Ą ć Ę Ś Ś Ł ć ż ż ż Ł Ś Ś Ł ż Ę Ę ż ć Ę Ę ż ż ż Ł Ś ż ć ż ż ż ż Ś ż ż ć Ę ż ż ż

Bardziej szczegółowo

ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń

ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ł Ą Ę ż ż ż ż Ó ż Ż Ż Ę Ż Ą Ż Ż ż Ś Ż Ś ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ę Ó Ł Ś ż ż Ę Ę ż Ó ż Ś Ę ń ń ń ż ń ń Ę Ę ń ż Ą ń Ś Ś Ę ń Ż Ę Ę ż ń ń ń ń ż Ę ń ń ń ń Ł Ę ń ń ń ń ż Ę ż ż ż Ź ż Ż ż Ż ż ż Ę ń Ę ż

Bardziej szczegółowo

ż ć Ń Ł Ż Ść Ść ć Ż Ść Ż ć ć Ż ź Ś ć ć Ó ć ć Ść

ż ć Ń Ł Ż Ść Ść ć Ż Ść Ż ć ć Ż ź Ś ć ć Ó ć ć Ść ć Ż ż Ę ż ć Ń Ł Ż Ść Ść ć Ż Ść Ż ć ć Ż ź Ś ć ć Ó ć ć Ść Ż Ść Ż ć Ż Ż Ż ż Ż ć Ł Ś Ż Ś ć Ż ć Ż ż ź Ż Ś ć ć ć ć Ó ć Ż Ść Ż ć ć Ż ż Ł Ż Ę ć ć ć Ż ć ć Ż ż ż ć Ż Ż ć Ł ć Ż Ć Ż Ż Ś Ż Ż Ż ć Ż ć ż ć Ż Ś Ż ć Ł ć

Bardziej szczegółowo

ć ć

ć ć Ł Ź Ź Ś ć ć ć Ś ź Ę Ł ć ć ź ć Ś Ź Ź ź ź Ź ź ź Ś ć ć ć ć ź ć Ę Ś Ą Ń Ś Ł ź Ś Ś Ź Ś ź Ł Ź Ź ź Ś ć Ń Ś Ł ć Ś Ł Ę Ś ź Ź Ś Ą Ę Ś Ę ć ć Ś Ź Ł Ź Ś Ć Ść ć Ś Ś ź Ź ć Ź ć Ł ź ć Ś Ą ć Ść ć ć Ś Ś Ś Ą Ś Ś ć Ś Ś ć ć

Bardziej szczegółowo

Ż Ż Ł

Ż Ż Ł Ż Ż Ł ć Ż Ł Ń Ń Ż Ś ć Ę ć ć ź ć ć Ź Ę ź Ń Ł ć ć Ę ć Ć Ę ć ć ć Ą Ń ć Ą Ą Ś Ę Ć Ę ć ź Ę Ł Ś ć Ą ź Ą Ń ć Ż Ę ć Ó ć ć ć Ę ć ć Ń ć ć ć ć ć Ę ć Ą ć Ę Ż Ć ć Ć ź Ą ź Ś Ę ź Ę Ą ć Ę Ę Ś Ń ź ć ć ć ź Ż ć ŚĆ Ę Ń Ń

Bardziej szczegółowo

ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść

ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ż Ż ć Ę Ę Ę ż ć ż Ś Ż Ż Ś Ż Ó ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ś Ś Ż ż Ż Ż Ł Ż ć ż Ś Ś Ż Ż Ś Ś Ż Ż ż Ż Ż Ść Ż Ż ż Ż Ż Ś Ą ć Ż ż Ł Ą ż Ś ż ż Ę Ż Ż Ś Ż Ę ć ż ż Ę ć ż ż Ż Ś Ż

Bardziej szczegółowo

ć ć Ść ć Ść ć ć ć ć

ć ć Ść ć Ść ć ć ć ć Ź Ść ć ć ć ć Ść ć ć ć ć Ść ć ć Ść ć Ść ć ć ć ć Ź Ź ć ć Ść ć ć ć ć ć ć ć ć ć ć ć ć Ść ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć ć Ł ć ć Ł Ść ć ć ć ć ć Ź ć Ść ć ć Ść ć ć Ś ć Ł ć ć ć ć

