Definicja: alfabetem. słowem długością słowa



Podobne dokumenty
Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

RACHUNEK ZDAŃ 7. Dla każdej tautologii w formie implikacji, której poprzednik również jest tautologią, następnik także jest tautologią.

vf(c) =, vf(ft 1... t n )=vf(t 1 )... vf(t n ).

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Elementy logiki. Wojciech Buszkowski Wydział Matematyki i Informatyki UAM Zakład Teorii Obliczeń

Paradygmaty dowodzenia

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Podstawowe Pojęcia. Semantyczne KRZ

Tautologia (wyrażenie uniwersalnie prawdziwe - prawo logiczne)

Logika Matematyczna (2,3)

Logika. Michał Lipnicki. 15 stycznia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Logika 15 stycznia / 37

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki

Wykład 6. Reguły inferencyjne systemu aksjomatycznego Klasycznego Rachunku Zdań

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

Np. Olsztyn leży nad Łyną - zdanie prawdziwe, wartość logiczna 1 4 jest większe od 5 - zdanie fałszywe, wartość logiczna 0

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

ĆWICZENIE 4 KRZ: A B A B A B A A METODA TABLIC ANALITYCZNYCH

Rachunek zdań. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Logika. Michał Lipnicki. 18 listopada Zakład Logiki Stosowanej UAM. Michał Lipnicki Logika 18 listopada / 1

ĆWICZENIE 2. DEF. Mówimy, że formuła A wynika logicznie z formuł wartościowanie w, takie że w A. A,, A w KRZ, jeżeli nie istnieje

Dowody założeniowe w KRZ

Adam Meissner.

Struktury formalne, czyli elementy Teorii Modeli

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 15. Trójwartościowa logika zdań Łukasiewicza

Logika Matematyczna (10)

Elementy logiki i teorii mnogości

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 9. Koniunkcyjne postacie normalne i rezolucja w KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 7 i 8. Aksjomatyczne ujęcie Klasycznego Rachunku Zdań

Matematyka ETId Elementy logiki

O pewnych związkach teorii modeli z teorią reprezentacji

LOGIKA Klasyczny Rachunek Zdań

METODY DOWODZENIA TWIERDZEŃ I AUTOMATYZACJA ROZUMOWAŃ

Wstęp do logiki. Klasyczny Rachunek Zdań II

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

Logika Matematyczna (5-7)

Wstęp do logiki. Klasyczny Rachunek Zdań III

domykanie relacji, relacja równoważności, rozkłady zbiorów

Uwaga 1.2. Niech (G, ) będzie grupą, H 1, H 2 < G. Następujące warunki są równoważne:

Andrzej Wiśniewski Logika II. Materiały do wykładu dla studentów kognitywistyki. Wykład 14. Wprowadzenie do logiki intuicjonistycznej

LOGIKA Dedukcja Naturalna

Logika I. Wykład 4. Semantyka Klasycznego Rachunku Zdań

WYKŁAD 3: METODA AKSJOMATYCZNA

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 18 czerwca Imię i Nazwisko:... I

Rachunek logiczny. 1. Język rachunku logicznego.

Semantyka rachunku predykatów

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Matematyka dyskretna. 1. Relacje

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 29 czerwca Imię i Nazwisko:...

WYKŁAD 7: DEDUKCJA NATURALNA

Metody dowodzenia twierdzeń i automatyzacja rozumowań Systemy aksjomatyczne I

Logika binarna. Prawo łączności mówimy, że operator binarny * na zbiorze S jest łączny gdy (x * y) * z = x * (y * z) dla każdego x, y, z S.

