MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka e-mail: bartek@prz.edu.pl, kkurc@prz.edu.pl Strezczenie. W pracy do identyikacji modelu matematycznego robota inpekcyjnego zatoowano ztuczne ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Rozwiązanie problemu zotało przeprowadzone na drodze numerycznej.. WSTĘP Przy modelowania manipulatorów i robotów popełnia ię wiele niedokładności związanych np. z ocenami parametrów modelu lub nieuwzględniania niektórych zjawik. Z reguły model matematyczny nie jet dokładnie znany. Poprawna analiza dynamiki układów złoŝonych, do jakich zalicza ię roboty inpekcyjne, wymaga identyikacji dynamicznych równań ruchu [][6]. Potać matematyczną opiu zjawik izycznych uzykano, toując równanie Lagrange a II rodzaju.. IDENTYFIKACJA MODELU MATEMATYCZNEO Do opiu ruchu robota inpekcyjnego (ry..a) przyjęto model pokazany na (ry..b). Ry.. a) Robot inpekcyjny, b) model zatępczy robota
88 J. IERIEL, K. KURC Do badań wykorzytano dynamiczne równanie ruchu robota inpekcyjnego wyprowadzone przez autorów w pracach [][][3][5]. Ma ono potać: 3600( l+ r) z tg( ϕ) ( 3m + m+ m3) 0800Ix( l+ r) z tg( ϕ) IFyz + + zkπ zkπ r zk 60ml ( l+ r) ztg( ϕ) ( in( ψ) ) && α+ β 3600m( l+ r) z tg( ϕ) IByz 3m5 z l co( ϕ) 3ICyz l co( ϕ) zkπ && () + + + + zkπ co( δ) zk co( δ) zk co( δ) zk r co( δ ) 80ztg( ϕ) N ( l+ r) 80ztg( ϕ) in( β)( l+ r) 60 in( β) ztg( ϕ)( l+ r) + + zkπ r zkπ zkπ co( ϕ) + = M 603 in( β) z ( ) 60 in ( ) 3co zl( 5r in N ) co tg ϕ l r γ ztg ϕ l r ϕ π γ + ( δ) + + + + + z π z π co( δ) z π r co( δ) k k k m, m, m 3, m, m 5 to may podzepołów robota, I By, I Bz, I Cy, I Cz, I Fy, I Fz, I x to maowe momenty bezwładności podzepołów robota określone względem odpowiednich oi, N, N to iły naciku kół,, to ramiona oporu toczenia kół, M to moment napędowy ilnika, l to odległość wynikająca z geometrii układu, r to promień kół. Po przekztałceniach równanie () zapiano w przetrzeni tanu: & α = Aα + B ( α, β, γ) + ( α, β, γ) u( t) () lub w potaci wektorowej: & α 0 α 0 = + ( && β 3) u( t) α 0 0 + + α & 3600( l+ r) z tg( ϕ) ( 3m + m + m3) 0800Ix( l+ r) z tg( ϕ) IFyz = + + + z π z π r z k k k ( + ) ( ϕ) ( + ) ( ϕ) ( ( ψ) ) ( ϕ) ( ϕ) IByz 5 3ICyz l co + + + kπ co δ k co δ k co δ k co δ 3600m l r z tg 3m z l co z z z z r 60ml l r z tg in = z π k ( ϕ) ( + ) ( ϕ) ( β)( + ) ( β) ( ϕ)( + ) 80z tg N l r 80z tg in l r 60 in z tg l r 3 = + + + zkπ r zkπ zkπ ( β) ( ϕ)( + ) ( γ) ( ϕ)( + ) co ( ϕ) ( δ) ( + ) ( ϕ) π in( γ) co 603 in z tg l 3co r 60 in z tg l z l r N r + + z π z π δ z π r δ co = co k k k 5 (3) W zaleŝnościach,, 3, wytępują nieliniowe parametry: β, γ, δ. Wytępujące w równaniu () (,, ) ( α, β, γ ) = ( α, β, γ) = ( && β + 3) a u( t) M( t) = to wymuzenie. α β γ i (,, ) α β γ to nieliniowe unkcje:
IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 89 Do rozwiązania zadania identyikacji modelu matematycznego robota zatoowano ztuczne ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Zapiano dynamiczne równanie ruchu robota inpekcyjnego w potaci (). Dodając i odejmując od równania () wyraŝenie A α, gdzie A jet odpowiednio dobraną tabilną macierzą projektową [6], otrzymano: & α = Amα + ( A Am) α+ B ( α, β, γ) + ( α, β, γ) u () Równanie to deiniuje trukturę identyikatora ˆ& α = A ˆ ˆ (, ˆ, ˆ) ˆ (, ˆ, ˆ mα + A Am α+ B α β γ + α β γ) u (5) ˆ α jet etymatą wektora tanu α, zaś ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) to etymaty nieliniowych unkcji