-3-9 Wstęp do Optyki i Fizyki Mateii Skondensowanej Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Wojciech.Wasilewski@fuw.edu.pl Wstęp do Optyki i Fizyki Mateii Skondensowanej Poponowane podęczniki: P. W. Atkins, Chemia fizyczna, Wydawnictwa Naukowe PWN, Waszawa. R. Bacewicz, Optyka ciała stałego, Oficyna Wydawnicza Politechniki Waszawskiej, Waszawa 995. W. Demtöde, Spektoskopia laseowa, Wydawnictwa Naukowe PWN, Waszawa 993. H. A. Enge, M. R. Weh, J. A. Richads, Wstęp do fizyki atomowej, Państwowe Wydawnictwo Naukowe, Waszawa 983. J. Ginte, Wstęp do fizyki atomu, cząsteczki i ciała stałego, Państwowe Wydawnictwo Naukowe, Waszawa 979. Gołębiewski, elementy mechaniki i chemii kwantowej, Państwowe Wydawnictwo Naukowe, Waszawa 98. H. Haken, H. C. Wolf, Fizyka molekulana z elementami chemii kwantowej, Wydawnictwa Naukowe PWN, Waszawa 998. H. Haken, H. C. Wolf, Atomy i kwanty, Wydawnictwa Naukowe PWN, Waszawa 997. Hennel, W. Szuszkiewicz, Zadania z fizyki atomu, cząsteczki i ciała stałego, Państwowe Wydawnictwo Naukowe, Waszawa 985. H. Ibach, M. Lüthi, Fizyka Ciała Stałego, Wydawnictwa Naukowe PWN, Waszawa 996. F. Kaczmaek, Wstęp do fizyki laseów, Państwowe Wydawnictwo Naukowe, Waszawa 986. C. Kittel, Wstęp do fizyki ciała stałego, Wydawnictwo Naukowe PWN, Waszawa 999. Kopystyńska, Wykłady z fizyki atomu. Państwowe Wydawnictwo Naukowe, Waszawa 989. P. Kowalczyk, Fizyka cząsteczek, Wydawnictwa Naukowe PWN, Waszawa. T. Stacewicz, A. Witowski, J. Ginte, Wstęp do optyki i fizyki ciała stałego, Wydawnictwa Uniwesytetu Waszawskiego, Waszawa. A. Twadowski, Wstęp do fizyki atomu, cząsteczki i ciała stałego, Wydawnictwa Uniwesytetu Waszawskiego, Waszawa. G. K. Woodgate, Stuktua atomu, Państwowe Wydawnictwo Naukowe, Waszawa 974. Uniwesytet Waszawski GyPlan GyPlan Oddziaływanie fali e-m z mateią Atomy (ze spinem), pzejścia optyczne Popagacja fali e-m pzez ośodki ½ Molekuły i cząsteczki, pzejścia optyczne + Oddziaływanie fali e-m z mateią Atomy (ze spinem), pzejścia optyczne Popagacja fali e-m pzez ośodki ½ Molekuły i cząsteczki, pzejścia optyczne + Mateia skondensowana Mateia skondensowana Ciało stałe, stuktua pasmowa, pzejścia optyczne 4 Ciało stałe, stuktua pasmowa, pzejścia optyczne 4 GyPlan Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Oddziaływanie fali e-m z mateią Atomy (ze spinem), pzejścia optyczne Popagacja fali e-m pzez ośodki ½ Optyka -powtózenie Molekuły i cząsteczki, pzejścia optyczne + Mateia skondensowana Ciało stałe, stuktua pasmowa, pzejścia optyczne 4 Popagacja fali elektomagnetycznej. Natężenie fali. Oddziaływanie fali e-m z ośodkiem, Odbicie plazmowe, klasyczny współczynnik załamania, kształt linii widmowych, poszezenia.