Bardziej szczegółowo

ć Ś

ć Ś Ą Ą Ń Ą ć Ś Ą ć Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś ź Ś ć Ś Ś ć Ś Ś ź Ż ć ź Ż ć Ą Ś ź ź ć Ę ć Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ś Ś Ś Ś Ą ć ć ć ć Ę ć ć Ś Ś Ś ć ć ć Ś Ś Ś Ś ć Ą ć ź ć ć Ę Ą Ś Ę ć ć ź Ę ć ć Ś Ę ź ć ć Ą Ę Ę Ą Ś Ś ź ć ć

Bardziej szczegółowo

ń ń ń ż ć Ł ż ż ń ż Ą ń Ż ż

ń ń ń ż ć Ł ż ż ń ż Ą ń Ż ż Ł ż ż Ż ć Ź ź ż ń ń Ż ń ń ń ż ć Ł ż ż ń ż Ą ń Ż ż ń ń ż ć ć ń Ó ż Ł Ł ż ż Ł ć Ó ć ć ż ż ć ć ć ż ć ć Ó ż Ź Ż ć ź ż Ó ć ć ń Ł ń ń ń ć Ś ż Ź Ź Ł ż ż ć ź Ź ć ć Ż Ó ń ć ć ń Ż ż ż Ą Ż ż Ź Ż ć ż Ó Ź ź Ą Ż Ł ż

Bardziej szczegółowo

ń ż ś

ń ż ś Ł ń ń ś ś ń ń ń ś ż Ń ż ż ć Ą ń ż ż ń ż ś ś Ł ń ń ść Ł ż Ł Ń ź ść ń ż ż ż ś ś ś ż ś ż ż ś ń ń ż ź ż ż ż ń ź ń ś ń ń Ą ć Ę Ł ń Ń ż ść Ń ż Ę ż ż ż ż ż ż ż ść ż ś ń ż ż ż ż ś ś ś ś ż ś ż ś ć ś ż ż ć ś ż ć

Bardziej szczegółowo

Ść ć Ż ć Ż Ś ć ż ń ż Ż ć Ś Ż ń

Ść ć Ż ć Ż Ś ć ż ń ż Ż ć Ś Ż ń ć Ę ć Ę Ę Ż Ść ć Ż ć Ż Ś ć ż ń ż Ż ć Ś Ż ń ń Ż ż Ń ć ń Ó ć Ę Ż ć ć Ś Ż Ż ż Ż Ż Ż ń ż ż Ż Ż ż Ż Ż ć ć Ż ń ń ć ć ć ż Ś Ł ż Ę Ż ć ć ć ń Ż ń Ł ń ż ć ć Ż ż Ó ć ć ń ć Ż Ż ń ń ń ż Ż ć Ż ż Ż Ó ż Ż ć ż ż Ę Ż Ż

Bardziej szczegółowo

Kryptografia kwantowa

Kryptografia kwantowa WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Kryptografia kwantowa Instrukcja nr 1 Dąbrowa Górnicza, 2010 INSTRUKCJA

Bardziej szczegółowo

Informatyka kwantowa

Informatyka kwantowa VI Festiwal Nauki i Sztuki na Wydziale Fizyki UAM Informatyka kwantowa Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas 16 października 2003 Spis treści 1 Rozwój komputerów 4 1.1 Początki..................

Bardziej szczegółowo

Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż

Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż Ł Ł Ń Ń Ł ó ó Ż ż ó Ń Ń Ł ó ż Ę ż Ł Ś Ł Ś Ś ó ż ć ó ó óż ó ć ó ć ż ć ż Ć ż ż ć ó ó ó ó Ś ó ż ż ŚĆ ż ż ż Ś ż ó ó ó ó Ą Ć ż ó ó ż ó Ę ż ó ó ó Ś ć ż ż ć ó Ę ć Ś ó ż ć ż ć ż ć ż Ę ó ż ż ź ó Ę Ę ó ó ż ó ó ć

Bardziej szczegółowo

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1

Kryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś  Wykład 1 Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie

Bardziej szczegółowo

TEORIE KWANTOWE JAKO PODSTAWA NOWOCZESNEJ KRYPTOGRAFII QUANTUM TEORIIES AS MODERN CRYPTOGRAPHY BASIS

TEORIE KWANTOWE JAKO PODSTAWA NOWOCZESNEJ KRYPTOGRAFII QUANTUM TEORIIES AS MODERN CRYPTOGRAPHY BASIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ Seria: ORGANIZACJA I ZARZĄDZANIE z. XX XXXX Nr kol. XXXX Marcin SOBOTA Politechnika Śląska Wydział Organizacji i Zarządzania Instytut Ekonometrii i Informatyki TEORIE

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA PROTOKOŁÓW BB84 ORAZ SARG COMPARATIVE ANALYSIS OF PROTOCOLS BB84 AND SARG

ANALIZA PORÓWNAWCZA PROTOKOŁÓW BB84 ORAZ SARG COMPARATIVE ANALYSIS OF PROTOCOLS BB84 AND SARG ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Seria: ORGANIZACJA I ZARZĄDZANIE z. 74 Nr kol. 1921 Marcin SOBOTA Wydział Organizacji i Zarządzania Politechnika Śląska ANALIZA PORÓWNAWCZA PROTOKOŁÓW BB84 ORAZ

Bardziej szczegółowo

Ą Ł Ę Ń Ą Ó ŚĆ Ś ć Ó ń ć ŚĆ ć ć

Ą Ł Ę Ń Ą Ó ŚĆ Ś ć Ó ń ć ŚĆ ć ć ń Ą Ą Ł Ę Ń Ą Ó ŚĆ Ś ć Ó ń ć ŚĆ ć ć Ś Ó ć ć ć ć Ż Ę Ż Ś Ć ń ć ń ć ć ć Ż Ż Ć ć Ż ć ć ć ć ć Ż Ż Ś Ć ń Ć Ó ć Ś Ś Ź ć ć ń ć ć Ż ć ć Ć Ż ń ć ć Ś Ć ć ŚĆ ć ć Ś ć Ż ć ć Ż ŚĆ Ś ń Ś Ż Ś ń Ż ń Ś ŹĆ Ś Ś Ś ń Ś ć Ó

Bardziej szczegółowo

Ż Ę ź Ó

Ż Ę ź Ó ź ź Ę Ą Ż Ę ź Ó Ź Ó ź Ę ź Ę Ę Ą Ź Ą Ń Ź Ź Ź Ź ź Ą ź Ę Ą Ć ź ź ź Ę ź Ź ź ź Ę Ł ź Ź Ź Ź ź ź Ź Ź ź ź Ą Ł Ó Ó Ą Ą Ś Ę Ę Ą Ą Ś Ś Ł Ę Ę ź ź Ó Ą Ą Ą Ł Ą Ę Ź Ę ź ź Ę Ą Ź Ź ź Ł Ą Ł Ą ź Ą ź Ł Ą Ó ĘŚ Ą Ę Ę ź Ź Ę

Bardziej szczegółowo

Ą Ź ć Ń Ą ć Ź Ź

Ą Ź ć Ń Ą ć Ź Ź Ó Ó Ż Ę ć Ą Ź ć Ń Ą ć Ź Ź Ń Ą Ą Ź Ź Ń ć Ś Ł ć ć ć ź ć ć ć ć ć ć ć Ź ź ć ć Ł ć Ź ć ć ź ć ć Ą ć ć ć ć ź ć Ą Ż Ż ć ć ć ć ć ć ć ć Ź Ź ć ć Ń ć ć ć ć Ą ć ć ć ć ć ć Ź ć ć ć Ć Ń Ż Ź ć ć Ń ć ć ć ć Ą Ń ć ć ć Ą ć

Bardziej szczegółowo

Ł Ś ś

Ł Ś ś ż ź Ą ą ą ą ą Ł ś ż ś ś ą ż Ż ś ż ż ż ą ż Ł ą ą ą ń ą ś ś ą ą ą ż ś ą ą ż ą ą ą ą ż ń ą ść Ł Ś ś ś ś ą ś ś ą ń ż ą ś ź Ż ą ą ż ś ż ś ść Ź ż ż ś ą ń ą ś ż Ź Ź ż ż ż ą Ó Ż Ź ą Ś ż ść ż ą ź ż ą ą Ź ą Ś Ż