wytępujących w równaniu (). Błąd etymacji tanu zdeiniowano jako % α = α ˆ α. Odejmując równanie (5) od równania (), otrzymano opi analizowanego zadania identyikacji w przetrzeni błędów &% α = A % (,,, ˆ, ˆ) (,,, ˆ, ˆ mα + B % α β γ β γ + % α β γ β γ) u (6) A % α = A α A ˆ α (7) m m m m ( α, β, γ, ˆ β, ˆ γ) = ( α, β, γ) ˆ( α, ˆ β, ˆ γ) ( α, β, γ, ˆ β, ˆ γ) = ( α, β, γ) ˆ( α, ˆ β, ˆ γ) Do wyznaczenia unkcji ˆ ( α, ˆ β, ˆ γ ) i ˆ(, ˆ, ˆ) PoniewaŜ unkcje (,, ) neuronowych, więc:,, % (8) % (9) α β γ i (,, ) α β γ zatoowano ieci neuronowe. m α β γ mają być aprokymowane za pomocą ieci ( α, β, γ) W T S ( α, β, γ) ε ( α, β, γ) ( α, β, γ) W T S ( α, β, γ) ε ( α, β, γ) = + (0) = + () ε ( α β γ ) i ε ( α, β, γ ) - niedokładność aprokymacji unkcji ( α, β, γ ) i ( α, β, γ ) przez ieci neuronowe, W i W - macierz wag połączeń neuronowych, S ( α, β, γ ) i S (,, ) α β γ - wektory unkcji bazowych. Sieci te mają trukturę ieci z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua: j exp( -β - j ) c j oznacza j-te centrum. Ogólna truktura tego układu jet pokazana na ry.. S x = x c ()
90 J. IERIEL, K. KURC Ry.. Struktura ieci radialnych realizujących aprokymację unkcji ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Przyjmując etymaty unkcji wytępujących w równaniach (8) i (9) w potaci ˆ ˆ ˆ T α, β, ˆ γ = W S α, ˆ β, ˆ γ (3) ˆ T α, β, ˆ γ W (,, ˆ S α β γ) ˆ ˆ = ˆ () ZaleŜności (8) i (9) zapiano w potaci % α, β, γ, ˆ β, ˆ γ = W % T S α, β, γ, ˆ β, ˆ γ + ε α, β, γ (5),, ε ( α β γ ) i (,, ) ( α, β, γ, ˆ β, ˆ γ) = W (,,, ˆ, ˆ) T S α β γ β γ + ε( α, β, γ) % % (6) ε α β γ - to błędy aprokymacji ieci, W % i W % - błędy etymacji wag ieci. Równanie (6) będzie miało potać & T ( ˆ T % α = A %,,,, ˆ) (,,, ˆ, ˆ mα + B W% S α β γ β γ + W% S α β γ β γ) + B R + R (7) R = ε ( α, β, γ), R ε( α, β, γ) u S α, β, γ, ˆ β, ˆ γ u S,,, ˆ α β γ β, ˆ = γ. =, Stabilność układu zbadano na podtawie kryterium tabilności Lapunowa. Wiadomo, Ŝe układ dynamiczny będzie tabilny, jeŝeli itnieje dla niego unkcja Lapunowa [][6]. Funkcję tę przyjmuje ię w potaci: T T T V = % α P % α+ trw% F W% + trw% F W% (8) Aby unkcja ta była unkcją Lapunowa, jej pochodna mui być ujemna. V& (,,, ˆ, ˆ) (,,, ˆ, ˆ) T Q T PB W T S W T S R R trw T α α α α β γ β γ α β γ β γ F W trw T = % % + % % + % + + + % %& + % F W% & Uczenie wag ieci przebiega zgodnie z zaleŝnościami:,,, ˆ, T W &% = F S α β γ β ˆ γ % α PB (9) (,,, ˆ, ˆ) &% % (0) T W = F S α β γ β γ α PB Z macierzowego równania Lapunowa: T E P+ PE= Q= I () określono macierz hermitowką:
IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 9 p p P= p p 3 rozwiązując równanie: e e p p p p e e - 0 e e p p + 3 p p = 3 e e 0 - () Otatecznie algorytm uczenia wag (9) i (0) ma potać: & ˆ,,, ˆ T W = F S α β γ β, ˆ γ % α h (3) (,,, ˆ, ˆ) & ˆ T W = F S α β γ β γ % α h () 3. SYMULACJA NEURONOWA IDENTYFIKACJI MODELU Zaproponowana procedura identyikacji parametrycznej ruchu mobilnego robota inpekcyjnego z zatoowaniem ieci neuronowych w proceie identyikacji układów nieliniowych zotała wygenerowana w pakiecie Matlab/Simulink według truktury pokazanej na ry.3. M(t) u(t) Al u(t) Obiekt dynamiczny Al Al u(t) Identyikacja Ry.3. Struktura identyikatora Strukturę bloku identyikacji przedtawiono na ry.. Al A 3 u(t) Mux (u) Am B I ^ Am ^ Siec Siec Ry.. Struktura bloku identyikacji Symulacja : Przy dobranej macierzy projektowej diagonalnej A diag(, 35) m = przeprowadzono identyikację modelu matematycznego robota. W celu weryikacji zaproponowanego
