2. Charakterystyki geometryczne przekroju



Podobne dokumenty
2. Charakterystyki geometryczne przekroju

Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym

4. Czyste zginanie. 4.1 Podstawowe definicje M P. Rys Moment statyczny siły względem punktu.

Dr inż. Janusz Dębiński. Wytrzymałość materiałów zbiór zadań

Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

Zadanie : Wyznaczyć położenie głównych centralnych osi bezwładności i obliczyć główne centralne momenty bezwładności Strona :1

Dr inż. Janusz Dębiński

gruparectan.pl 1. Szkic projektu Strona:1

Przykład 4.2. Sprawdzenie naprężeń normalnych

9. Mimośrodowe działanie siły

rectan.co.uk 1. Szkic projektu Strona:1

Przykład Łuk ze ściągiem, obciążenie styczne. D A

Wytrzymałość materiałów

PODSTAWY WYTRZYMAŁOŚCI MATERIAŁÓW (POWYM)

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Obliczanie charakterystyk geometrycznych przekrojów poprzecznych pręta

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

PRZEZNACZENIE I OPIS PROGRAMU

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

Ć w i c z e n i e K 3

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

gruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Stożkiem nazywamy bryłę obrotową, która powstała przez obrót trójkąta prostokątnego wokół jednej z jego przyprostokątnych.

5. Zginanie ze ścinaniem

REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

Ćwiczenie nr 3: Wyznaczanie nośności granicznej belek Teoria spręŝystości i plastyczności. Magdalena Krokowska KBI III 2010/2011

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TLog

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

2012/13. Mechanika Płynów (studia dzienne rok II, semestr 3) Praca domowa nr 1.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KL.I

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

Wymagania edukacyjne klasa trzecia.

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) ( ) Uczeń: (1+2+3) Uczeń: określone warunki

WYMAGANIA na poszczególne oceny-klasa I Gimnazjum

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

Charakterystyki geometryczne figur płaskich. dr hab. inż. Tadeusz Chyży Katedra Mechaniki Konstrukcji

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

WYMAGANIA EDUKACYJNE

I. LICZBY RZECZYWISTE I/1 1 Liczby naturalne, całkowite, wymierne i niewymierne.

Konstrukcje metalowe Wykład III Geometria przekroju

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 TŻiUG

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI

SPORZĄDZANIE LINII WPŁYWU WIELKOŚCI STATYCZNYCH SPOSOBEM KINEMATYCZNYM

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

8. WIADOMOŚCI WSTĘPNE

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

1. LICZBY (1) 2. LICZBY (2) DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

STEREOMETRIA. Poziom podstawowy

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Zestaw pytań z konstrukcji i mechaniki

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

Bryła sztywna Przewodnik do rozwiązywania typowych zadań

Przygotowanie do poprawki klasa 1li

PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

WSTĘP DO TEORII PLASTYCZNOŚCI

Rachunek całkowy - całka oznaczona

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Ćw. nr 41. Wyznaczanie ogniskowych soczewek za pomocą wzoru soczewkowego

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KL I NA POSZCZEGÓLNE OCENY W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ RUDKACH Marzena Zbrożyna

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

GEOMETRIA ANALITYCZNA. Poziom podstawowy

Wymagania z matematyki na poszczególne oceny Klasa 2 gimnazjum

Transkrypt:

