IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

Podobne dokumenty
Laboratorium. Sterowanie napędami elektrycznymi zagadnienia wybrane

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie

SZEREGOWY SYSTEM HYDRAULICZNY

LABORATORIUM Z AUTOMATYKI NAPĘDU ELEKTRYCZNEGO

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

POLITECHNIKA WARSZAWSKA WYDZIAŁ SAMOCHODÓW I MASZYN ROBOCZYCH Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Naprężenia styczne i kąty obrotu

1 Przekształcenie Laplace a

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

WYMIAROWANIE PRZEKROJÓW POZIOMYCH KOMINÓW ŻELBETOWYCH W STANIE GRANICZNYM NOŚNOŚCI WG PN-EN - ALGORYTM OBLICZENIOWY

OPIS KINEMATYKI MOBILNEGO ROBOTA KOŁOWEGO

Schematy blokowe. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTY SCHEMATU BLOKOWEGO

Obliczanie naprężeń stycznych wywołanych momentem skręcającym w przekrojach: kołowym, pierścieniowym, prostokątnym 7

dynamiki mobilnego robota transportowego.

PRZEWODNIK PO PRZEDMIOCIE

Stabilność liniowych układów dyskretnych

Zadanie bloczek. Rozwiązanie. I sposób rozwiązania - podział na podukłady.

2.12. Zadania odwrotne kinematyki

Rozszerzony konspekt preskryptu do przedmiotu Teoria Maszyn i Mechanizmów

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

IDENTYFIKACJA PARAMETRÓW MODELU MATEMATYCZNEGO SYNCHRONICZNYCH MASZYN WZBUDZANYCH MAGNESAMI TRWAŁYMI

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Symulacje komputerowe

MODELOWANIE KINEMATYKI I DYNAMIKI MOBILNEGO MINIROBOTA

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Układ stabilizacji kursu statku z wykorzystaniem algorytmów sterowania inteligentnego

Efekty kształcenia na kierunku AiR drugiego stopnia - Wiedza Wydziału Elektrotechniki, Automatyki i Informatyki Politechniki Opolskiej

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

Skręcanie prętów naprężenia styczne, kąty obrotu 4

WYZNACZANIE MODUŁU SPRĘŻYSTOŚCI POSTACIOWEJ G ORAZ NAPRĘŻEŃ SKRĘCAJĄCYCH METODĄ TENSOMETRYCZNĄ

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

Zadanie 1. Podaj model matematyczny układu jak na rysunku: a) w postaci transmitancji, b) w postaci równań stanu (równań różniczkowych).

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

NEURONOWO-ROZMYTE SYSTEMY STEROWANIA MOBILNYM ROBOTEM KOŁOWYM

Określenie maksymalnych składowych stycznych naprężenia na pobocznicy pala podczas badania statycznego

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Zeszyty Problemowe Maszyny Elektryczne Nr 75/

Filtry aktywne czasu ciągłego i dyskretnego

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Estymacja wektora stanu w prostym układzie elektroenergetycznym

INTERPOLACJA I APROKSYMACJA FUNKCJI

i odwrotnie: ; D) 20 km h

Modele wielorownaniowe

Modelowanie zdarzeń na niestrzeŝonych przejazdach kolejowych

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Podstawy robotyki wykład VI. Dynamika manipulatora

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

2.9. Kinematyka typowych struktur manipulatorów

Manipulatory i roboty mobilne AR S1 semestr 5

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

Porównanie struktur regulacyjnych dla napędu bezpośredniego z silnikiem PMSM ze zmiennym momentem bezwładności i obciążenia

1. Funkcje zespolone zmiennej rzeczywistej. 2. Funkcje zespolone zmiennej zespolonej

Dynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI

Kierunek: Automatyka i Robotyka Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne. Wykład Ćwiczenia

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Algorytmy ewolucyjne (2)

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości

Algorytmy sztucznej inteligencji

Inżynieria Systemów Dynamicznych (4)

Zaawansowane metody numeryczne

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

( L,S ) I. Zagadnienia

Notacja Denavita-Hartenberga

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Filtry aktywne czasu ciągłego i dyskretnego