-3-9 Optyka -powtózenie Równania Mawella: ε divε ρ Β otε Ε otβ µ ε + divβ µ j Równanie falowe: Optyka -powtózenie ( otβ) Ε ot( otε) µ ε µ j Ε Ε µ ε Β Β µ ε c µ ε Równanie falowe: Optyka -powtózenie Natężenie fali czyli moc pzenoszona na jednostkę powiezchni wyaża się pzez wekto Poytinga[W/m ]: S µ DC Powe flow in a concentic cable Independent E and B fields http://en.wikipedia.og/wiki/poynting_vecto Ε Β Optyka -powtózenie Fala elektomagnetyczna w póżni Równania Mawella: B E ote E B otb ε µ Równania falowe: E E µ ε Β Β µ ε Pędkość fali elektomagnetycznej: c 8 m c 3 µ ε s Współczynnik załamania: n ω k c Fala elektomagnetyczna w dielektyku Równania Mawella: B E ote E B otb ε µ µε Równania falowe: E E µ ε µε Β Β µ ε µε Pędkość fali elektomagnetycznej: c υ µ ε µε n Współczynnik załamania: n c υ µε nω k c Optyka -powtózenie Fala elektomagnetyczna w póżni Fala elektomagnetyczna w dielektyku Równania Mawella: B E ote E B otb ε µ Równania falowe: E E µ ε Β Β µ ε Pędkość fali elektomagnetycznej: c 8 m c 3 µ ε s Współczynnik załamania: n ω k c Równania Mawella: B E ote E B otb ε µ µε Równania falowe: E E µ ε µε Β Β µ ε µε Pędkość fali elektomagnetycznej: c υ µ ε µε n Ale w jaki sposób ośodek oddziałuje z falą elektomagnetyczną? Czy ε(a więc n) jest stałe? Współczynnik załamania: n c υ µε nω k c
-3-9 Wojtek Wasilewski Wojtek Wasilewski Wojtek Wasilewski Wojtek Wasilewski Wojtek Wasilewski Zjawisko Mossbauea Eplain it! The most impotant thing is, that you ae able to eplain it! You will have eams, thee you have to eplain it. Eventually, you pass them, you get you diploma and you think, that's it! No, the whole life is an eam, you'll have to wite applications, you'll have to discuss with pees... So lean to eplain it! You can tain this by eplaining to anothe student, a colleague. If they ae not available, eplain it to you mothe o to you cat! Rudolf Ludwig Mössbaue u. 99 Za Wikipedią 3
-3-9 Fala w ośodku wypełnionym oscylatoami (model Loentza): Dielektyk: Fala w ośodku wypełnionym oscylatoami (model Loentza): Dielektyk: + + + + + + + + + + + + + + + + + + + + + + + + E E P polayzacja ośodka D ε E + P -q +q p q moment dipolowy atomu (cząsteczki) Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. -q +q p q moment dipolowy atomu (cząsteczki) polayzacja ośodka P N p N( α E) ε χ E polayzowalność ε podatność dielektyczna Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. -q +q stąd D P ( + χ ) E ε ε E E + P ε ε ( t) N p( t) Nq( t) χ E( t) ε Tego szukamy: n ε + χ ( t) Musimy wyznaczyć! Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. d d q Ee + γ + ω dt dt m tłumienie siła spężysta iωt siła wymuszająca Rozwiązanie dla stanu ustalonego: iω t e Fala w ośodku wypełnionym oscylatoami (model Loentza): Rozwiązanie dla stanu ustalonego: Podstawiamy: ep( iω ) t ( + i + ω γω ω ) Amplituda: qe m qe m ω ω + iγω ( ) 4
-3-9 Fala w ośodku wypełnionym oscylatoami (model Loentza): Fala w ośodku wypełnionym oscylatoami (model Loentza): Dostajemy: n Nq ε ε L + ε L + ε E ε m Nq. n n' iκ ε L Dla jednej częstości oscylatoa ω ε L, ale dla wielu jest to w pzybliżeniu stała suma wkładów od pozostałych. ( ω ω + iγ Nq κ m γω + ε ( ω ω ) γ ω Nq ω ω n' ε L + ε m ( ω ω ) + γ ω E E ep[ i( ω t knz) ] E ep[ i( ωt kn' z + ikκz) ] π E ep κ z ep i ω t λ [ ( kn' z) ] Dostajemy: a) b) związki dyspesyjne Kamesa- Koniga. Obsza dyspesji anomalnej Nq κ γω ε m ( ω ω ) + γ ω Nq n' + ω ω ε m ( ω ω ) + γ ω Fala w ośodku wypełnionym oscylatoami: Fala w ośodku wypełnionym oscylatoami: a) b) Część zeczywista opisuje zmianę wektoa