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi przekroju. Służą one na przykład do wyznaczenia naprężeń w prętach poddanych działaniu siły osiowej, momentu zginającego, siły poprzecznej oraz momentu skręcającego. Rysunek.1 przedstawia dowolny przekrój pręta wraz ze związanym z nim układem współrzędnych YZ. Elementarne pole powierzchni d posiada współrzędne y oraz z. Y z d y Z Rys..1. Przekrój pręta. Pierwszą wielkością charakteryzującą przekrój pręta jest pole powierzchni. Definicja tej wielkości ma postać d. (.1) Jednostką pola powierzchni w układzie SI jest m. W budownictwie najczęściej używa się cm. Pole powierzchni jest zawsze większe od zera. Drugą wielkością charakteryzującą przekrój pręta jest moment statyczny. Definicje momentu statycznego względem osi Y S Y oraz względem osi Z S Z mają postać S Y z d, S Z (.) y d. (.) Jednostką momentu statycznego jest m. W budownictwie najczęściej używa się cm. Moment statyczny może przyjmować wartości dodatnie, ujemne oraz zero. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU Trzecią wielkością charakteryzującą przekrój pręta jest moment bezwładności. Definicje momentów bezwładności względem osi Y I Y oraz względem osi Z I Z (są to tak zwane osiowe momenty bezwładności) mają postać I Y z d, I Z (.4) y d. (.5) Oprócz osiowych momentów bezwładności istnieje jeszcze moment dewiacyjny. Jego definicja ma postać I YZ y z d. (.6) Jednostką momentu bezwładności jest m 4. W budownictwie najczęściej używa się cm 4. Osiowe momenty bezwładności przyjmują zawsze wartości dodatnie, natomiast moment dewiacyjny może być dodatni, ujemny lub równy zero. Osiowe momenty bezwładności są pewną miarą rozproszenia przekroju względem danej osi. Im osiowy moment bezwładności jest większy tym rozproszenie przekroju jest większe. Wartość bezwzględna momentu dewiacyjnego jest miarą asymetrii przekroju względem przyjętego układu współrzędnych. Łatwo zauważyć, że jeśli jedna z osi układu współrzędnych jest osią symetrii to moment dewiacyjny względem tego układu wynosi zero. Przedstawia to rysunek.. Y Oś symetrii d d z y -y Rys... Przekrój pręta z jedną osią symetrii. Z Oś środkowa jest to oś, względem której moment statyczny wynosi zero. Środek ciężkości jest to punkt przecięcia dwóch dowolnych osi środkowych. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU Chcąc wyznaczyć współrzędne y C, z C środka ciężkości SC obieramy dowolny układ współrzędnych YZ. Przedstawia to rysunek.. Y d z 0 z C SC Z z y 0 y C y Rys... Wyznaczenie środka ciężkości przekroju. Współrzędne elementarnego pola powierzchni d w układzie osi środkowych wynoszą y 0 = y y C, (.7) z 0 =z z C. (.8) Momenty statyczne względem osi oraz wynoszą (y C oraz z C traktujemy jako stałą) S Y0 S Z0 z 0 d z z c d y 0 d y y c d z d z C d, (.9) y d y C d. (.10) Wzory.9 i.10 po przekształceniu i uwzględnieniu faktu, że moment statyczny względem osi środkowej wynosi zero będą miały postać S Y0 =S Y z C =0, (.11) S Z0 =S Z y C =0. (.1) Ostatecznie współrzędne środka ciężkości wynoszą Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 4 z C = S Y, (.1) y C = S Z. (.14) Jeżeli przekrój składa się z n części o znanych polach powierzchni i oraz współrzędnych środków ciężkości y i i z i to współrzędne środka ciężkości oblicza się ze wzorów