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej

KO OF Szczecin:

Statyczne charakterystyki czujników

Tadeusz SZKODNY. POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1647 MODELOWANIE I SYMULACJA RUCHU MANIPULATORÓW ROBOTÓW PRZEMYSŁOWYCH

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

Zastosowania sieci neuronowych - automatyka identyfikacja sterowanie

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją

ANALIZA DYNAMICZNA MODELU OBIEKTU SPECJALNEGO Z MAGNETOREOLOGICZNYM TŁUMIKIEM

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

ROZKŁAD A PRIORI W CZYNNIKU BAYESOWSKIM A WYBÓR MODELU KLAS UKRYTYCH

IDENTYFIKACJA PARAMETRÓW SILNIKA INDUKCYJNEGO ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak

Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 4(85)/2011

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

STEROWANIE STRUMIENIEM Z MODULACJĄ WEKTOROWĄ

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

S Y L A B U S P R Z E D M I O T U

Biomechanika Inżynierska

Metody systemowe i decyzyjne w informatyce

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

METODY KOMPUTEROWE W MECHANICE

ZASTOSOWANIE GRAFÓW ZALEŻNOŚCI I DRZEW ROZGRYWAJĄCYCH PARAMETRYCZNIE W PROCESIE INNOWACJI NA PRZYKŁADZIE UKŁADÓW MASZYNOWYCH

MODEL BEZSZCZOTKOWEGO SILNIKA PRĄDU STAŁEGO WYKORZYSTANY W ANALIZIE MANIPULATORA RÓWNOLEGŁEGO

INSTRUKCJA DO ĆWICZENIA NR 7

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Pomiar rezystancji. Rys.1. Schemat układu do pomiaru rezystancji metodą techniczną: a) poprawnie mierzonego napięcia; b) poprawnie mierzonego prądu.

1. Podstawowe pojęcia

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Rok akademicki: 2030/2031 Kod: RAR n Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Wyznaczanie momentów bezwładności brył sztywnych metodą zawieszenia trójnitkowego

dr inż. Jan Staszak kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) język polski II

Transkrypt:

MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka e-mail: bartek@prz.edu.pl, kkurc@prz.edu.pl Strezczenie. W pracy do identyikacji modelu matematycznego robota inpekcyjnego zatoowano ztuczne ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Rozwiązanie problemu zotało przeprowadzone na drodze numerycznej.. WSTĘP Przy modelowania manipulatorów i robotów popełnia ię wiele niedokładności związanych np. z ocenami parametrów modelu lub nieuwzględniania niektórych zjawik. Z reguły model matematyczny nie jet dokładnie znany. Poprawna analiza dynamiki układów złoŝonych, do jakich zalicza ię roboty inpekcyjne, wymaga identyikacji dynamicznych równań ruchu [][6]. Potać matematyczną opiu zjawik izycznych uzykano, toując równanie Lagrange a II rodzaju.. IDENTYFIKACJA MODELU MATEMATYCZNEO Do opiu ruchu robota inpekcyjnego (ry..a) przyjęto model pokazany na (ry..b). Ry.. a) Robot inpekcyjny, b) model zatępczy robota