falowego czynnika oscylującego fali elektomagnetycznej, - zeczywisty współczynnik załamania ośodka. Jeżeli pzez ośodek fala popaguje się bez absopcji, to nn. Część uojona współczynnika załamania κ chaakteyzuje absopcję ośodka. dn' Wielkość nazywana jest dyspesją ośodka. dω Pzykładwody:. Poza ezonansem jest ona funkcją dodatnią - dyspesja nomalna. Dla częstości bliskich częstości ezonansowej dyspesja ma znak ujemny - dyspesja anomalna. Fala w ośodku wypełnionym oscylatoami: Pawo Lambeta-Beea : Kilka ezonansów w ośodku: a). H O Pole elektyczne fali pzechodzącej pzez ośodek: π E E ep i( ωt kn' z + ikκz ) E ep κ z ep i ω t kn' z λ 4π Natężenie I E E o ep κ z λ [ ] [ ( )] b) I( z) I ep( αz) Współczynnik absopcji α κk 5
.5.5 3 4 5 6 7 8 9-3-9 Fala w ośodku wypełnionym oscylatoami (model Loentza): d d qe iωt + γ + ω e dt dt m Rozważamy pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. Fala w ośodku wypełnionym oscylatoami (model Loentza): d d qe iωt + γ + ω e dt dt m siła wymuszająca Rozważamy siła tłumienie pzestzeń wypełnioną oscylatoami o częstotliwości ezonansowej ω hamoniczna i współczynniku tłumienia γ; oscylatoymają masę m, ładunek q są pouszane pzez oscylujące pole elektyczne E. Rozwiązanie dla stanu ustalonego typu: e iωt Rozwiązanie dla stanu ustalonego typu: e iωt Fala w ośodku (óżnym): d d qe i + γ + ω e dt dt m d d + γ + ω dt dt d qe iωt + + e dt m ωt Model Loentza Widmo emisji Fala w plazmie Rozwiązanie dla stanu ustalonego typu: e iωt Np. kształt i szeokość linii emisyjnych Pzejście między dwoma poziomami układu kwantowego może być z dobym pzybliżeniem opisane za pomocą modelu oscylatoa hamonicznego: d d + γ + ω dt dt -q +q ( t) q( t) p Widmo emisji Tym azem atomy (cząsteczki) zostały (jakoś) pobudzone do dgań i staają się powócić do swojej ównowagi tacąc enegię na emisję pomieniowania elektomagnetycznego ( tłumienie ). P moment dipolowy atomu (cząsteczki) ( t) N p( t) Nq( t) χ E( t) ε Np. kształt i szeokość linii emisyjnych Analiza tego tłumienia oscylacji daje wgląd w mikoskopowe zjawiska zachodzące podczas (i w okolicach) emisji pomieniowania elektomagnetycznego! Chaakte zaniku pomieniowania w czasie ma wpływ na jego widmo(w domenie częstości). Np. kształt i szeokość linii emisyjnych Widmo - tansfomata Fouiea: Szeokość połówkowa linii: dgania tłumione (natualna szeokość linii) poszezenie ciśnieniowe poszezenie doppleowskie (pofil Voigta) χ -q +q Tym azem atomy (cząsteczki) zostały (jakoś) pobudzone do dgań i staają się powócić do swojej ównowagi tacąc enegię na emisję pomieniowania elektomagnetycznego ( tłumienie ). I( ω τ ω 6
-3-9 Np. kształt i szeokość linii emisyjnych Widmo - tansfomata Fouiea: Szeokość połówkowa linii: FWHM Full Width Half Maimum Np. kształt i szeokość linii emisyjnych Widmo - tansfomata Fouiea: Szeokość połówkowa linii: FWHM Full Width Half Maimum I( I ( ω ω ) + ( γ / ) I( I ( ω ω ) + ( γ / ) Np. popagacja fali w plazmie: d qe iωt + + e dt m j σ E swobodne ładunki zjonizowane gazy, (np. w lampach gazowych, w atmosfeach gwiazd i jonosfeach planet), plazma, plazma w ciele stałym -czyli gaz swobodnych nośników znajdujący się w metalach lub półpzewodnikach, ciecze - jak elektolity czy oztopione pzewodniki. Rozwiązanie dla stanu ustalonego: e iωt Np. popagacja fali w plazmie: d qe iωt + + e dt m j σ E swobodne ładunki zjonizowane gazy, (np. w lampach gazowych, w atmosfeach gwiazd i jonosfeach planet), plazma, plazma w ciele stałym -czyli gaz swobodnych nośników znajdujący się w metalach lub półpzewodnikach, ciecze - jak elektolity czy