z C = S i z i Y = i=1 n i i=1 n, (.15) y C = S i y i Z = i=1 n i i=1 n. (.16) Oczywiście jeżeli przekrój posiada oś symetrii to środek ciężkości musi znajdować się na niej. W przekroju posiadającym dwie osie symetrii środek ciężkości znajduje się w punkcie ich przecięcia.. Momenty bezwładności przy przesunięciu układu współrzędnych Załóżmy, że znane są momenty bezwładności w układzie osi środkowych. Poszukujemy momentów bezwładności w dowolnym układzie YZ. Współrzędne środka ciężkości przekroju w układzie YZ wynoszą y P oraz z P. Przedstawia to rysunek.4. Moment bezwładności względem osi Y zgodnie z definicją wyrażoną przez wzór (.4) wynosi I Y Po rozwinięciu wyrażenia w nawiasie wzór.17 będzie miał postać z d z 0 z P d. (.17) I Y z 0 z 0 z P z P d. (.18) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 5 Całkę z sumy zamieniamy na sumę całek. Wzór.18 będzie miał postać (z P jako stałą wyciągamy przed całkę) I Y z 0 d z P z 0 d z P d. (.19) Y d z 0 z P SC Z z y 0 y P y Rys..4. Wyznaczenie momentów bezwładności przy przesunięciu układu współrzędnych.. Interpretując poszczególne całki otrzymano I Y =I Y0 z P S Y0 z P. (.0) Ponieważ oś jest osią środkową więc moment statyczny względem tej osi S Y0 wynosi zero. Ostatecznie wzór na obliczenie momentu bezwładności I Y będzie miał postać I Y =I Y0 z P. (.1) nalogicznie wzór na obliczenie momentu bezwładności I Z będzie miał postać I Z =I Z0 y P, (.) W celu wyznaczenia momentu dewiacyjnego wykorzystano definicję według wzoru (.6). I YZ y z d y 0 y P z 0 z P d. (.) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 6 Po rozwinięciu wyrażeń w nawiasach wzór. będzie miał postać I YZ y 0 z 0 y 0 z P z 0 y P y P z P d. (.4) Całkę z sumy zamieniamy na sumę całek. Wzór.4 będzie miał postać (y P oraz z P taktujemy jako stałe) I YZ y 0 z 0 d z P Interpretując poszczególne całki otrzymano y 0 d y P z 0 d y P z P d. (.5) I YZ =I Y0Z0 z P S Z0 y P S Y0 y P z P. (.6) Ponieważ osie oraz są osiami środkowymi więc momenty statyczne względem tych osi S Y0 oraz S Z0 wynoszą zero. Ostatecznie wzór na obliczenie momentu bezwładności I YZ będzie miał postać I YZ =I Y0Z0 y P z P. (.7) Wzory.1,. oraz.7 noszą nazwę wzorów Steinera i są podstawowymi wzorami służącymi do obliczania momentów bezwładności dowolnego przekroju względem dowolnego układu współrzędnych.. Momenty bezwładności przy obrocie układu współrzędnych Zakładamy, że znamy momenty bezwładności w układzie YZ. Szukamy momentów bezwładności w układzie Y`Z` obróconym o kąt a. Dodatni kąt jest zgodny z obrotem osi Y w kierunku osi Z. Przedstawia to rysunek.5. Współrzędne elementarnego pola powierzchni d w układzie Y`Z` opisują wzory transformacyjne, które mają znaną postać y '= y cos z sin, (.8) z '= y sin z cos. (.9) Korzystając z definicji momentu bezwładności względem osi Y` otrzymano I Y ' z ' d y sin z cos d. (.0) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 7 Y y` a z` z Y` d y Z Z` Rys..5. Przekrój z obróconym układem współrzędnych Y`Z`. Rozwijając wyrażenie w nawiasie wzór (.0) będzie miał postać I Y ' y sin y z sin cos z cos d. (.1) Ponieważ sinus i cosinus kąta a są stałe możemy wyciągnąć je przed znak całki. Zapisując całkę sumy jako sumę całek wzór (.1) przybierze postać I Y ' =sin y d sin cos y z d cos z d. (.) Interpretując poszczególne całki wzór (.) będzie miał postać I Y ' =sin I Z sin cos I YZ cos I Y. (.) Wprowadzając funkcje kąta a, które mają postać sin = 1 1 cos, (.4) cos = 1 1 cos, (.5) sin cos =sin, (.6) otrzymano ostateczną postać wzoru transformacyjnego. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 8 I Y ' = I I Y Z I I Y Z cos I YZ sin. (.7) Postępując analogicznie otrzymano następujące wzory transformacyjne I Z ' = I I Y Z I I Y Z cos I YZ sin, (.8) I Y ' Z ' = I Y I Z sin I YZ cos. (.9).4 Główne momenty bezwładności Istnieje pewien wyróżniony układ współrzędnych, w którym osiowe momenty bezwładności przyjmują wartości ekstremalne, a moment dewiacyjny znika. Taki układ nazywamy układem głównych osi bezwładności, a momenty osiowe w tym układzie głównymi momentami bezwładności. Kąt, który określa położenie głównych osi bezwładności wyznacza się ze wzoru tg gl = I YZ I Y I Z. (.40) Wstawiając wartość kąta a gl do wzorów transformacyjnych (.7) i (.8) otrzymamy wzory na obliczenie momentów głównych w postaci I Ygl = I I Y Z I I Y Z cos gl I YZ sin, gl (.41) I Zgl = I I Y Z I I Y Z cos gl I YZ sin. gl (.4) Główne momenty możemy uporządkować tak aby I I =max{ I Ygl I Zgl, (.4) I II =min{ I Ygl I Zgl. (.44) Momenty I I oraz I II można wyznaczyć także z następujących wzorów ( można je wykorzystać do sprawdzenia obliczeń głównych momentów bezwładności) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 9 I I = I I Y Z I I Y Z, I YZ (.45) I II = I I Y Z I I Y Z. I (.46) YZ.5 Niezmienniki Niezmiennikiem nazywamy taką wielkość fizyczną, która nie zmienia swojej wartości przy obrocie układu współrzędnych. W przypadku charakterystyk geometrycznych mamy dwie takie wielkości. Pierwszy niezmiennik ma postać sumy momentów osiowych. Wynosi on odpowiednio w dowolnym układzie współrzędnych i w układzie osi głównych J 1 =I Y I Z =I Ygl I Zgl. (.47) Drugi niezmiennik w dowolnym układzie współrzędnych oraz w układzie osi głównych wynosi (moment dewiacyjny w układzie osi głównych równa się zero) J =I Y I Z I YZ =I Ygl I Zgl. (.48).6 Momenty bezwładności prostokąta Jako przykład zostanie wyznaczony moment bezwładności względem osi przekroju prostokątnego o szerokości b i wysokości h. Oczywiście środek ciężkości znajduje się w środku wysokości i szerokości prostokąta. Przedstawia to rysunek.6. b b h d z 0 dz 0 h h b Rys..6. Przekrój prostokątny. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 10 Elementarne pole d wynosi d=b dz 0. (.49) Moment bezwładności względem osi zgodnie z definicją będzie wynosił I Y0 h z 0 d z 0 b dz 0 =b z 0 dz. 0 (.50) h h h Ostatecznie wartość momentu bezwładności będzie miał wartość I Y0 =b [ z h 0 =b ] [ h h 4 4] h = b h 1. (.51) nalogicznie moment bezwładności względem osi będzie wynosił I Z0 = h b 1. (.5) Ogólnie osiowe momenty bezwładności prostokąta względem osi środkowych będą miały postać wymiarrównoległydo osi wymiar prostopadły do osi I oś = 1. (.5) Ponieważ osie oraz są osiami symetrii to moment dewiacyjny prostokąta będzie wynosił zero..7 Momenty bezwładności innych figur Położenie środka ciężkości trójkąta prostokątnego o wymiarach przyprostokątnych b i h przedstawia rysunek.7. Momenty osiowe bezwładności trójkąta prostokątnego wynoszą I Y0 = b h 6, (.54) I Z0 = h b 