Algorytm grupowania K-Means Reprezentacja wiedzy Selekcja i ocena modeli
|
|
- Stefan Piekarski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytm grupowania K-Means wiedzy modeli Web Mining Lab PJWSTK
2 Plan Algorytm grupowania wiedzy reguªy decyzyjne drzewa decyzyjne i algorytm ID3 wybór i zªo»ono± przetrenowanie i sposoby omini cia walidacja krzy»owa ewaluacja: macierz pomyªek, precyzja, peªno±, F-miara
3 Problem grupowania (ang. clustering) Maj c dany zbiór {x 1,..., x N } (N obserwacji D-wymiarowej Euklidesowej zmiennej losowej X) podziel go na (dane z góry) K klastrów (rozª cznych podzbiorów) klastry (idea): elementy wewn trz ka»dego klastra maj by podobne do siebie, ale elementy z ró»nych klastrów maj by niepodobne
4 Sformuªowanie Problemu dla Bardziej formalnie: nast puj ca miara ma by zminimalizowana: J = N K r nk x n µ k 2 n=1 k=1 gdzie µ k - centroid k-tego klastra, r nk == 1 tylko je±li n-ty punkt nale»y do k-tego klastra (wpp. zero) zadanie: znajd¹ takie warto±ci {r nk } i {µ k }, które minimalizuj warto± miary J.
5 Algorytm W ka»dej iteracji s 2 naprzemienne fazy optymalizacji, ze wzgl du na r nk i µ k. Najpierw, µ k maj nadane pewne pocz tkowe warto±ci. Nast pnie, w pierwszej fazie J jest minimalizowane ze wzgl du na r nk (przy ustalonej warto±ci µ k ). W drugiej fazie, J jest minimalizowane ze wzgl du na µ k (przy ustalonej warto±ci r nk ).
6 Zbie»no±. Algorytm EM Procedura 2-fazowych iteracji jest kontynuowana a» J zbiegnie do ko«cowej warto±ci (warto± J w ka»dej fazie maleje i jest nieujemna, wi c proces musi zbiega do lokalnego minimum, które niekoniecznie jest minimum globalnym (optymalnym) Algorytm ten jest szczególnym przypadkiem ogólnego algorytmu typu EM (ang. expectation-maximisation), gdzie obliczanie nowych warto±ci r nk odpowiada fazie E(xpectation) natomiast obliczanie µ k fazie M(aximisation).
7 Analiza Poniewa» J jest liniow funkcj r nk, minimalizacja w ka»dej fazie E jest prosta. Skªadniki sumy odpowiadaj ce poszczególnym indeksom n s niezale»ne i mo»na optymalizowa je oddzielnie: r nk == 1 wtedy i tylko wtedy, gdy k == arg min j x n µ j 2, 0 w przeciwnym wypadku
8 Analiza, cd. Co do optymalizacji µ k, w fazie M, gdy warto±ci r nk s ustalone, wystarczy zauwa»y,»e J jest kwadratow funkcj µ k, tak wi c mo»e by zminimalizowana przez przyrównanie pochodnej (ze wzgl du na µ k ) do zera: co jest równowa»ne: 2 N r nk (x n µ k ) = 0 n=1 µ k = n r nk x n n r nk Mianownik to liczba punktów w k-tym klastrze, tak wi c interpretacja wyra»enia to ±rednia (ang. mean) wszystkich punktów w k-tym klastrze (st d nazwa: )
9 Rozszerzenia Algorytm w wersji podstawowej jest dosy wolny, istniej jego przyspieszone udoskonalenia. Podobnie istnieje wersja on-line, w której nie wszystkie punkty s znane od razu a pojawiaj si sukcesywnie w miar pracy algorytmu (Bishop s.427) Na koniec, zauwa»my,»e przydziela ka»dy punkt do dokªadnie jednego klastra. W wielu zastosowaniach, w szczególno±ci w kontek±cie informacji niepewnej, lepszym okazuje si podej±cie rozmyte, w którym ka»dy punkt mo»e by przypisany do ka»dego klastra z pewnym prawdopodobie«stwem.
10 k-medoids Algorytm jest oparty na (kwadracie) odlegªo±ci Euklidesowej, co sprawia,»e mo»e by maªo odporny na warto±ci odstaj ce. Istnieje wariant, nazywany k-medoids, w którym zakªada si ograniczenie,»e warto±ci wektorów ±rednich µ k (tzw. medoidów) mog by przypisane jedynie do jednego z punktów b d cych elementem k-tego klastra, oraz dopuszcza dowoln miar niepodobie«stwa wektorów V (x n, µ n ) (zamiast obowi zkowej odlegªo±ci Euklidesowej) W zwi zku z tym, faza E potrzebuje O(KN), natomiast faza M O(N 2 ) oblicze«warto±ci funkcji V (, ).