Logika Matematyczna (1)

(4) x (y z) = (x y) (x z), x (y z) = (x y) (x z), (3) x (x y) = x, x (x y) = x, (2) x 0 = x, x 1 = x

Andrzej Wiśniewski Logika II. Wykłady 9 i 10a. Wybrane modalne rachunki zdań. Ujęcie aksjomatyczne

Schematy Piramid Logicznych

JEZYKOZNAWSTWO. I NAUKI O INFORMACJI, ROK I Logika Matematyczna: egzamin pisemny 11 czerwca Imię i Nazwisko:... FIGLARNE POZNANIANKI

Metody dowodzenia twierdzeń i automatyzacja rozumowań Tabele syntetyczne: definicje i twierdzenia

Myślenie w celu zdobycia wiedzy = poznawanie. Myślenie z udziałem rozumu = myślenie racjonalne. Myślenie racjonalne logiczne statystyczne

Elementy logiki matematycznej

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

Andrzej Wiśniewski Logika II. Wykład 6. Wprowadzenie do semantyki teoriomodelowej cz.6. Modele i pełność

LOGIKA I TEORIA ZBIORÓW

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Logika Stosowana. Wykład 2 - Logika modalna Część 2. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Elementy logiki Klasyczny rachunek zdań. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Logika Matematyczna (1)

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

Teoretyczne Podstawy Języków Programowania Wykład 1. Rachunek zdań

Zasada indukcji matematycznej

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykłady 12 i 13. Dowód i dowodzenie w KRP. Tezy KRP

Elementy logiki i teorii mnogości Wyk lad 1: Rachunek zdań

Trzy razy o indukcji

... [a n,b n ] kn [M 1,M 2 ], gdzie a i M 1, b i M 2, dla i {1,..., n}. Wówczas: [a 1,b 1 ] k [a n,b n ] kn =(a 1 b 1 a 1

Logika intuicjonistyczna semantyka Kripke go

Konsekwencja logiczna

Andrzej Wiśniewski Logika II. Wykłady 10b i 11. Semantyka relacyjna dla normalnych modalnych rachunków zdań

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Dalszy ciąg rachunku zdań

Kultura logiczna Klasyczny rachunek zdań 2/2

III rok kognitywistyki UAM,

PRZEWODNIK PO PRZEDMIOCIE

Twierdzenia Gödla dowody. Czy arytmetyka jest w stanie dowieść własną niesprzeczność?

Wstęp do Techniki Cyfrowej... Algebra Boole a

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

Logika pragmatyczna. Logika pragmatyczna. Kontakt: Zaliczenie:

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda Tablic Semantycznych

Zadania z algebry liniowej - sem. I Struktury algebraiczne

Transkrypt:

Definicja: Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy nazywać słowem a liczbę elementów tego ciągu nazywamy długością słowa.

Na zbiorze wszystkich słów w alfabecie X definiujemy operację mnożenia słów, która polega na dopisywaniu do pierwszego słowa drugiego słowa. Niech będzie znakiem tej operacji binarnej. Wtedy mamy, na przykład, x yy = xyy, xy xxxyyxy = xyxxxyyxy.

Jest rzeczą oczywistą, że operacja w zbiorze słów jest łączna oraz dla każdego słowa w w alfabecie X mamy 1 w = w = w 1. A więc zbiór wszystkich słów w alfabecie X z operacją jest monoidem. Monoid ten oznaczamy symbolem X i nazywamy monoidem wolnym z alfabetem X.

Definicja: Językiem formalnym L nad alfabetem Σ nazywamy podzbiór monoidu wolnego Σ, a więc pewien zbiór słów tego alfabetu. Zarówno w matematyce jak i w komputerologii słowo formalny bywa zwykle pomijane i mówimy zwyczajnie o językach.

Definicja: Niech Σ bedzie dowolnym alfabetem i niech L będzie ustalonym językiem nad tym alfabetem. Regułą wnioskowania nazywamy relację r 2 L L taką, że istnieje pewna liczba naturlna n N, że o ile Π = n, to (Π, A) r. Zbiór Π zwiemy zbiorem przesłanek, a A wnioskiem reguły r. Zamiast (Π, A) r piszemy na ogól Π A r. Jeśli zbiór Π jest skończony, powiedzmy Π = {π 1,..., π k }, to zamiast {π 1,...,π k } A r piszemy po prostu π 1,...,π k A r.

Regułę bez przesłanek nazywać będziemy aksjomatem. Dla uproszczenia będziemy więc myśleć o aksjomatach jak o pewnym zbiorze formuł języka L. Systemem dedukcyjnym (lub aksjomatycznym) nazywać będziemy dowolny zbiór reguł wnioskowania. Dla poprawienia czytelności na ogół będziemy zapisywać system dedukcyjny S jako parę (AX, R), gdzie AX jest pewnym zbiorem aksjomatów, a R pewnym zbiorem reguł wnioskowania, które nie są aksjomatami.