oztopione pzewodniki. Rozwiązanie dla stanu ustalonego: e iωt Kształt linii absopcyjnej Pawo Lambeta-Beea: I ( z, I( ep α( z [ ] gdzie absobancja α( κ ( k( a współczynnik absopcji (w pzypadku kształtu loencowskiego): Nq γω κ ( ε m ( ω ω ) + γ ω Gdy jesteśmy blisko ezonansu, gdy, współczynnik absopcji upaszcza się do postaci opisywanej kształtem Loenza. χ Efekt Dopplea Relatywistyczny efekt Dopplea (dla światła): υ > gdy źódło się zbliża. + υ / c ν obsew. νźódła νźódła + υ / c ( υ / c) Nq γ κ ( 8ε mω ( ω + ( γ / ) I( ω ω Pof. T. Stacewicz Pof. T. Stacewicz 7
-3-9 Efekt Dopplea Wizja atysty pzedstawia planety obitujące wokół PSR 57+ Wikipedia Efekt Dopplea Wolszczan, A., & Fail, D. A. A Planetay System aound the Millisecond Pulsa PSR 57+ 99, Natue, 355, 45. Aleksande Wolszczan Efekt Dopplea Masses and Obital Inclinations of Planets in the PSR B57+ System Maciej Konacki and Ale Wolszczan The Astophysical Jounal, 59:L47-L5, 3 July Efekt Dopplea Pzesunięcie ku czewieni linii spektalnych w zakesie światła widzialnego supegomady odległych galaktyk (po pawej) w poównaniu do Słońca (po lewej) Best-fit daily aveaged time-of-aivalesiduals fo theetiming models of PSRB57+ obseved at 43MHz. Wikipedia Kształt linii absopcyjnej http://www.webehibits.og/causesofcolo/8a.html Poszezenie doppleowskie Na skutek efektu Dopplea pouszający się obiekt absobuje lub pomieniuje falę o częstości pzesuniętej względem częstości własnej obiektu spoczywającego: ω A ω (+V Z /c) V Z jest składową pędkości wzdłuż kieunku ozchodzenia się pomieniowania W tempeatuze Tzależność między liczbą cząstek o masie ma pędkością V Z jest opisywana pzez ozkład Mawella : n i i ( VZ ) dvz ep V N π [ ( VZ VP ) ] dvz p Ten opis jest słuszny dla układu w ównowadze temodynamicznej. W pzypadku gdy ozkład pędkości nie jest temiczny (np. w wiązkach atomowych) należy zastosować inną funkcję, właściwą dla danego układu kt V P m Pof. T. Stacewicz 8
-3-9 Poszezenie doppleowskie Po podstawieniu popzedniego ównania otzymujemy ozkład liczby cząstek pomieniujących z daną częstością ω: N ic / ω [ ( c/ V ] ni ( ) d e P )( ω ω ')/ ω ω ω dω V p π Ponieważ natężenie pomieniowania jest popocjonalne do ilości pomieniujących cząstek, mamy gaussowski kształt linii spektalnej. Po unomowaniu powyższej funkcji : c( ω ω I ( ω ) I ep ω V P Szeokość linii doppleowskiej wynosi Poszezenie doppleowskie W gazach atomowych i molekulanych: natualne szeokości linii wynoszą od kilku do kilkunastu megaheców, na skutek uchów cieplnych cząstek linie te ulegają poszezeniu kilkadziesiąt do kilkuset azy. δω D V P ω ln ω c c 8kT ln m Pof. T. Stacewicz ω Pof. T. Stacewicz Poszezenie doppleowskie Kształt linidoppleowskejjest gaussowski tylko pzy założeniu, że natualna szeokość linii jest badzo mała (ściślej, że jest detlą Diaca). Jeśli weźmiemy pod uwagę szeokość natualną linii widmowej (np. w badzo chłodnych gazach) otzymamy pofil Voigta. Pofil Voigta Rozważmy układ oscylatoów tłumionych. każdy z nich chaakteyzuje się widmem Loentza, któego szeokość nie może być zaniedbana. na skutek uchu cieplnego i efektu Dopplea częstość centalna ω każdego oscylatoa ulega pzesunięciu do watości ω i. Wypadkowe natężenie pomieniowania jest sumą natężeń pochodzących od poszczególnych oscylatoów: I( I i ( ω ω ) + ( γ / ) i i któa w pzypadku ciągłego, mawellowskiego ozkładu pędkości pzechodzi w całkę, dając splot funkcji Gaussa i Loentza [ ( c / V )( ω ω ') / ω ] e P I( C dω' ( ω ω') + ( γ / ) γnic C 3 V π ω P Pof. T. Stacewicz Pofil Voigta Zjawisko Mossbauea "fo his eseaches concening the esonance absoption of gamma adiation and his discovey in this connection of the effect which beas his name" Rudolf Ludwig Mössbaue u. 99 Pof. T. Stacewicz 9