11 wiedzy w uczeniu maszynowym
12 Przypomnienie podej± do uczenia maszynowego sztuczne sieci neuronowe drzewa decyzyjne reguªy decyzyjne support vector machines wiele innych...
13 Sieci neuronowe jako black box Sieci neuronowe (zwªaszcza wielowarstwowe z reguª uczenia opart na propagacji wstecznej) stanowi pot»ny i uniwersalny model uczenia maszynowego. Jednak, mimo»e taka sie mo»e nauczy si teoretycznie wszystkiego 1 to wiedza w tym reprezentowana jest w sposób zupeªnie nieczytelny dla czªowieka: w postaci wag poª cze«i warto±ci progów poszczególnych neuronów. Taki model nazywamy black box, jest skuteczny ale nie nadaje si do analizy przez czªowieka. 1 przy odpowiednio du»ym zbiorze treningowym
14 wiedzy, cd Istniej modele uczenia maszynowego, gdzie automatycznie nauczona wiedza jest reprezentowana w sposób przejrzysty dla czªowieka, np.: Reguªy decyzyjne Drzewa decyzyjne
15 Przykªad - diagnostyka okulistyczna Wiedza w formie surowej tabeli decyzyjnej: wiek presc. astygmatyzm ªzawienie OKULARY mªody myope nie niskie zb dne mªody myope nie normalne lekkie mªody myope yes niskie zb dne mªody myope tak normalne mocne mªody hypermetrope nie niskie zb dne mªody hypermetrope nie normalne lekkie mªody hypermetrope tak niskie zb dne mªody hypermetrope tak normalne mocne pre-presbyopic myope nie niskie zb dne pre-presbyopic myope nie normalne lekkie pre-presbyopic myope tak niskie zb dne pre-presbyopic myope tak normalne mocne pre-presbyopic hypermetrope nie niskie zb dne pre-presbyopic hypermetrope nie normalne lekkie pre-presbyopic hypermetrope tak niskie zb dne pre-presbyopic hypermetrope tak normalne zb dne presbyopic myope nie niskie zb dne presbyopic myope nie normalne zb dne presbyopic myope tak niskie zb dne presbyopic myope tak normalne mocne presbyopic hypermetrope nie niskie zb dne presbyopic hypermetrope nie normalne lekkie presbyopic hypermetrope tak niskie zb dne presbyopic hypermetrope tak normalne zb dne (Taka forma reprezentacji jest maªo skompresowana: ka»dy wiersz to oddzielny przypadek.
16 Wiedza w formie reguª decyzyjnych przykªad kilku pierwszych automatycznie wygenerowanych reguª decyzyjnych (dla problemu diagnostyki okulistycznej): IF tear production rate = reduced THEN recommendation = NONE IF age = young AND astigmatic = no AND tear production rate = normal THEN recommendation = SOFT IF age = presbyopic AND astigmatic = no AND tear production rate = normal THEN recommendation = SOFT IF age = presbyopic AND spectacle prescription = myope AND astigmatic = no THEN recommendation = NONE Reguªy mog stanowi du»o bardziej zwart form reprezentacji wiedzy ni» tabela decyzyjna. Przykªadem algorytmu automatycznie generuj cego reguªy decyzyjne jest algorytm pokrywania (ang. covering)
17 Wiedza w formie drzewa decyzyjnego tear production rate reduced normal none astigmatism no yes soft spectacle prescription myope hypermetrope hard none Du»o bardziej zwarta forma reprezentacji wiedzy (uwaga: te reguªy pokrywaj wszystkie poza 2 przypadki!)
18 Automatyczne generowanie drzew decyzyjnych: Metoda ID3 W skrócie: 1 Wybieramy atrybut 2 tworzymy rozgaª zienia dla poszczególnych warto±ci atrybutu 3 powtarzamy 1 i 2 a» do momentu, gdy zostan tylko elementy jednej kategorii we wszystkich rozgaª zieniach. Uwaga: Im dªu»ej budujemy drzewo tym wi ksze ryzyko przetrenowania. Atrybut do podziaªu wybieramy ze wzgl du na pewne kryterium - ogólnie d»ymy do tego,»eby drzewo: jak najdokªadniej klasykowaªo byªo jak najprostsze (zauwa»my: s to wzajemnie przeciwstawne postulaty)
19 Automatyczne generowanie drzew decyzyjnych - przykªad Przypomnijmy dane dotycz ce pogody i pewnej gry: outlook temperature humidity windy PLAY? sunny hot high false no sunny hot high true no overcast hot high false yes rainy mild high false yes rainy cool normal false yes rainy cool normal true no overcast cool normal true yes sunny mild high false no sunny cool normal false yes rainy mild normal false yes sunny mild normal true yes overcast mild high true yes overcast hot normal false yes rainy mild high true no
20 Budowanie drzewa decyzyjnego - Metoda ID3 Mamy do wyboru 4 atrybuty: outlook, temperature, humidity oraz windy. Czy wida który jest najlepszy?