Ustalmy system dedukcyjny S. Dowodem formuły A w systemie S na gruncie zbioru formuł Γ nazywamy skończony ciąg formuł A 1,..., A n taki, że 1. A n = A, 2. dla dowolnego 1 i n albo A i AX Γ albo istnieją i 1,..., i k < i oraz r R takie, że A i1,..., A ik A i r.

Formułę A nazywamy dowodliwą w S na gruncie Γ, gdy istnieje dowód A w S na gruncie Γ. Piszemy wtedy Γ A. Gdy Γ = to mówimy, że A jest tezą systemu S. Piszemy wtedy S A. Na ogół, o ile będzie jasne, z jakim systemem dedukcyjnym pracujemy, będziemy po prostu pisać zamiast S.

Mówimy, że zbiór formuł Γ jest niesprzeczny, gdy istnieje formuła A taka, że Γ A. W przeciwnym wypadku mówimy, że Γ jest sprzeczny. Mówimy, że system S jest sprzeczny, gdy A dla każdej formuły A.

Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których myślimy jak o spójnikach zdaniowych: jednoargumentowy, negacja; dwuargumentowy, koniunkcja; dwuargumentowy, alternatywa; dwuargumentowy, implikacja. Dodatkowo dorzucamy też do naszego alfabetu nawiasy ( i ).

Język logiki zdań L definiujemy teraz jako najmniejszy podzbiór monoidu L spełniający warunki: 1. P L; 2. jeśli A, B L, to do L należą również następujące formuły: A, A B, A B, A B.

Niech A, B, C,... oznaczają formuły. Przyjmujemy następujące aksjomaty: 1. A (B A) (prawo poprzedzania), 2. (A (B C)) ((A B) (A C)) (sylogizm Fregego), 3. A B A, 4. A B B, 5. (A B) ((A C) (A (B C))), 6. A A B, 7. B A B, 8. (B A) ((C A) (B C A)), 9. A (A B) (prawo Dunsa Szkota), 10. (A A) A (prawo redukcji do absurdu), 11. A A (mocne prawo podwójnego przeczenia); oraz następującą regułę, zwaną regułą odrywania: A B, A r 0. B

Lemat: A A.

Twierdzenie o dedukcji [Herbrand, 1930] Niech Γ L, A, B L. Wówczas Γ A B wtedy i tylko wtedy, gdy Γ, A B

Regułę r nazywamy wyprowadzalną w S, gdy dla dowolnych Π, A jeżeli Π A r to Π S A. Jest jasne, że stosowanie reguł wyprowadzalnych nie zmienia zbioru tez systemu.

Przykłady: (1) Reguła sylogizmu hipotetycznego: jest wyprowadzalna w KRZ. A B, B C A C

(2) Reguła wewnętrznego odrywania: jest wyprowadzalna w KRZ. A (B C), B A C

Lemat: Γ A B wtedy i tylko wtedy, gdy Γ A oraz Γ B.

Wniosek: Reguła mnożenia: jest wyprowadzalna w KRZ. A, B A B

Lemat: Zbiór Γ jest sprzeczny wtedy i tylko wtedy, gdy Γ A A dla pewnej formuły A (czyli, wobec poprzedniego lematu, gdy Γ A oraz Γ A).

Lemat: Γ, A B C wtedy i tylko wtedy, gdy Γ, A, B C.

Wniosek: Γ {A B} jest sprzeczny wtedy i tylko wtedy, gdy Γ {A, B} jest sprzeczny.

Lemat: Γ, A B C wtedy i tylko wtedy, gdy Γ, A C oraz Γ, B C.

Wniosek: Γ {A B} jest sprzeczny wtedy i tylko wtedy, gdy Γ {A} oraz Γ {A} są sprzeczne.

Lemat: Γ A wtedy i tylko wtedy, gdy Γ {A} jest sprzeczny.

Lemat: Γ A wtedy i tylko wtedy, gdy Γ { A} jest sprzeczny.