-3-9 Zjawisko Mossbauea Zjawisko Mossbauea Eplain it! The most impotant thing is, that you ae able to eplain it! You will have eams, thee you have to eplain it. Eventually, you pass them, you get you diploma and you think, that's it! No, the whole life is an eam, you'll have to wite applications, you'll have to discuss with pees... So lean to eplain it! You can tain this by eplaining to anothe student, a colleague. If they ae not available, eplain it to you mothe o to you cat! Za Wikipedią Rudolf Ludwig Mössbaue u. 99 Jądo (a więc cały atom) emitując fotony o enegii E doznaje pewnego odzutu. Jego enegię można wyznaczyć z pawa zachowania pędu: odzut atomu masa atomu E R E γ pc p Eγ M Mc Zgodnie z zasadą zachowania enegii emitowany foton ma enegię mniejszą o E R od enegii wzbudzenia jąda E, gdyż ta część enegii zostaje zużyta na odzut. Z kolei w takcie absopcji jądo pochłania foton, czego skutkiem jest ównież odzut. Wynika stąd, iż niedopasowanie enegetyczne między fotonami emitowanymi a absobowanymi wynosi E R Zjawisko Mossbauea Zjawisko Mossbauea intensywność linia emisyjna E - E R E linia absopcyjna E + E R Rudolf Ludwig Mössbaue u. 99 To pzejście jest odpowiednio wąskie (czyli długożyciowe) E R E 4,4 kev τ 7 s h 8 Γ ev τ Γ E p Eγ M Mc,eV ALE: w pzypadku kyształu pęd pzejmuje CAŁA sieć, więc można pzyjąć, że absopcja jest bezodzutowa http://hypephysics.phy-ast.gsu.edu/hbase/nuclea/mossfe.html Zjawisko Mossbauea Zjawisko Mossbauea Efekt Doplea: ν ν υ obsew. νźódła υ / c 6,67 Źódło 57 Co Absobent 57 Fe Detekto γ υ http://tcc.salon4.pl/78,efekt-mossbauea-efekt-dopplea-odpowiedz-dla-janusza Efekt Doplea: mm/s! ν ν ν υ obsew. źódła / c 6,67 Źódło 57 Co Absobent 57 Fe Detekto γ υ υ http://tcc.salon4.pl/78,efekt-mossbauea-efekt-dopplea-odpowiedz-dla-janusza
-3-9 Zjawisko Mossbauea Spitit i Oppotunity Zjawisko Mossbauea Spitit i Oppotunity http://www.fas.og/ip/imint/docs/st/sect9/sect9_3a.html http://www.fas.og/ip/imint/docs/st/sect9/sect9_3a.html Zjawisko Mossbauea Zjawisko Mossbauea Test Ogólnej Teoii Względności Havad Towe Epeiment Rozszczepienie poziomów enegetycznych jąda 57 Fe na skutek efektu Zeemana. OTW -96 http://pl.aps.og/abstact/prl/v3/i9/p439_ http://hypephysics.phy-ast.gsu.edu/hbase/elativ/gatim.html Zjawisko Mossbauea E E mgh gh c E E down down E E E E up up http://pl.aps.og/abstact/prl/v3/i9/p439_ gh Pzesunięcie ku czewieni spowodowane polem gawitacyjnym ν obsew. νźódła + Ziemi (Ogólna Teoia Względności) c 5 ν / ν 4,9 E E Zysk enegii spadającego fotonu,4kev g,6m 3,5 ev c 4 ( 3,5 ev) 5 4,4keV 5 ( 5, ±,5) 4,9 Wynik pomiau http://hypephysics.phy-ast.gsu.edu/hbase/elativ/gatim.html Zjawisko Mossbauea Robet Pound, stationed at the top of a towe in a Havad physics building (top), communicated by phone with Glen Rebkain the basement duing calibations fo thei epeiment. The team veified Einstein's pediction that gavity can change light's fequency. 96 http://focus.aps.og/stoy/v6/st
-3-9 Zjawisko Mossbauea Test Ogólnej Teoii Względności Havad Towe Epeiment Jacek.Szczytko@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/nt Nanotechnologie i stuktuy niskowymiaowe OTW -96 http://pl.aps.og/abstact/prl/v3/i9/p439_ http://hypephysics.phy-ast.gsu.edu/hbase/elativ/gatim.html Półpzewodniki Nanotechnologia w kultuze Nanotechnologia na co dzień Studnie, duty, kopki kwantowe Top-down Bottom-up bio/med nano Zagożenia