21
22
23
24
25 Kryterium wyboru atrybutu do podziaªu Metoda ID3 Intuicyjnie - atrybut jest tym lepszy im lepiej rozdziela kategorie. ci±lej - z ka»dym mo»liwym podziaªem mo»na zwi za pewn miar jako±ci podziaªu i wybra ten atrybut, dla którego warto± tej miary jest najlepsza. Na przykªad, tak miar jest zysk informacyjny (ang. information gain), poj cie wprowadzone w teorii informacji i zwi zane z poj ciem entropii, sªu» ce do mierzenia ilo±ci informacji (rozwini tej w latach 40. XX. wieku m.in. przez wybitnego uczonego: Claude Shannon'a). Wybieramy taki podziaª,»e b dzie trzeba najmniej informacji,»eby nast pnie wyspecykowa kategori. Czy wida, który to atrybut?
26 Wynikowe Drzewo Po kilku krokach, przy opisanej powy»ej procedurze, otrzymujemy nast puj ce wynikowe drzewo decyzyjne: outlook temp. hum. win.? sunny hot high false no sunny hot high true no overcast hot high false yes rainy mild high false yes rainy cool normal false yes rainy cool normal true no overcast cool normal true yes sunny mild high false no sunny cool normal false yes rainy mild normal false yes sunny mild normal true yes overcast mild high true yes overcast hot normal false yes rainy mild high true no
27 Udoskonalone Algorytmy Budowy Drzew Najcz ±ciej stosowanym w praktyce algorytmem budowy drzew decyzyjnych jest ogólnie dost pny algorytm C4.5. Algorytm ten jest znacznym rozbudowaniem idei pokazanej przed chwil (ID3). Zawiera te» znaczn ilo± dodatkowych ulepsze«, do których nale» m.in.: dostowanie do atrybutów numerycznych, brakuj cych warto±ci, zanieczyszczonych danych oraz tzw. oczyszczanie drzewa (ang. pruning), które automatycznie upraszcza to drzewo i zapobiega przetrenowaniu. Algorytm C4.5 ma te» komercyjn (zastrze»on ) wersj : C5.2, która jest jeszcze bardziej rozbudowana, i cechuje si nieznacznie wy»szymi osi gami.
28
29 Zªo»ono± Modelu Jest to bardzo wa»ne poj cie. Im bardziej zªo»ony (zawieraj cy wi cej detali) jest model, tym ma teoretycznie wi ksze mo»liwo±ci w odwzorowaniu niuansów uczonego poj cia, ale niesie to te» ryzyko tzw. przetrenowania czyli dostosowania si na sztywno do danych trenuj cych, bez uogólnienia wiedzy na nieznane przypadki. Zªo»ono± nie powinna by wi c za wysoka. Zwykle mo»emy kontrolowa zªo»ono±. Na przykªad: w sieciach neuronowych, zªo»ono± ro±nie wraz z liczb neuronów. w drzewach decyzyjnych: wraz z liczb w zªów drzewa w reguªach decyzyjnych: wraz z liczb reguª Model powinien by jak najprostszy.