Lemat: 1. A A (prawo podwójnego przeczenia), 2. (A B) ( B A) (prawo kontrapozycji)

Dowód: (1) Oczywiście A A. Na mocy reguły mnożenia wystarczy pokazać, że A A. Zauważmy jednak, że {A, A} jest sprzeczny; zatem A A, czyli z twierdzenia o dedukcji A A.

(2) Zauważmy, że {A B, B, A} jest sprzeczny. Czyli A B, B A. Stąd stosując dwukrotnie twierdzenie o dedukcji (A B) ( B A). Ponadto { B A, A, B} jest sprzeczny. Zatem B A, A B. Stąd na mocy (11) B B oraz B A, A B, czyli ( B A) (A B).

Twierdzenie o ekstensjonalności: Niech A będzie formułą, która powstaje z formuły A przez zastąpienie pewnych wystąpień formuły D formułą D. Przy tych oznaczeniach reguła ekstensjonalności: jest wyprowadzalna w KRZ. D D A A

Dowód: Należy pokazać, że D D A A. Jeżeli na A nie wykonamy żadnych zastąpień, to A jest identyczna z A, tym bardziej A A. Jeżeli A = D, to oczywiście A = D, czyli D D A A. W pozostałych przypadkach dowód prowadzimy metodą indukcji ze względu na budowę formuły. Załóżmy, że A jest zmienną. Wówczas zachodzi jeden z powyższych przypadków.

Załóżmy, że A = B. Założenie indukcyjne: D D B B. Stąd na mocy prawa kontrapozycji D D B }{{} A }{{} B. A

Załóżmy, że A = B C. Założenie indukcyjne: D D B B, D D C C. Zauważmy, że D D, B C, B C. Stąd D D (B C) (B C ). Podobnie D D (B C ) (B C). Zatem D D A A.

Załóżmy, że A = B C. Założenie indukcyjne: D D B B, D D C C. Zauważmy, że: D D, B B, zatem D D, B, C B, D D, C C, zatem D D, B, C C. Stąd D D, B, C B C, D D, B C B C, czyli D D (B C) (B C ). Podobnie pokazujemy D D (B C ) (B C), a zatem D D A A.

Przypadek A = B C zostawiamy jako ćwiczenie.

Lemat: Tezami KRZ są: 1. A B B A, 2. A B B A, 3. ( A B) (A B), 4. (A B) ( A B), 5. (A A), 6. A A, 7. (A B) ( A B), 8. A (B C) (A B) (A C), 9. A (B C) (A B) (A C).

Semantyka klasycznego rachunku zdań.

Niech L będzie językiem logiki zdań. Na zbiorze L definiujemy następujące operacje: Neg(A) = A, Alt(A, B) = A B, Kon(A, B) = A B, Imp(A, B) = A B. Algebrę L = (L, Neg, Alt, Kon, Imp) nazywamy algebrą języka logiki zdań. Jest to algebra o typie τ L = (1, 2, 2, 2). Algebra L jest algebrą absolutnie wolną ze zbiorem zmiennych zdaniowych P jako zbiorem wolnych generatorów.

Matrycą (Łukasiewicz, Tarski, 1930) dla języka logiki zdaniowej nazywamy parę M = (M, M ), gdzie M jest algebrą podobną do algebry języka logiki zdań, zaś zbiór M M nazywamy zbiorem elementów wyróżnionych matrycy (zakładamy często, że M jest jednoelementowy). Piszemy też M = (M, M, F, F, F, F ).

Niech M będzie pewną matrycą dla języka logiki zdań. Wartościowaniem w M nazywamy dowolne odwzorowanie ϕ : P M. Każde takie odwzorowanie przedłuża się jednoznacznie do homomorfizmu algebry L w algebrę M. Homomorfizm ten będziemy również oznaczać przez ϕ.