6. (.55) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 11 h h h b b b Rys..7. Przekrój w formie trójkąta prostokątnego. Ogólnie osiowe momenty bezwładności trójkąta prostokątnego względem osi środkowych będą miały postać wymiarrównoległydo osi wymiar prostopadły do osi I oś = 6. (.56) Osie i nie są osiami głównymi dla trójkąta prostokątnego więc moment dewiacyjny będzie różny od zera. Jego wartość bezwzględną oblicza się ze wzoru I Y0Z0 = b h 7. (.57) h h h b b b Rys..8. Trójkąt prostokątny z zaznaczonym większym polem powierzchni w ćwiartkach ujemnych. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1 Znak momentu dewiacyjnego ustala się na podstawie położenia trójkąta prostokątnego w układzie współrzędnych. Na rysunku.8 została zaznaczona większa część przekroju trójkąta. Część ta znajduje się w ćwiartkach, w których wyrażenie y 0z 0d jest ujemne (będą to tak zwane ćwiartki ujemne) więc moment dewiacyjny trójkąta ma wartość ujemną. W przypadku innego usytuowania trójkąta w układzie współrzędnych znak momentu dewiacyjnego należy ustalić w zależności od położenia większej części przekroju. W przypadku przekroju kołowego o promieniu R środek ciężkości znajduje się oczywiście w środku koła. Osiowe momenty bezwładności w układzie osi środkowych wynoszą I Y0 =I Z0 = R4 4. (.58) Moment dewiacyjny przekroju kołowego wynosi oczywiście zero. R Rys..9. Przekrój kołowy..10. W przypadku przekroju będącego połową koła położenie środka ciężkości zostało pokazane na rysunku Oś symetrii 4 R R Rys..10. Przekrój będący połową koła. Osiowe momenty bezwładności wynoszą Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1 I Y0 = 8 9 8 R4 =0,1098 R 4, (.59) I Z0 = R4 =0,97 R 4. (.60) 8 Moment dewiacyjny wynosi oczywiście zero. Położenie środka ciężkości w przekroju będącego ćwiartką koła o promieniu R przedstawione zostało na rysunku.11. R 4 R 4 R Rys..11. Przekrój będący ćwiartką koła. Osiowe momenty bezwładności wynoszą I Y0 =I Z0 =0,05488 R 4. (.61) Wartość bezwzględna momentu dewiacyjnego wynosi I Y0Z0 =0,01647 R 4. (.6) 4 R 4 R Rys..1. Przekrój będący ćwiartką koła z zaznaczonym większym polem powierzchni w ćwiartkach dodatnich. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 14 Znak momentu dewiacyjnego ustala się podobnie jak dla przekroju trójkątnego. Większą część przekroju przedstawia rysunek.1. W tym przypadku większa część przekroju znajduje się w ćwiartkach dodatnich więc moment dewiacyjny będzie dodatni..8 Przekroje walcowane Osobną grupę prętów stanowią pręty wykonane z kształtowników walcowanych. Charakterystyki tego typu przekrojów znajdują się w Tablicach do projektowania konstrukcji metalowych. Istnieje wiele rodzajów tego typu przekrojów. Poniżej zostaną przedstawione podstawowe typy. 1. Dwuteownik. Wygląd przekroju oraz wielkości potrzebne do wyznaczenia charakterystyk geometrycznych przedstawia rysunek.1. Rys..1. Przekrój dwuteowy. Poziome elementy nazywamy półkami natomiast pionowy element nazywany jest środnikiem.. Połówka dwuteownika. Wygląd przekroju oraz wielkości potrzebne do wyznaczenia charakterystyk geometrycznych przedstawia rysunek.14.. Ceownik. Wygląd przekroju oraz wielkości potrzebne do wyznaczenia charakterystyk geometrycznych przedstawia rysunek.15. 