30 Przykªady zbyt zªo»onych modeli 100-w zªowe drzewo decyzyjne do problemu iris 100 neuronów w sieci j cej problem Xor
31 Zªo»ono±, cd Oczywi±cie za maªo zªo»ony model nie jest w stanie skutecznie nauczy si poj cia (np. pojedynczy neuron dla porblemu Xor) Zbyt zªo»ony model powoduje jednak nast puj ce problemy: dªugi i kosztowny obliczeniowo proces uczenia zbyt sztywne dostosowanie do konkretnych przykªadów ucz cych (tzw. przetrenowanie) bez mo»liwo±ci uogólniania na nowe nieznane przypadki. W takim przypadku model osi ga b. dobre wyniki tylko na danych trenuj cych ale na nieznanych przypadkach (poza zbiorem ucz cym) model radzi sobie bardzo sªabo. (przypomina to uczenie si na pami przez niektórych studentów)
32 Zªo»ono±, cd Zale»no± pomi dzy zªo»ono±ci a bª dem na danych trenuj cych i testuj cych, odpowiednio: Przetrenowanie jest widoczne w prawej cz ±ci wykresu (zbyt skomplikowany model). Jak wida, najlepsza zªo»ono±, z punktu widzenia jego skuteczno±ci, jest w ±rodkowej cz ±ci ) (obrazek wg: Hastie, Tibshirani Elements of Statistical Learning, p. 194)
33 Wybór i Dwa istotne problemy: wybór odpowiedniego i stopnia jego zªo»ono±ci jako±ci (przewidzenie jak dobrze model b dzie dziaªaª na faktycznie nieznanych przypadkach) Jako± oceniana na danych ucz cych, b dzie zawsze zawy»ona
34 Jak oceni jako±? Je±li danych treningowych jest wystarczaj co du»o: podzieli dane na trzy oddzielne zbiory: 1 treningowy (do uczenia si ) 2 walidacyjny (wybór i kontrola stopnia zªo»ono±ci) 3 testowy (zachowany do momentu ostatecznej oceny ) Nie ma ogólnej reguªy na proporcje wielko±ci, mo»e by np.: 50%, 25%, 25%, respectively
35 Za maªo danych ucz cych Wtedy stosuje si inne metody, np: walidacja krzy»owa (cross-validation) leave-one-out bootstrap walidacja krzy»owa jest najbardziej popularna
36 Walidacja krzy»owa Pozwala jednocze±nie osi gn 2 pozornie sprzeczne cele: u»y caªego zbioru treningowego nie ocenia systemu na przykªadach ze zbioru treningowego Dzielimy zbiór treningowy na N rozª cznych cz ±ci (w sposób losowy). Bierzemy jedn cz ± jako zbiór ewaluacyjny a pozostaªe N-1 jako treningowe. Powtarzamy N razy (dla ka»dej cz ±ci). Š czna Proporcja bª du to u±rednione proporcje ze wszystkich N. Najcz ±ciej bierze si N=10 (ang. 10-fold cross-validation).
37 Stratykacja (ang. stratication) Polega na tym,»e w zbiorze waliduj cym proporcje przykªadów nale» cych do wszystkich kategorii (w zagadnieniu klasykacji) s bardzo zbli»one do tych zaobserwowanych w caªym pierwotnym zbiorze treningowym.
38 Inne techniki Technika leave-one-out jest szczególnym przypadkiem cross-validation. N wynosi tutaj tyle ile jest przypadków w zbiorze treningowym. Zbiory waliduj ce s wi c jedno-elementowe. Technika ta jest, oczywi±cie, kosztowna obliczeniowo. Zauwa»my te»,»e jej wynik jest deterministyczny (w przeciwie«stwie do innych wariantów cross-validation, gdzie podziaª jest losowy). W sposób oczywisty, zbiory waliduj ce nie s stratykowane.
39 Ewaluacja Macierz Pomyªek (ang. Confusion Matrix) Precyzja i Peªno± (dla 2-klasowych) miara F
40 Uwaga: idealny klasykator miaªby niezerowe liczby tylko na przek tnej macierzy pomyªek. Macierz Pomyªek Zaªó»my,»e w problemie klasykacji mamy K kategorii. Wtedy macierz pomyªek (ang. confusion matrix) jest narz dziem zwi zanym z ewaluacj klasykatora. Jest to macierz kwadratowa wymiaru K K. Wiersz i odpowiada faktycznej kategorii danego przypadku. Kolumna j odpowiada kategorii, do jakiej system zakwalikowaª (by mo»e bª dnie) dany przypadek. Komórka (i,j) macierzy zawiera liczb przypadków ze zbioru ewaluacyjnego, które nale» do klasy i, oraz zostaªy zaklasykowane przez system do kategorii j. zaklasykowano jako -> a b c a = Iris-setosa b = Iris-versicolor c = Iris-virginica
41 Precyzja i Peªno± W przypadku 2 kategorii (nazwijmy je: pozytywn i negatywn ) mo»na rozwa»a inne wa»ne miary ewaluacji: precyzj P (ang. precision) i peªno± R (ang. recall). Denition Precyzja P to proporcja przypadków faktycznie pozytywnych w±ród wszystkich zaklasykowanych przez system jako pozytywne. Denition Peªno± R to proporcja przypadków faktycznie pozytywnych i zaklasykowanych przez system jako pozytywne w±ród wszystkich faktycznie pozytywnych.