Niech A będzie dowolną formułą języka zdań i niech M będzie matrycą. Ustalmy wartościowanie ϕ : P M. Mówimy, że ϕ spełnia A w M, gdy ϕ(a) M. Formułę A nazwiemy tautologią matrycy M, gdy A jest spełniona w M przy każdym wartościowaniu (mówimy wtedy też, że A jest prawdziwe w M). Zbiór wszystkich tautologii matrycy M nazywamy zawartością tej matrycy i oznaczamy przez E(M). Mówimy, że A wynika logicznie z B w matrycy M, jeżeli dla każdego wartościowania ϕ : P M jeżeli ϕ(a) M, to ϕ(b) M. Mówimy, że A i B są logicznie równoważne w matrycy M, gdy dla każdego wartościowania ϕ : P M ϕ(a) = ϕ(b).

Przykłady: (1) Niech M 2 = ({0, 1}, {1}, F, F, F, F ), gdzie F (x) = 1 x w Z, F (x, y) = min{x, y} w Z, F (x, y) = max{x, y} w Z, F (x, y) = min{1, 1 x + y} w Z. M 2 nazywamy matrycą klasycznej (dwuwartościowej) logiki zdań. Funkcje F spełniają funkcję przybliżenia języka naturalnego. Algebrę matrycy M 2 możemy utożsamić z B 2.

(2) Niech Niech M 3 = ({0, 1 2, 1}, {1}, F, F, F, F ), z funkcjami F, F, F, F zdefiniowanymi tak, jak przed chwilą. M 3 nazywamy matrycą trójwartościowej logiki zdań Łukasiewicza.

(3) Niech M T = (τ(r), {R}, G, G, G, G ), gdzie τ(r) oznacza rodzinę wszystkich zbiorów otwartych oraz G (X ) = Int(R \ X ), G (X, Y ) = X Y, G (X, Y ) = X Y, G (X, Y ) = Int(R \ X Y ). M T nazywamy matrycą topologicznej logiki Tarskiego.

Lemat Zachodzą następujące tautologie: 1. p (p q) E(M 2 ) E(M 3 ) E(M T ), 2. p p E(M 2 ) \ E(M 3 ) \ E(M T ), 3. (p p) q E(M 2 ) E(M T ) \ E(M 3 ), 4. ( (p q) ( p q)) E(M 2 ) E(M 3 ) \ E(M T ), 5. (p q) E(M 2 ) E(M 3 ) E(M T ).

Dowód: Udowodnimy, dla przykładu, część (1) lematu. Zgodnie z podanymi wcześniej definicjami, tabelki wartości funkcji F, F, F, F w matrycy M 2 przedstawiają się następująco: F F 0 1 0 1 1 0, 0 0 0 1 0 1, F 0 1 0 0 1 1 1 1 oraz F 0 1 0 1 1 1 0 1.

Wobec tego p q p q p (p q) 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 1 i tym samym p (p q) jest tautologią matrycy M 2.

Podobnie, tabelki wartości funkcji F, F, F, F w matrycy M 3 wyglądają tak: F 0 1 2 1 1 1 2 0, 1 F 0 2 1 0 0 0 0 1 1 1 2 0 2 2 1 1 0 2 1, F 0 1 0 0 1 1 2 1 2 2 1 2 1 1 2 1 1 1 1 1 1 F 0 2 1 0 1 1 1 1 1. 2 2 1 1 1 1 0 2 1 oraz

Zatem p q p q p (p q) 1 1 1 1 1 1 2 1 1 1 0 1 1 1 2 1 1 1 1 1 1 2 2 2 1 1 1 2 0 2 1 0 1 1 1 1 0 2 1 2 1 0 0 0 1 i p (p q) jest tautologią matrycy M 3.

Na koniec sprawdzamy, że dla zbiorów otwartych X, Y R: Int((R \ X ) X Y ) = Int(R) = R, a więc p (p q) jest tautologią matrycy M T.

Lemat Niech A(p 1,..., p n ) będzie formułą języka logiki zdań i M niech będzie matrycą dla tego języka. Niech ponadto φ, ψ będą dowolnymi wartościowaniami takimi, że Wówczas φ(a) = ψ(a). φ(p i ) = ψ(p i ) dla 1 i n. Dowód. Dowód prowadzimy przez indukcję względem budowy A. Jeśli A = p i, to φ(a) = ψ(a) z założenia. Jeśli A = B, to mamy φ(a) = φ( B) = F neg (φ(b)) = F (ψ(b)) = ψ( B) = ψ(a). Przypadki gdy A = B C, A = B C oraz A = B C pozostawiamy czytelnikowi jako ćwiczenia.