4. Kątownik równoramienny. Wygląd przekroju oraz wielkości potrzebne do wyznaczenia charakterystyk geometrycznych przedstawia rysunek.16. Dla grubości półki,0 mm odczytąc należy wartości górne a dla 4,0 mm dolne. 5. Kątownik nierównoramienny. Wygląd przekroju oraz wielkości potrzebne do wyznaczenia charakterystyk geometrycznych przedstawia rysunek.17. Dla grubości półki 5,0 mm odczytując należy wartości górne a dla 6,0 mm dolne. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 15 Rys..14. Połówka dwuteownika. Rys..15. Przekrój ceowy. Rys..16. Kątownik równoramienny. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 16 Rys..17. Kątownik nierównoramienny..9 Momenty bezwładności w klasycznym układzie XY W wielu podręcznikach charakterystyki geometryczne są wyznaczone w układzie XY, który został przedstawiony na rysunku.18. Y d y X x Rys..18. Przekrój w klasycznym układzie współrzędnych XY. Definicje momentu statycznego względem osi X i Y mają postać S X y d, (.6) S Y x d. (.64) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 17 Definicje momentu bezwładności mają postać I X y d, I Y x d, (.65) (.66) I YZ x y d. (.67) Położenie środka ciężkości oblicza się ze wzorów x C = S Y, (.68) y C = S X. Jeżeli przekrój składa się z n części o znanych polach powierzchni i oraz współrzędnych środków ciężkości x i i y i to współrzędne środka ciężkości oblicza się ze wzorów x C = S i x i Y = i=1 n i i=1 n, (.69) y C = S i y i X = i=1 n i i=1 n. (.70) Twierdzenie Steinera będzie miało postać I X =I X0 y P, (.71) I Y =I Y0 x P, (.7) I XY =I X0Y0 x P y P. (.7) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 18 We wzorach (.71), (.7) i (.7) I X0, I Y0 i I X0Y0 oznaczają momenty względem osi środkowych, x P i y P oznaczają współrzędne środka ciężkości w układzie XY. Wzory transformacyjne będą miały postać I X ' = I I X Y I I X Y cos I XY sin, I Y ' = I I X Y I I X Y cos I XY sin, (.74) (.75) I X ' Y ' = I X I Y sin I XY cos. (.76) Kąt nachylenia osi głównych oblicza się ze wzoru tg gl = I XY I X I Y. (.77) Wartości głównych momentów bezwładności oblicza sięze wzorów I Xgl = I I X Y I I X Y cos gl I XY sin, gl (.78) I Ygl = I I X Y I I X Y cos gl I XY sin. gl (.79) Do sprawdzenia obliczeń można zastosować następujące wzory I I = I I X Y I I X Y, I XY (.80) I II = I I X Y I I X Y. I (.81) XY Wartości niezmienników w dowolnym układzie współrzędnych oraz w układzie osi głównych będą wynosiły J 1 =I X I Y =I Xgl I Ygl (.8) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 19 J =I X I Y I XY =I Xgl I Ygl (.8).10 Przykłady liczbowe.10.1 Przekrój blachownicowy - dwuteowy Wyznaczyć główne momenty bezwładności I Ygl oraz I Zgl przekroju pokazanego na rysunku.19. Wszystkie wymiary są podane w centymetrach. 1,0 8,0,0 9,0,0 Rys..19. Przekrój blachownicowy dwuteowy. Ponieważ przekrój dwuteowy posiada dwie osie symetrii środek ciężkości znajduje się w punkcie przecięcia się obu osi symetrii. Przedstawia to rysunek.0. W celu wyznaczenia położenia środka ciężkości przekrój został podzielony na trzy figury składowe. Wszystkie figury są prostokątami. Zostało to przedstawione na rysunku.1. Współrzędne środków ciężkości poszczególnych figur składowych wynoszą y 01 =0,0 cm y 0 =0,0 cm y 0 =0,0 cm z 01 = 15,0 cm z 0 =0,0 cm z 0 = 15,0 cm. (.84) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 0 1,0 16,0,0 16,0 8,0 9,0,0 4,5 4,5 Rys..0. Położenie środka ciężkości przekroju dwuteowego.,0 1 1,0 15,0 = 15,0 8,0 =1 = = 9,0,0 Rys..1. Podział dwuteownika na figury składowe. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1 Momenty bezwładności względem osi oraz wynoszą 9,0,0 I Y0 = 15,0 9,0,0 1 1,0 8,0 0,0 1,0 8,0 1 9,0,0 15,0 9,0,0=9941 cm 4 1, (.85),0 9,0 I Z0 = 0,0 9,0,0 1 8,0 1,0 0,0 1,0 8,0 1,0 9,0 0,0 9,0,0=45, cm 4 1. (.86) Ze względu na to, że osie oraz są osiami symetrii przekroju dwuteowego moment dewiacyjny wynosi zero. Skoro więc moment dewiacyjny równa się zero to można wyciągnąć wniosek, że osie i są głównymi osiami bezwładności..10. Przekrój blachownicowy - teowy Wyznaczyć główne momenty bezwładności I Ygl oraz I Zgl przekroju pokazanego na rysunku.. Wszystkie wymiary są podane w centymetrach. 9,0,0 1,0 8,0 Rys... Przekrój blachownicowy teowy. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU Ponieważ przekrój teowy posiada jedną oś symetrii środek ciężkości znajduje się na tej osi. W ten sposób znamy współrzędną y C środka ciężkości. Chcąc wyznaczyć współrzędną z C środka ciężkości został obrany układ współrzędnych YZ. Przedstawia to rysunek.. Przekrój został podzielony na dwie figury składowe. Obie figury są prostokątami. Y 9,0 1,0,0 1 1,0 16,0 8,0 Z= =1 = Rys... Położenie środków ciężkości poszczególnych figur. Współrzędne środków ciężkości poszczególnych figur w układzie YZ wynoszą y 1 =0,0 cm z 1 =1,0 cm y =0,0 cm z =16,0 cm. (.87) Współrzędna z C środka ciężkości wynosi z C = 9.0,0 1,0 8,0 1,0 16,0 =10,1 cm 9.0,0 8,0 1,0. (.88) Rysunek.4 przedstawia przekrój z zaznaczonym układem osi środkowych. Współrzędne środków ciężkości poszczególnych figur w układzie wynoszą y 01 =0,0 cm z 01 = 9,1 cm y 0 =0,0 cm z 0 =5,87 cm. (.89) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 9,0,0 1 9,1 5,87 8,0 1,0 =1 = Rys..4. Przekrój teowy z zaznaczonym układem osi środkowych. Momenty bezwładności w układzie wynoszą 9,0,0 I Y0 = 9,1 9,0,0 1 1,0 8,0 5,87 1,0 8,0=401 cm 4 1, (.90),0 9,0 I Z0 = 0,0 9,0,0 1 8,0 1,0 0,0 1,0 8,0=1,8 cm 4 1. (.91) Ze względu na to, że oś jest osią symetrii przekroju teowego moment dewiacyjny wynosi zero. Skoro więc moment dewiacyjny równa się zero to można wyciągnąć wniosek, że osie i są głównymi osiami bezwładności..10. Zastosowanie twierdzenia Steinera Dany jest moment bezwładności przekroju będącego połówką koła względem osi Y 1. Wyznaczyć moment bezwładności względem osi Y. Przekrój został przedstawiony na rysunku.5. Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 4 I Y1 = R4 8. (.9) Y 4 R R Y 1 =Z 1 =Z Rys..5. Przekrój będący ćwiartką koła. Zgodnie z twierdzeniem Steinera moment bezwładności względem osi Y 1 wynosi I Y1 =I Y0 z 1 (.9) Współrzędna z 1 środka ciężkości przekroju w układzie Y 1Z 1 wynosił z 1 = 4 R (.94) Ostatecznie moment bezwładności względem osi Y 1 wynosi I Y1 = R4 8 =I R Y0 4 R (.95) Moment bezwładności względem osi środkowej wynosi I Y0 = 8 8 9 R4 (.96) Moment bezwładności względem osi Y wynosi (z jest współrzędną środka ciężkości przekroju w układzie Y Z ) I Y =I Y0 z = 8 8 4 R 9 R4 R R (.97) Prof. dr hab. inż. ndrzej Garstecki lmamater

. CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 5 Prof. dr hab. inż. ndrzej Garstecki lmamater