42 F-miara Oczywi±cie im warto±ci miar P i R s wy»sze (maks. 1), tym klasykator lepszy. W praktyce jednak, zwykle powi kszenie jednej pogarsza drug (s w pewnym sensie przeciwstawne). Poniewa» trudno jest równocze±nie maksymalizowa równocze±nie P i R istnieje te» inna popularna miara, b d ca funkcj obu powy»szych. Miar t jest F-miara (ang. F-measure), zdeniowana w sposób nast puj cy: Denition F = 2 P R P+R
43 Przykªad Rozwa»my nast puj c macierz pomyªek: zaklasykowano jako -> pozytywny negatywny pozytywny 40 5 negatywny Precyzja: P = 40 (40+10) = 4 5 Peªno± : R = 40 (40+5) = 8 9 F-miara: F = = = 16 19
44 Problemy kontrolne Algorytm grupowania wiedzy reguªy decyzyjne drzewa decyzyjne i algorytm ID3 Wybór i zªo»ono± przetrenowanie i jego omini cie walidacja krzy»owa ewaluacja: macierz pomyªek, precyzja, peªno±, F-miara
45 Dzi kuj za uwag.
Uczenie Maszynowe: reprezentacja wiedzy, wybór i ocena modelu, drzewa decyzjne
Uczenie Maszynowe: reprezentacja, wybór i ocena modelu, drzewa decyzjne Plan reprezentacja reguªy decyzyjne drzewa decyzyjne i algorytm ID3 zªo»ono± modelu wybór i ocena modelu przetrenowanie i sposoby
Jednowarstwowe Sieci Neuronowe jako. klasykatory do wielu klas. (c) Marcin Sydow
Plan dyskretny perceptron i jego ograniczenia inne funkcje aktywacji wielo-klasykacja przy pomocy jedno-warstwowe sieci neuronowej ograniczenia jedno-warstwowej sieci neuronowej miary ewaluacyjne dla klasykacji
Uczenie Wielowarstwowych Sieci Neuronów o
Plan uczenie neuronu o ci gªej funkcji aktywacji uczenie jednowarstwowej sieci neuronów o ci gªej funkcji aktywacji uczenie sieci wielowarstwowej - metoda propagacji wstecznej neuronu o ci gªej funkcji
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów
Eksploracja Danych. Wprowadzenie. (c) Marcin Sydow
Wprowadzenie Proponowane podr czniki T.Hastie, R.Tibshirani et al. An Introduction to Statistical Learning I.Witten et al. Data Mining S.Marsland Machine Learning J.Koronacki, J.Mielniczuk Statystyka dla
Systemy decyzyjne Wykªad 5: Drzewa decyzyjne
Nguyen Hung Son () W5: Drzewa decyzyjne 1 / 38 Systemy decyzyjne Wykªad 5: Drzewa decyzyjne Nguyen Hung Son Przykªad: klasyfikacja robotów Nguyen Hung Son () W5: Drzewa decyzyjne 2 / 38 Przykªad: drzewo
Uczenie Maszynowe: Wprowadzenie. (c) Marcin Sydow
Plan Dane Eksploracja danych i uczenie maszynowe: motywacja Na czym polega uczenie z danych Tablice decyzyjne: atrybuty i obserwacje z nadzorem i bez nadzoru Klasykacja i regresja Przykªady Dane: Motywacja
x y x y x y x + y x y
Algebra logiki 1 W zbiorze {0, 1} okre±lamy dziaªania dwuargumentowe,, +, oraz dziaªanie jednoargumentowe ( ). Dziaªanie x + y nazywamy dodawaniem modulo 2, a dziaªanie x y nazywamy kresk Sheera. x x 0
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
Ukªady równa«liniowych
dr Krzysztof yjewski Mechatronika; S-I 0 in» 7 listopada 206 Ukªady równa«liniowych Informacje pomocnicze Denicja Ogólna posta ukªadu m równa«liniowych z n niewiadomymi x, x, x n, gdzie m, n N jest nast
Metodydowodzenia twierdzeń
1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych
Ekonometria Bayesowska
Ekonometria Bayesowska Wykªad 9: Metody numeryczne: MCMC Andrzej Torój 1 / 17 Plan wykªadu Wprowadzenie 1 Wprowadzenie 3 / 17 Plan prezentacji Wprowadzenie 1 Wprowadzenie 3 3 / 17 Zastosowanie metod numerycznych
Metody bioinformatyki (MBI)
Metody bioinformatyki (MBI) Wykªad 9 - mikromacierze DNA, analiza danych wielowymiarowych Robert Nowak 2016Z Metody bioinformatyki (MBI) 1/42 mikromacierze DNA Metoda badawcza, pozwalaj ca bada obecno±
przewidywania zapotrzebowania na moc elektryczn
do Wykorzystanie do na moc elektryczn Instytut Techniki Cieplnej Politechnika Warszawska Slide 1 of 20 do Coraz bardziej popularne staj si zagadnienia zwi zane z prac ¹ródªa energii elektrycznej (i cieplnej)
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
2 Liczby rzeczywiste - cz. 2
2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:
1 Bª dy i arytmetyka zmiennopozycyjna
1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd.