Dowolną funkcję f : {0, 1} n {0, 1} nazywamy funkcją booleowską. Każda formuła języka logiki zdań wyznacza pewną funkcję booleowską f A taką, że dla dowolnego φ : P {0, 1}: φ(a) = f A (φ(p 1 ),..., φ(p m )), o ile A = A(p 1,..., p m ). Okazuje się, że twierdzenie odwrotne też jest prawdziwe.

Twierdzenie Każda funkcją booleowska jest wyznaczona przez pewną formułę języka logiki zdań, przy czym w formule tej występują tylko spójniki,,.

Dowód: Niech f (p 1,..., p k ) będzie dowolną funkcją booleowską. Rozważmy następującą tablicę: p 1 p 2... p n φ 0 0 0... 0 f (0,..., 0) φ 1 0 0... 1 f (0,..., 1)........ φ k e 1 e 2... e n f (e 1,..., e n )........ φ 2 n 1 1 1... 1 f (1,..., 1)

W powyższej tabelce mamy φ 0 (p i ) = 0. Zdefiniujmy 2 n formuł C 0,..., C 2 n 1 w następujący sposób: C k = p k 1... p k k, gdzie Zauważmy, że oraz p k i = { p i, jeśli φ k (p i ) = 1, p i, jeśli φ k (p i ) = 0. φ k (C k ) = 1 φ i (C j ) = 0, jeśli i j. Definiujemy A(p 1,..., p n ) = {C k : f (φ k (p 1 ),..., φ k (p n )) = 1}.

Pokażemy, że A(p 1,..., p n ) generuje f. Jeśli f (φ k (p 1 ),..., φ k (p n )) = 1, to C k występuje w A i mamy wtedy φ k (C k ) = 1. Zatem φ k (A) = 1. Jeśli f (φ k (p 1 ),..., φ k (p n )) = 0, to C k nie występuje w A i mamy wtedy φ k (A) = 0.

Formuła A jest w alternatywnej postaci normalnej, gdy A jest postaci B 1... B n, gdzie każda z formuł B j jest koniunkcją zmiennych zdaniowych lub negacji zmiennych zdaniowych. Wniosek Dowolna formuła jest logicznie równoważna pewnej formule A w alternatywnej postaci normalnej. Wniosek Dowolną funkcję booleowską można wygenerować za pomocą formuł zawierających tylko spójniki 1.,, 2.,, 3.,.

Dowód. Wystarczy zauważyć, że: 1. p q ( p q), 2. p q ( p q), 3. p q p q.

Zbiór formuł Σ jest spełnialny, gdy istnieje wartościowanie φ takie, że dla każdego A Σ mamy φ(a) = 1. Mówimy, że Σ jest skończenie spełnialny, gdy każdy skończony podzbiór zbioru Σ jest spełnialny. Twierdzenie (o zwartości) Zbiór formuł Σ jest spełnialny wtedy i tylko wtedy, gdy Σ jest skończenie spełnialny.

Dowód: Oczywiście wystarczy pokazać, że jesli zbiór jest skończenie spełnialny, to jest też spełnialny. Załóżmy więc, że Σ jest skończenie spełnialny. Niech V będzie zbiorem wszystkich zmiennych występujących w formułach zbioru Σ. Rozważmy {0, 1} V jako produkt przestrzeni dyskretnych {0, 1}. Wobec twierdzenia Tichonowa {0, 1} V jest przestrzenią zwartą. Zbiory B p,i = {φ {0, 1} V : φ(p) = i} stanowią podbazę przestrzeni {0, 1} V. Ponadto B p,i są domknięto-otwarte, bo {0, 1} V \ B p,0 = B p,1.

Dla dowolnej formuły A Σ niech D(A) = {φ {0, 1} V : φ(a) = 1}. Z założenia wiemy, że każdy skończony podzbiór Σ 0 zbioru Σ jest spełnialny. Zatem {D(A) : A Σ0 } dla skończonego podzbioru Σ 0 Σ. Zbiory D(A) są zbiorami domknięto-otwartymi (jako skończone sumy skończonych przekrojów zbiorów podbazowych). Zatem {D(A) : A Σ}, a zatem Σ jest spełnialny.