9 J. IERIEL, K. KURC rozwiązania, przeprowadzono ekperyment numeryczny. W ymulacji za ygnał wymuzający przyjęto moment napędowy wygenerowany z zadania odwrotnego dynamiki [] pokazany na (ry.5). Przebiegi uzykane z modelu dynamicznego przedtawiono na ry.6. Ry.5. Przebieg ygnału wymuzającego Ry.6. Przebiegi z obiektu dynamicznego Ry.7. ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Ry.7 przedtawia etymaty nieliniowych unkcji równań (3) i (). u Ry.8. Przebiegi etymowane Na ry.8 przedtawiono przebiegi etymowane nieliniowych unkcji obiektu dynamicznego (ry.6) aprokymowane przez ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Przebiegi te odjęto od iebie i uzykano błąd etymacji tanu zdeiniowano jako % α = α ˆ α (ry.9).
IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 93 Ry.9. Błędy identyikacji neuronowej Ry.0. Wybrane wagi ieci Ry.0 przedtawia jak zmieniały ię wagi ieci podcza uczenia ich według zaleŝności (3), (), przyjmując podcza ymulacji zerowe wagi początkowe ( W ˆ 0 = 0 ) i ( W ˆ 0 = 0 ). Symulacja : Dobierając na drodze ekperymentalnej inne wpółczynniki macierzy projektowej A = diag 5, 60 przeprowadzono identyikację modelu matematycznego diagonalnej m robota przy tym amym wymuzeniu (ry.5) i tych amych przebiegach z obiektu dynamicznego (ry.6). Ry.. ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Tak jak w ymulacji nr przedtawiono etymaty nieliniowych unkcji (ry.), błąd etymacji tanu zdeiniowano jako % α = α ˆ α (ry.) i zmieniany wag ieci podcza ich uczenia (ry.3). u Ry.. Błędy identyikacji neuronowej Ry.3. Wybrane wagi ieci
9 J. IERIEL, K. KURC Uzykane rozwiązania w ymulacji nr i ą ograniczone, a ich dokładność moŝna zwiękzyć poprzez odpowiedni dobór macierzy projektowej A m co znacznie zmniejzyło błąd identyikacji neuronowej (ry.) w porównaniu do ry.9.. PODSUMOWANIE Zaproponowana procedura identyikacji modelu matematycznego robota inpekcyjnego umoŝliwia zatoowanie ieci neuronowych w proceie identyikacji układów nieliniowych. Uzykane rezultaty numeryczne wkazują, Ŝe układ zotał odpowiednio pobudzony przez moment ilnika napędowego podcza realizacji zadanej trajektorii ruchu. Zatoowanie tego podejścia moŝe zotać wykorzytane do monitorowania obciąŝeń, wykrywania uzkodzeń itp. LITERATURA. iergiel J., Kurc K.: Contruction, analyi and imulation o the inpective robot. Machine Dynamic Problem 006, Vol. 30, No 3, p.5-3.. iergiel J., Kurc K.: Modeling o dynamic o the inpective robot. 0 th international eminar o applied mechanic. Politechnika Śląka,. 3-3. 3. iergiel J., Kurc K.: Mechatronic o the inpective robot. Mechanic and Mechanical Engineering 006, Vol. 0, No.. 56-73.. iergiel J., Hendzel Z., śylki W.: Kinematyka, dynamika i terowanie mobilnych robotów kołowych w ujęciu mechatronicznym. Kraków : AH, 000. Monograie. 5. iergiel J., Kurc K.: Mechatroniczne projektowanie robota inpekcyjnego. Pomiary, automatyk, kontrola 007, Vol. 53, nr 6,. 7-77. 6. Hendzel Z., iergiel M., śylki W.: Modelowanie i terowanie mobilnych robotów kołowych. Warzawa: Wyd. Nauk. PWN, 00. IDENTIFICATION OF THE MATHEMATICAL MODEL INSPECTION ROBOT Summary. To identiication o the mathematical model inpection robot were ued artiicial neural network with the radial broaden unctional in the orm o au' unction. Preented problem wa olved on the numerical way. Praca wykonana w ramach projektu badawczego nr N N50 008 33