Wst p do sieci neuronowych 2010/2011 wykªad 7 Algorytm propagacji wstecznej cd. M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2010-11-23
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z grupowania danych - Rough k-medoids Liczba osób realizuj cych projekt: 1 osoba 1. Wczytanie danych w formatach
Matematyka wykªad 1. Macierze (1) Andrzej Torój. 17 wrze±nia 2011. Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej
Matematyka wykªad 1 Macierze (1) Andrzej Torój Wy»sza Szkoªa Zarz dzania i Prawa im. H. Chodkowskiej 17 wrze±nia 2011 Plan wykªadu 1 2 3 4 5 Plan prezentacji 1 2 3 4 5 Kontakt moja strona internetowa:
DREAM5 Challenges. Metody i rezultaty. Praktyki wakacyjne 2010 sesja sprawozdawcza
DREAM5 Challenges Metody i rezultaty Julia Herman-I»ycka Jacek Jendrej Praktyki wakacyjne 2010 sesja sprawozdawcza Plan prezentacji 1 Czym jest uczenie maszynowe 2 Motywacja i sformuªowanie problemów 3
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
WYKŁAD 4 PLAN WYKŁADU. Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania. Metody uczenia sieci: Zastosowania
WYKŁAD 4 Sieci neuronowe: Algorytmy uczenia & Dalsze zastosowania PLAN WYKŁADU Metody uczenia sieci: Uczenie perceptronu Propagacja wsteczna Zastosowania Sterowanie (powtórzenie) Kompresja obrazu Rozpoznawanie
Minimalne drzewa rozpinaj ce
y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego
Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja
Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy
Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych
WM Czarnecki (GMUM) Lokalna geometria w SVM 13 Listopada 2013 1 / 26 Wykorzystanie lokalnej geometrii danych w Maszynie Wektorów No±nych Wojciech Marian Czarnecki Jacek Tabor GMUM Grupa Metod Uczenia Maszynowego
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1
J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)
MEODY GRUPOWANIA DANYCH
Sztuczna inteligencja 9999 pages 17 MEODY GRUPOWANIA DANYCH PB 1 CWICZENIE I 1. Ze zbioru danych iris.tab wybra nastepuj ce obiekty: ID SL SW PL PW C 1 5.1 3.5 1.4 0.2 Iris-setosa 2 4.9 3.0 1.4 0.2 Iris-setosa
Wst p do sieci neuronowych, wykªad 06, Walidacja jako±ci uczenia. Metody statystyczne.
Wst p do sieci neuronowych, wykªad 06, Walidacja jako±ci uczenia. Metody statystyczne. Maja Czoków, Jarosªaw Piersa Wydziaª Matematyki i Informatyki, Uniwersytet Mikoªaja Kopernika 2012-11-21 Projekt pn.
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 203/4 Spis tre±ci Kodowanie i dekodowanie 4. Kodowanie a szyfrowanie..................... 4.2 Podstawowe poj cia........................
1 Metody iteracyjne rozwi zywania równania f(x)=0
1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0
Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.
Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór
Aproksymacja funkcji metod najmniejszych kwadratów
Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone
Przykªady problemów optymalizacji kombinatorycznej
Przykªady problemów optymalizacji kombinatorycznej Problem Komiwoja»era (PK) Dane: n liczba miast, n Z +, c ji, i, j {1,..., n}, i j odlegªo± mi dzy miastem i a miastem j, c ji = c ij, c ji R +. Zadanie:
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Lekcja 8 - ANIMACJA. 1 Polecenia. 2 Typy animacji. 3 Pierwsza animacja - Mrugaj ca twarz
Lekcja 8 - ANIMACJA 1 Polecenia Za pomoc Baltiego mo»emy tworzy animacj, tzn. sprawia by obraz na ekranie wygl daª jakby si poruszaª. Do animowania przedmiotów i tworzenia animacji posªu» nam polecenia
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa
KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu
➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje
WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14
WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................
A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.
Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta
Systemy decyzyjne Wprowadzenie
Hung Son Nguyen (UW) Systemy decyzyjne Wprowadzenie 2007 1 / 34 Systemy decyzyjne Wprowadzenie Hung Son Nguyen Institute of Mathematics, Warsaw University son@mimuw.edu.pl 2007 Hung Son Nguyen (UW) Systemy
Metody indukcji reguł
Metody indukcji reguł Indukcja reguł Grupa metod charakteryzująca się wydobywaniem reguł ostrych na podstawie analizy przypadków. Dane doświadczalne składają się z dwóch części: 1) wejściowych X, gdzie
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski 5 kwietnia 2017
i, lub, nie Cegieªki buduj ce wspóªczesne procesory. Piotr Fulma«ski Uniwersytet Šódzki, Wydziaª Matematyki i Informatyki UŠ piotr@fulmanski.pl http://fulmanski.pl/zajecia/prezentacje/festiwalnauki2017/festiwal_wmii_2017_
CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski
III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Zastosowanie eliptycznych równa«ró»niczkowych
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdziaª 9 RÓWNANIA ELIPTYCZNE 9.1 Zastosowanie eliptycznych równa«ró»niczkowych cz stkowych 9.1.1 Problemy z warunkami brzegowymi W przestrzeni dwuwymiarowej
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów
Indukowane Reguły Decyzyjne I. Wykład 3
Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie
Algorytmy zwiazane z gramatykami bezkontekstowymi
Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk
1 Klasy. 1.1 Denicja klasy. 1.2 Skªadniki klasy.
1 Klasy. Klasa to inaczej mówi c typ który podobnie jak struktura skªada si z ró»nych typów danych. Tworz c klas programista tworzy nowy typ danych, który mo»e by modelem rzeczywistego obiektu. 1.1 Denicja
Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski
Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009 Motywacje Dla dowolnej
Ekonometria. wiczenia 1 Regresja liniowa i MNK. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 1 Regresja liniowa i MNK (1) Ekonometria 1 / 25 Plan wicze«1 Ekonometria czyli...? 2 Obja±niamy ceny wina 3 Zadania z podr cznika (1) Ekonometria 2 / 25 Plan prezentacji 1 Ekonometria
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA. W obu podpunktach zakªadamy,»e kolejno± ta«ców jest wa»na.
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zadanko 1 (12p.) Na imprezie w Noc Kupaªy s 44 dziewczyny. Nosz one 11 ró»nych imion, a dla ka»dego imienia s dokªadnie 4 dziewczyny o tym imieniu przy czym ka»da
Modele wielorównaniowe. Problem identykacji
Modele wielorównaniowe. Problem identykacji Ekonometria Szeregów Czasowych SGH Identykacja 1 / 43 Plan wykªadu 1 Wprowadzenie 2 Trzy przykªady 3 Przykªady: interpretacja 4 Warunki identykowalno±ci 5 Restrykcje
Proste modele o zªo»onej dynamice
Proste modele o zªo»onej dynamice czyli krótki wst p do teorii chaosu Tomasz Rodak Festiwal Nauki, Techniki i Sztuki 2018 April 17, 2018 Dyskretny model pojedynczej populacji Rozwa»my pojedyncz populacj
Matematyka dyskretna dla informatyków
UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU Jerzy Jaworski, Zbigniew Palka, Jerzy Szyma«ski Matematyka dyskretna dla informatyków uzupeænienia Pozna«007 A Notacja asymptotyczna Badaj c du»e obiekty kombinatoryczne
Interpolacja funkcjami sklejanymi
Interpolacja funkcjami sklejanymi Funkcje sklejane: Zaªó»my,»e mamy n + 1 w zªów t 0, t 1,, t n takich,»e t 0 < t 1 < < t n Dla danej liczby caªkowitej, nieujemnej k funkcj sklejan stopnia k nazywamy tak
Metody numeryczne i statystyka dla in»ynierów
Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci
Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona
Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Macierze i Wyznaczniki
Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja 1. Tablic nast puj cej postaci a 11 a 12... a 1n a 21 a 22... a 2n A =... a m1 a m2... a mn nazywamy macierz o m wierszach i n kolumnach,
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
Liniowe zadania najmniejszych kwadratów
Rozdziaª 9 Liniowe zadania najmniejszych kwadratów Liniowe zadania najmniejszych kwadratów polega na znalezieniu x R n, który minimalizuje Ax b 2 dla danej macierzy A R m,n i wektora b R m. Zauwa»my,»e
Problemy optymalizacyjne - zastosowania
Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne
1 0 Je»eli wybierzemy baz A = ((1, 1), (2, 1)) to M(f) A A =. 0 2 Daje to znacznie lepszy opis endomorzmu f.