88 J. IERIEL, K. KURC Do badań wykorzytano dynamiczne równanie ruchu robota inpekcyjnego wyprowadzone przez autorów w pracach [][][3][5]. Ma ono potać: 3600( l+ r) z tg( ϕ) ( 3m + m+ m3) 0800Ix( l+ r) z tg( ϕ) IFyz + + zkπ zkπ r zk 60ml ( l+ r) ztg( ϕ) ( in( ψ) ) && α+ β 3600m( l+ r) z tg( ϕ) IByz 3m5 z l co( ϕ) 3ICyz l co( ϕ) zkπ && () + + + + zkπ co( δ) zk co( δ) zk co( δ) zk r co( δ ) 80ztg( ϕ) N ( l+ r) 80ztg( ϕ) in( β)( l+ r) 60 in( β) ztg( ϕ)( l+ r) + + zkπ r zkπ zkπ co( ϕ) + = M 603 in( β) z ( ) 60 in ( ) 3co zl( 5r in N ) co tg ϕ l r γ ztg ϕ l r ϕ π γ + ( δ) + + + + + z π z π co( δ) z π r co( δ) k k k m, m, m 3, m, m 5 to may podzepołów robota, I By, I Bz, I Cy, I Cz, I Fy, I Fz, I x to maowe momenty bezwładności podzepołów robota określone względem odpowiednich oi, N, N to iły naciku kół,, to ramiona oporu toczenia kół, M to moment napędowy ilnika, l to odległość wynikająca z geometrii układu, r to promień kół. Po przekztałceniach równanie () zapiano w przetrzeni tanu: & α = Aα + B ( α, β, γ) + ( α, β, γ) u( t) () lub w potaci wektorowej: & α 0 α 0 = + ( && β 3) u( t) α 0 0 + + α & 3600( l+ r) z tg( ϕ) ( 3m + m + m3) 0800Ix( l+ r) z tg( ϕ) IFyz = + + + z π z π r z k k k ( + ) ( ϕ) ( + ) ( ϕ) ( ( ψ) ) ( ϕ) ( ϕ) IByz 5 3ICyz l co + + + kπ co δ k co δ k co δ k co δ 3600m l r z tg 3m z l co z z z z r 60ml l r z tg in = z π k ( ϕ) ( + ) ( ϕ) ( β)( + ) ( β) ( ϕ)( + ) 80z tg N l r 80z tg in l r 60 in z tg l r 3 = + + + zkπ r zkπ zkπ ( β) ( ϕ)( + ) ( γ) ( ϕ)( + ) co ( ϕ) ( δ) ( + ) ( ϕ) π in( γ) co 603 in z tg l 3co r 60 in z tg l z l r N r + + z π z π δ z π r δ co = co k k k 5 (3) W zaleŝnościach,, 3, wytępują nieliniowe parametry: β, γ, δ. Wytępujące w równaniu () (,, ) ( α, β, γ ) = ( α, β, γ) = ( && β + 3) a u( t) M( t) = to wymuzenie. α β γ i (,, ) α β γ to nieliniowe unkcje:

IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 89 Do rozwiązania zadania identyikacji modelu matematycznego robota zatoowano ztuczne ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Zapiano dynamiczne równanie ruchu robota inpekcyjnego w potaci (). Dodając i odejmując od równania () wyraŝenie A α, gdzie A jet odpowiednio dobraną tabilną macierzą projektową [6], otrzymano: & α = Amα + ( A Am) α+ B ( α, β, γ) + ( α, β, γ) u () Równanie to deiniuje trukturę identyikatora ˆ& α = A ˆ ˆ (, ˆ, ˆ) ˆ (, ˆ, ˆ mα + A Am α+ B α β γ + α β γ) u (5) ˆ α jet etymatą wektora tanu α, zaś ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) to etymaty nieliniowych unkcji wytępujących w równaniu (). Błąd etymacji tanu zdeiniowano jako % α = α ˆ α. Odejmując równanie (5) od równania (), otrzymano opi analizowanego zadania identyikacji w przetrzeni błędów &% α = A % (,,, ˆ, ˆ) (,,, ˆ, ˆ mα + B % α β γ β γ + % α β γ β γ) u (6) A % α = A α A ˆ α (7) m m m m ( α, β, γ, ˆ β, ˆ γ) = ( α, β, γ) ˆ( α, ˆ β, ˆ γ) ( α, β, γ, ˆ β, ˆ γ) = ( α, β, γ) ˆ( α, ˆ β, ˆ γ) Do wyznaczenia unkcji ˆ ( α, ˆ β, ˆ γ ) i ˆ(, ˆ, ˆ) PoniewaŜ unkcje (,, ) neuronowych, więc:,, % (8) % (9) α β γ i (,, ) α β γ zatoowano ieci neuronowe. m α β γ mają być aprokymowane za pomocą ieci ( α, β, γ) W T S ( α, β, γ) ε ( α, β, γ) ( α, β, γ) W T S ( α, β, γ) ε ( α, β, γ) = + (0) = + () ε ( α β γ ) i ε ( α, β, γ ) - niedokładność aprokymacji unkcji ( α, β, γ ) i ( α, β, γ ) przez ieci neuronowe, W i W - macierz wag połączeń neuronowych, S ( α, β, γ ) i S (,, ) α β γ - wektory unkcji bazowych. Sieci te mają trukturę ieci z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua: j exp( -β - j ) c j oznacza j-te centrum. Ogólna truktura tego układu jet pokazana na ry.. S x = x c ()