Stwierdzenie Wszystkie aksjomaty KRZ są tautologiami w matrycy M 2. Reguła odrywania jest regułą niezawodną w M 2, czyli każda teza systemu klasycznego rachunku zdań jest tautologią matrycy M 2.

Dowód. Sprawdzimy, dla przykładu, aksjomat (1): A B B A A (B A) 1 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1

Niech L będzie językiem KRZ. rozważmy relację L 2 : A B wtedy i tylko wtedy gdy A B. Stwierdzenie Relacja jest równoważnością Dowód. Wobec rezultatów udowodnionych na ostatnim wykładzie: zwrotność zachodzi, ponieważ mamy A A wobec Lematu 1, symetria zachodzi, ponieważ mamy A B wtedy i tylko wtedy, gdy B A wobec definicji, przechodniość zachodzi, ponieważ mamy, że jeśli A B oraz B C, to A C wobec twierdzenia o ekstensjonalności.

Oznaczmy przez L zbiór klas abstrakcji relacji. Klasy abstrakcji oznaczać będziemy po prostu przez [A]. W zbiorze L definiujemy relację [A] [B] wtedy i tylko wtedy gdy A B. Wobec twierdzenia o ekstensjonalności, relacja powyższa jest dobrze określona. Pokażemy jednak coś znacznie silniejszego.

Twierdzenie (L, ) jest dystrybutywną kratą komplementarną.

Dowód: Sprawdzenie, że jest relacją porządku, pozostawiamy czytelnikowi jako proste ćwiczenie. Pokażemy, że [A] [B] = [A B]. Istotnie, mamy: A B A, A B B. Zatem [A B] [A] oraz [A B] [B]. Niech [C] [A] oraz [C] [B]. Wtedy C A oraz C B. Ponadto (C A) ((C B) (C A B)). Stąd C A B, co oznacza [C] [A B].

Pokażemy, że [A] [B] = [A B]. Istotnie, mamy: A A B, B A B. Zatem [A] [A B] oraz [B] [A B]. Niech teraz [A] [C] oraz [B] [C]. Wtedy A C oraz B C. Ponadto: (A C) ((B C) (A B C)). Stąd A B C, co oznacza [A B] [C]. Dystrybutywność wynika wprost z udowodnionych ostatnio tez: A (B C) (A B) (A C), oraz A (B C) (A B) (A C).

Pokażemy, że 1 = [A] wtedy i tyko wtedy, gdy A. Istotnie, załóżmy, że 1 = [A]. Wtedy dla dowolnej formuły B mamy B A, w szczególności dla dowolnej tezy. Stosując regułę odrywania otrzymujemy, że A. Na odwrót, załóżmy, że A. Niech B będzie dowolną formułą. Mamy wówczas A (B A). Stąd B A, czyli [B] [A], a zatem [A] = 1. Pokażemy, że 0 = [A] wtedy i tylko wtedy, gdy A. Istotnie, załóżmy, że 0 = [A]. Wtedy dla dowolnej formuły B mamy A B, w szczególności dla B = A mamy A A. Ponadto: (A A) A. Stosując regułę odrywania otrzymujemy, że A. Na odwrót, załóżmy, że A. Niech B będzie dowolną formułą. Mamy wówczas A (A B). Stąd A B, czyli [A] [B], a zatem [A] = 0.

Na koniec pokażemy, że [A] = [ A]. Istotnie, mamy [A] [ A] = [A A] = 1, [A] [ A] = [A A] = 0.

Algebrę (L, ) nazywamy algebrą Lindenbauma KRZ. Działania w (L, ) określone są następująco: [A] [B] = [A B], [A] [B] = [A B], [A] = [ A], 1 = [p p], 0 = [p p]. W dalszym ciągu rozważać będziemy algebrę Boole a jako podobną do algebry języka KRZ, czyli algebrę postaci (B,,,, ), gdzie x y = x y. W szczególności zauważmy, iż w algebrze Lindenbauma: [A] [B] = [A] [B] = [ A B] = [A B].

