Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Wykład XI Filtracja homomorficzna
Filtracja homomorficzna Filtracja liniowa zakłada, że filtrowane sygnały zostały dodane do siebie: y(t = x(t +n(t, filtracja liniowa pozwala na eliminację niepożądanych składowych Sygnały mogą być związane w inny sposób niż zsumowanie, np.: y(t=x(tn(t iloczyn albo y(t=x(t*n(t splot Widmo sygnału y(t nie jest w tych przypadkach sumą widm sygnałów x(t i n(t. Filtracja liniowa nie przyniesie pożądanych skutków. Filtracja homomorficzna Spostrzeżenie Logarytm widmowej gęstości mocy sygnału zawierającego echo ma składową okresową odpowiadająca temu echu - w TF logarytmu widmowej gęstości mocy powinno występować maksimum odpowiadające opóźnieniu echa. s ygn al 5 log modulu TF.5 -.5-5 - 4 6 8-3 4 5
Filtracja homomorficzna Logarytm widmowej gęstości mocy sygnału zawierającego echo ma składową okresową odpowiadająca temu echu - w TF logarytmu widmowej gęstości mocy powinno występować maksimum odpowiadające opóźnieniu echa. 4 log modulu TF TF log m odulu TF 7 TF log m odulu TF 5 6 5 - -4 5 4 3-3 4 5 3 4 5 4 6 8 Filtracja homomorficzna względem splotu Układ realizujący operację filtracji homomorficznej względem splotu operator D oznacza sekwencję operacji TF i logarytmowania, D - sekwencję operacji funkcji wykładniczej i odwrotnej TF
Filtracja homomorficzna względem mnożenia Układ realizujący operację filtracji homomorficznej względem mnożenia zawiera blok logarytmu, filtracji liniowej oraz blok anyylogarytmu Definicje cepstrum sygnału f(t TF log m odulu TF 7 cepstrum rzeczywiste 6 5 4 jωτ C( τ = log( G( ω e dω = F[log( G( ω] 3 4 6 8 albo j ωτ d C( τ = log( G( ω e ω gdzie G ( ω F( ω = T T jωt = f ( t e dt albo C( τ = log( G( ω e π jωτ dω = F [log( G( ω]
Cepstrum rzeczywiste - właściwości Logarytm widma mocy funkcja rzeczywista parzysta, a więc proste i odwrotne przekształcenie Fouriera daje ten sam wynik. Druga defincja cepstrum daje pierwiastek cepstrum uzyskanego w myśl pierwszej definicji. Trzecia definicja cepstrum zbliżona do funkcji autokorelacji Cepstrum rzeczywiste nie zachowuje informacji o fazie sygnału! Definicje cepstrum sygnału f(t cepstrum zespolone jωτ C( τ = log( F( ω e dω = F [log( F ( ω ] π gdzie jωt = f ( t e dt F( ω Dla f(t rzeczywistej log(f(ω jest wielkością parzystą sprzężoną, wobec czego odwrotna TF tej wielkości jest rzeczywista. Cepstrum zespolone zachowuje informację o fazie sygnału.
Zastosowania filtracji homomorficznej Eliminacja pogłosu (echa Określanie właściwości toru i pobudzenia na podstawie sygnały wyjściowego (ton krtaniowy i tor głosowy Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa sygnał s(t x( t t + M a s( t k t k k= sygnał z pogłosem czyli x(t=s(t*p(t - splot M p( t = δ ( t + a δ ( t k t k k = sygnał z pojedynczym echem opóźnionym o t: p( t = δ ( t + aδ ( t t x( t t + a s( t t
Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa sygnał z pojedynczym echem opóźnionym o t: p( t = δ ( t + aδ ( t t x( t t + a s( t t TF sygnału x(n (S(ω=F[s(t] jωt X ( ω = S ( ω( + a e Logarytm (cepstrum rzeczywiste log( ( log( ( log ( j ω X ω = S ω + + a t e Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa Logarytm (cepstrum rzeczywiste ω ω jωt log( X ( = log( S( + log ( + ae Składnik nieokresowy związany z s(t log( S( ω jω t składnik okresowy z okresem π/t log ( + a e Logarytm modułu kwadratu widma x(t zawiera składową związaną z interesującym nas sygnałem wolnym od echa, oraz składową okresową, wynikającą z obecności pogłosu. Składową pogłosową można odfiltrować metodami filtracji liniowej, o ile jej widmo nie pokrywa się z widmem log( S
Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa (sygnał z czasem dyskretnym sygnał s(n sygnał z pogłosem x(n: <n <n <...<n k przypadek sygnału z pojedynczym echem: x( n n + M a s( n k n k k= p( n = δ ( n + a δ ( n M k n k k= p( n = δ ( n + aδ ( n n x( n n + as( n n Zastosowania filtracji homomorficznej Usuwanie pogłosu (echa (sygnał z czasem dyskretnym przypadek sygnału z pojedynczym echem: x( n n + as( n n TF sygnału x(n (S(e j ω =F[s(t] - cepstrum zespolone jω jω jωn X ( e = S ( e ( + a e logarytm jω jω jωn log( X ( e = log( S( e + log( + ae S(e jω może być rzeczywiste i dodatnie,np. sygnał cosinusoidalny jωn składnik okresowy z okresem π/n log( + a e Logarytm widma zawiera składową związaną z interesującym nas sygnałem wolnym od echa, oraz składową okresową, wynikającą z obecności pogłosu. Składową pogłosową można odfiltrować metodami filtracji liniowej, o ile jej widmo nie pokrywa się z widmem log(s.
Zastosowania filtracji homomorficznej Usuwanie pogłosu. sygnał + echo. widmo sygnału z echem (moduł 3. ln modułu TF sygnału sygnal + echo modul TF s ygnalu + ec ho ln modulu TF s ygna lu + e cho.5 - -.5 5-4 -6 5 5 4 6 8-8 4 6 8 Zastosowania filtracji homomorficznej Usuwanie pogłosu 4. cepstrum sygnału i cepstrum po eliminacji składowej związanej z echem 5. widmo sygnału bez echa (moduł 6. sygnał po eliminacji echa TF ln modulu TF s ygna lu + e cho modul TF sygnalu po f. homomorficznej TF odwrotna TF s ygnalu po f. homomorficznej 8 8.5 6 4 6 4 -.5 5 5 4 6 8-5 5
Analiza homomorficzna (cepstralna sygnału mowy Sygnał mowy Sygnał mowy jest splotem pobudzenia (tonu krtaniowego g(t i odpowiedzi impulsowej toru głosowego h(t. Ton krtaniowy ciąg impulsów o pewnej częstotliwości. W celu uzyskania informacji o torze głosowym (właściwościach częstotliwościowych i pobudzeniu zastosowanie filtracji homomorficznej względem splotu. Analiza homomorficzna (cepstralna sygnału mowy Sytuacja jest podobna jak w przypadku echa splot pobudzenia i odpowiedzi toru. Logarytm widma sygnału mowy powinien zawierać składową okresową związaną z pobudzeniem i z torem głosowym. ω ω jωt log( X ( = log( S( + log ( + ae Logarytm widma sygnału
Analiza homomorficzna (cepstralna sygnału mowy Tor głosowy ton krtaniowy Analiza homomorficzna (cepstralna sygnału mowy