Bardziej szczegółowo

Ł Ą Ó Ł ć Ą ć ć

Ł Ą Ó Ł ć Ą ć ć Ą Ł Ż Ż Ą Ń Ą Ś ź Ść ć Ł Ą Ó Ł ć Ą ć ć Ó ć Ż ż ż ż ć ć ż ć ż Ść Ż ć Ó ź Ł ć Ą ż ż ć ć Ś Ą ż ć Ę Ś Ś Ł ć ć ż ć ź Ż Ę Ó Ś ć ć Ś ż ż ć ć Ż Ó Ń ć Ó Ż Ść Ś ć ć Ż ć Ę ć Ł Ź ŁĄ ż Ó ć ć Ę Ż Ę Ł Ś Ł Ł Ż Ż Ż Ż ć

Bardziej szczegółowo

Ę Ł ź ź ć ź ć Ń ć ź ź Ł

Ę Ł ź ź ć ź ć Ń ć ź ź Ł Ł Ą Ą Ą ź Ł Ę Ń ź ć ć ź ź Ę Ę Ł ź ź ć ź ć Ń ć ź ź Ł ź ć Ń ź Ą Ó Ę Ę ź ć ź ć Ę ć Ż ć Ę Ę ć Ą ć Ą Ł ć Ą ć ć Ń Ń Ń ź ć Ń Ł Ń Ń ź ć ć ć Ę ć Ń ć Ł ć Ń ć ź ź Ę ć Ś ź ć Ą Ę ć Ą ć Ź Ń ź ć ź Ż ć Ł ć Ń ć ź Ą ź Ł

Bardziej szczegółowo

Ó Ż ż Ć ż ż ż Ó Ę Ę Ó Ó ż Ó Ł ż Ł

Ó Ż ż Ć ż ż ż Ó Ę Ę Ó Ó ż Ó Ł ż Ł ż Ó Ż Ż ż ź ż ż Ź Ż ż Ę Ą Ó Ż ż Ć ż ż ż Ó Ę Ę Ó Ó ż Ó Ł ż Ł Ń Ę ż ż Ź ż Ę Ż Ż ż ż ż ż ż ż ż ż ż ż ż Ź ż ż ż Ź Ó Ś Ó ż Ś Ą Ą ż ż Ł Ą Ń Ą Ą Ł ż Ź ż ż ż ż ż ż ŁĄ Ł Ś ż Ż ż Ś ż ż ż Ż ż Ż Ż ż Ż Ż Ż ż ż Ń ź

Bardziej szczegółowo

Ł Ń ś ń ć Ź ś ń

Ł Ń ś ń ć Ź ś ń Ł Ł Ł Ń ś ń ć Ź ś ń ŁĄ Ę Ą Ą Ź ć ś ś Ź ć ć ć ć Ą ń ść ść ń Ź ń ś ś ń ń ń ń ń ś ń ś ść ś Ą ź Ź ś ś ń ć ń ń Ą ń ś ś ś ś Ź ś Ź ś ś Ź ś Ł Ś Ó Ą Ź Ą Ą Ó Ó ń ś ć ć ś ń ń Ść ń Ź ść ść ść ś ś ń ść ś ść ć ś Ń ć

Bardziej szczegółowo

ń

ń Ą ń Ą ż ń Ł ć ń ć ż ć ż Ą ć ń ź ż Ę ż ż ć ń ć ż ć ż ć ż ń ż ć ż ń ń ń ż ń ń ż Ł ń ż ń ć ń ż Ń ć ż ń ń ń ń ń ż ż Ą ć ż ć ż ć ż ć Ń ć ć ń ć ć ń ć ć ż ń ń Ń ń ż ć ź ń ż ż ŁĄ ż ń ż ż ż Ą ż ć ń ż ć ż Ń ż Ń

Bardziej szczegółowo

ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź

ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź Ż ź ź ź Ę Ą Ł ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź Ś Ź Ń Ź Ę Ę ź Ł ź Ż Ę ź Ż Ż Ż Ź Ź Ń ź Ź ź ć Ż Ę ć ć Ą ź ź Ź Ż Ś ź Ę Ę Ż Ż Ś Ę Ę ć Ż Ż Ń Ł Ń Ż Ż ź Ą Ą ź ź ź ć Ą ć ź Ż ć Ż Ę Ń Ę Ż Ż Ż Ó Ż Ż Ż Ż Ą Ł Ż Ł Ł Ł Ż Ż

Bardziej szczegółowo