Twierdzenie (o zgodności) Każda teza KRZ jest tautologią matrycy M 2. Dowód. Zauważyliśmy już, że każdy aksjomat jest tautologią i że zbiór tautologii jest domknięty na regułę odrywania. Dowód przeprowadzimy przez indukcję ze względu na długść tezy. Niech A i niech A 1,..., A l = A będzie dowodem A. Jeśli l = 1, to A 1 = A jest aksjomatem, a więc tautologią. Załóżmy, że i > 1 i że dla j < i A j są tautologiami. A zatem A i jest aksjomatem, a więc tautologią, albo dla pewnych j, k < i mamy A k = A j A i,..., A j,..., A j A i,..., A i. Z założenia indukcyjnego A j oraz A j A i są tautologiami, a zatem A i jest tautologią.

Twierdzenie (o pełności) Każda tautologia M 2 jest tezą KRZ. Dowód twierdzenia poprzedzimy lematem. Oznaczmy przez AL algebrę Lindenbauma KRZ. Lemat Niech φ będzie homomorfizmem AL w B 2. Niech ψ : P {0, 1} będzie wartościowaniem takim, że ψ(p) = φ([p]) dla p P. Wówczas ψ(a) = φ([a]) dla dowolnej formuły A. Wartościowanie takie jak w lemacie nazywać będziemy indukowanym przez φ.

Dowód. Dowód prowadzimy przez indukcję względem budowy formuły A. Zauważmy na wstępie, że ψ przedłuża się jednoznacznie do homomorfizmu algebry języka KRZ w B 2. Załóżmy, że A jest zmienną, A = p wówczas twierdzenie jest prawdziwe w myśl założenia. Załóżmy, że A = B. Wówczas: ψ(a) = ψ( B) = ψ(b) = φ([b]) = φ( [B]) = φ([ B]) = φ([a]). Przypadki, gdy A = B C, A = B C oraz A = B C pozostawiamy czytelnikowi jako ćwiczenie.

Przechodzimy teraz do dowodu twierdzenia o pełności. Dowód. Załóżmy, że A. Pokażemy, że A / E(M 2 ). Istotonie, skoro A, to w AL mamy, że [A] 1. Zatem [A] 0, czyli [ A] 0. Wobec twierdzenia o istnieniu ultrafiltru istnieje ultrafiltr F algebry AL zawierający [ A]. W szczególności AL/F = B 2. Niech ψ będzie wartościowaniem indukowanym przez kanoniczny homomorfizm κ : AL AL/F. Wówczas ψ( A) = κ([ A]) = 1, a zatem ψ(a) = 0, czyli A / E(M 2 ).

Wniosek KRZ jest rozstrzygalny w intuicyjnym sensie, tzn. istnieje efektywna procedura dająca odpowiedź, czy A czy A.

Twierdzenie (Malcev) Niech Σ będzie dowolnym zbiorem formuł języka KRZ. Wówczas Σ jest niesprzeczny wtedy i tylko wtedy, gdy Σ jest spełnialny.

Dowód: ( ) Załóżmy, że Σ jest sprzeczne. Zatem pewien jego skończony podzbiór Σ jest sprzeczny. Mamy Σ A A dla pewnej formuły A. Niech B = {C : C Σ }. Na mocy twierdzenia o dedukcji: Z twierdzenia o zgodności B (A A). B (A A) E(M 2 ), czyli dla każdego wartościowania φ : P {0, 1} mamy Ale zawsze mamy również φ(b (A A)) = 1. φ(a A) = 0. Stąd φ(b) = 0 dla każdego wartościowania phi, czyli Σ jest niespełnialny, a więc i Σ jest niespełnialny.

( ) Załóżmy, że Σ jest niespełnialny. Z twierdzenia o zwartości, pewien skończony podzbiór Σ zbioru Σ jest niespełnialny. Niech B = {C : C Σ }. Stąd φ(b) = 0 dla każdego wartościowania phi, więc B jest kontrtautologią. A zatem B E(M 2 ). Stąd, na mocy twierdzenia o pełności, B. Ale więc w szczególności Σ C dla C Σ Σ B. Zatem Σ B B, czyli Σ jest sprzeczny, a więc i Σ jest sprzeczny.