90 J. IERIEL, K. KURC Ry.. Struktura ieci radialnych realizujących aprokymację unkcji ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Przyjmując etymaty unkcji wytępujących w równaniach (8) i (9) w potaci ˆ ˆ ˆ T α, β, ˆ γ = W S α, ˆ β, ˆ γ (3) ˆ T α, β, ˆ γ W (,, ˆ S α β γ) ˆ ˆ = ˆ () ZaleŜności (8) i (9) zapiano w potaci % α, β, γ, ˆ β, ˆ γ = W % T S α, β, γ, ˆ β, ˆ γ + ε α, β, γ (5),, ε ( α β γ ) i (,, ) ( α, β, γ, ˆ β, ˆ γ) = W (,,, ˆ, ˆ) T S α β γ β γ + ε( α, β, γ) % % (6) ε α β γ - to błędy aprokymacji ieci, W % i W % - błędy etymacji wag ieci. Równanie (6) będzie miało potać & T ( ˆ T % α = A %,,,, ˆ) (,,, ˆ, ˆ mα + B W% S α β γ β γ + W% S α β γ β γ) + B R + R (7) R = ε ( α, β, γ), R ε( α, β, γ) u S α, β, γ, ˆ β, ˆ γ u S,,, ˆ α β γ β, ˆ = γ. =, Stabilność układu zbadano na podtawie kryterium tabilności Lapunowa. Wiadomo, Ŝe układ dynamiczny będzie tabilny, jeŝeli itnieje dla niego unkcja Lapunowa [][6]. Funkcję tę przyjmuje ię w potaci: T T T V = % α P % α+ trw% F W% + trw% F W% (8) Aby unkcja ta była unkcją Lapunowa, jej pochodna mui być ujemna. V& (,,, ˆ, ˆ) (,,, ˆ, ˆ) T Q T PB W T S W T S R R trw T α α α α β γ β γ α β γ β γ F W trw T = % % + % % + % + + + % %& + % F W% & Uczenie wag ieci przebiega zgodnie z zaleŝnościami:,,, ˆ, T W &% = F S α β γ β ˆ γ % α PB (9) (,,, ˆ, ˆ) &% % (0) T W = F S α β γ β γ α PB Z macierzowego równania Lapunowa: T E P+ PE= Q= I () określono macierz hermitowką:

IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 9 p p P= p p 3 rozwiązując równanie: e e p p p p e e - 0 e e p p + 3 p p = 3 e e 0 - () Otatecznie algorytm uczenia wag (9) i (0) ma potać: & ˆ,,, ˆ T W = F S α β γ β, ˆ γ % α h (3) (,,, ˆ, ˆ) & ˆ T W = F S α β γ β γ % α h () 3. SYMULACJA NEURONOWA IDENTYFIKACJI MODELU Zaproponowana procedura identyikacji parametrycznej ruchu mobilnego robota inpekcyjnego z zatoowaniem ieci neuronowych w proceie identyikacji układów nieliniowych zotała wygenerowana w pakiecie Matlab/Simulink według truktury pokazanej na ry.3. M(t) u(t) Al u(t) Obiekt dynamiczny Al Al u(t) Identyikacja Ry.3. Struktura identyikatora Strukturę bloku identyikacji przedtawiono na ry.. Al A 3 u(t) Mux (u) Am B I ^ Am ^ Siec Siec Ry.. Struktura bloku identyikacji Symulacja : Przy dobranej macierzy projektowej diagonalnej A diag(, 35) m = przeprowadzono identyikację modelu matematycznego robota. W celu weryikacji zaproponowanego

9 J. IERIEL, K. KURC rozwiązania, przeprowadzono ekperyment numeryczny. W ymulacji za ygnał wymuzający przyjęto moment napędowy wygenerowany z zadania odwrotnego dynamiki [] pokazany na (ry.5). Przebiegi uzykane z modelu dynamicznego przedtawiono na ry.6. Ry.5. Przebieg ygnału wymuzającego Ry.6. Przebiegi z obiektu dynamicznego Ry.7. ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Ry.7 przedtawia etymaty nieliniowych unkcji równań (3) i (). u Ry.8. Przebiegi etymowane Na ry.8 przedtawiono przebiegi etymowane nieliniowych unkcji obiektu dynamicznego (ry.6) aprokymowane przez ieci neuronowe z radialnym rozzerzeniem unkcyjnym w potaci unkcji aua. Przebiegi te odjęto od iebie i uzykano błąd etymacji tanu zdeiniowano jako % α = α ˆ α (ry.9).

IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO 93 Ry.9. Błędy identyikacji neuronowej Ry.0. Wybrane wagi ieci Ry.0 przedtawia jak zmieniały ię wagi ieci podcza uczenia ich według zaleŝności (3), (), przyjmując podcza ymulacji zerowe wagi początkowe ( W ˆ 0 = 0 ) i ( W ˆ 0 = 0 ). Symulacja : Dobierając na drodze ekperymentalnej inne wpółczynniki macierzy projektowej A = diag 5, 60 przeprowadzono identyikację modelu matematycznego diagonalnej m robota przy tym amym wymuzeniu (ry.5) i tych amych przebiegach z obiektu dynamicznego (ry.6). Ry.. ˆ ( α, ˆ β, ˆ γ ) i ˆ ( α, ˆ β, ˆ γ ) Tak jak w ymulacji nr przedtawiono etymaty nieliniowych unkcji (ry.), błąd etymacji tanu zdeiniowano jako % α = α ˆ α (ry.) i zmieniany wag ieci podcza ich uczenia (ry.3). u Ry.. Błędy identyikacji neuronowej Ry.3. Wybrane wagi ieci

9 J. IERIEL, K. KURC Uzykane rozwiązania w ymulacji nr i ą ograniczone, a ich dokładność moŝna zwiękzyć poprzez odpowiedni dobór macierzy projektowej A m co znacznie zmniejzyło błąd identyikacji neuronowej (ry.) w porównaniu do ry.9.. PODSUMOWANIE Zaproponowana procedura identyikacji modelu matematycznego robota inpekcyjnego umoŝliwia zatoowanie ieci neuronowych w proceie identyikacji układów nieliniowych. Uzykane rezultaty numeryczne wkazują, Ŝe układ zotał odpowiednio pobudzony przez moment ilnika napędowego podcza realizacji zadanej trajektorii ruchu. Zatoowanie tego podejścia moŝe zotać wykorzytane do monitorowania obciąŝeń, wykrywania uzkodzeń itp. LITERATURA. iergiel J., Kurc K.: Contruction, analyi and imulation o the inpective robot. Machine Dynamic Problem 006, Vol. 30, No 3, p.5-3.. iergiel J., Kurc K.: Modeling o dynamic o the inpective robot. 0 th international eminar o applied mechanic. Politechnika Śląka,. 3-3. 3. iergiel J., Kurc K.: Mechatronic o the inpective robot. Mechanic and Mechanical Engineering 006, Vol. 0, No.. 56-73.. iergiel J., Hendzel Z., śylki W.: Kinematyka, dynamika i terowanie mobilnych robotów kołowych w ujęciu mechatronicznym. Kraków : AH, 000. Monograie. 5. iergiel J., Kurc K.: Mechatroniczne projektowanie robota inpekcyjnego. Pomiary, automatyk, kontrola 007, Vol. 53, nr 6,. 7-77. 6. Hendzel Z., iergiel M., śylki W.: Modelowanie i terowanie mobilnych robotów kołowych. Warzawa: Wyd. Nauk. PWN, 00. IDENTIFICATION OF THE MATHEMATICAL MODEL INSPECTION ROBOT Summary. To identiication o the mathematical model inpection robot were ued artiicial neural network with the radial broaden unctional in the orm o au' unction. Preented problem wa olved on the numerical way. Praca wykonana w ramach projektu badawczego nr N N50 008 33