GAL II 2012-2013 A Strojnowski str1 Wykªad 1 Ten semestr rozpoczniemy badaniem endomorzmów sko«czenie wymiarowych przestrzeni liniowych Denicja 11 Niech V b dzie przestrzeni liniow nad ciaªem K 1) Przeksztaªceniem
Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3
Wyznaczanie krzywej rotacji Galaktyki na podstawie danych z teleskopu RT3 Michaª Litwicki, Michalina Grubecka, Ewelina Obrzud, Tomasz Dziaªa, Maciej Winiarski, Dajana Olech 27 sierpnia 2012 Prowadz cy:
Metody dowodzenia twierdze«
Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku
Wykªad 4. Funkcje wielu zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.
Metody numeryczne. Wst p do metod numerycznych. Dawid Rasaªa. January 9, 2012. Dawid Rasaªa Metody numeryczne 1 / 9
Metody numeryczne Wst p do metod numerycznych Dawid Rasaªa January 9, 2012 Dawid Rasaªa Metody numeryczne 1 / 9 Metody numeryczne Czym s metody numeryczne? Istota metod numerycznych Metody numeryczne s
Zastosowania matematyki
Zastosowania matematyki Monika Bartkiewicz 1 / 126 ...czy«cie dobrze i po»yczajcie niczego si nie spodziewaj c(šk. 6,34-35) Zagadnienie pobierania procentu jest tak stare jak gospodarka pieni»na. Procent
Wst p. Elementy systemów decyzyjnych Sprawy organizacyjne. Wprowadzenie Przegl d metod klasykacji
Wst p 1 Wprowadzenie do systemów decyzyjnych Elementy systemów decyzyjnych Sprawy organizacyjne 2 Problem klasykacji i klasykatory Wprowadzenie Przegl d metod klasykacji 3 Metody oceny klasykatorów Skuteczno±
Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.
Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ
IMPLEMENTACJA SIECI NEURONOWYCH MLP Z WALIDACJĄ KRZYŻOWĄ Celem ćwiczenia jest zapoznanie się ze sposobem działania sieci neuronowych typu MLP (multi-layer perceptron) uczonych nadzorowaną (z nauczycielem,
Aplikacje bazodanowe. Laboratorium 1. Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, / 37
Aplikacje bazodanowe Laboratorium 1 Dawid Poªap Aplikacje bazodanowe - laboratorium 1 Luty, 22, 2017 1 / 37 Plan 1 Informacje wst pne 2 Przygotowanie ±rodowiska do pracy 3 Poj cie bazy danych 4 Relacyjne
Baza danych dla potrzeb zgłębiania DMX
Baza danych dla potrzeb zgłębiania DMX ID Outlook Temperature Humidity Windy PLAY 1 sunny hot high false N 2 sunny hot high true N 3 overcast hot high false T 4rain mild high false T 5rain cool normal
Arytmetyka zmiennopozycyjna
Rozdziaª 4 Arytmetyka zmiennopozycyjna Wszystkie obliczenia w octavie s wykonywane w arytmetyce zmiennopozycyjnej (inaczej - arytmetyce ) podwójnej precyzji (double) - cho w najnowszych wersjach octave'a
Algorytmy i Struktury Danych
Lista zada«. Nr 4. 9 kwietnia 2016 IIUWr. II rok informatyki. Algorytmy i Struktury Danych 1. (0pkt) Rozwi» wszystkie zadania dodatkowe. 2. (1pkt) Uªó» algorytm znajduj cy najta«sz drog przej±cia przez
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,
Macierze i Wyznaczniki
dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...
Wyszukiwanie i Przetwarzanie Informacji WWW
Wyszukiwanie i Przetwarzanie Informacji WWW Wyszukiwanie w korpusach tekstowych: ranking i ewaluacja Marcin Sydow Web Mining Lab, PJWSTK Marcin Sydow (Web Mining Lab, PJWSTK) Wyszukiwanie i Przetwarzanie
W poprzednim odcinku... Podstawy matematyki dla informatyków. Relacje równowa»no±ci. Zbiór (typ) ilorazowy. Klasy abstrakcji
W poprzednim odcinku... Podstawy matematyki dla informatyków Rodzina indeksowana {A t } t T podzbiorów D to taka funkcja A : T P(D),»e A(t) = A t, dla dowolnego t T. Wykªad 3 20 pa¹dziernika 2011 Produkt
Wyra»enia logicznie równowa»ne
Wyra»enia logicznie równowa»ne Denicja. Wyra»enia rachunku zda«nazywamy logicznie równowa»nymi, gdy maj równe warto±ci logiczne dla dowolnych warto±ci logicznych zmiennych zdaniowych. 1 Przykªady: Wyra»enia
LZNK. Rozkªad QR. Metoda Householdera
Rozdziaª 10 LZNK. Rozªad QR. Metoda Householdera W tym rozdziale zajmiemy si liniowym zadaniem najmniejszych wadratów (LZNK). Dla danej macierzy A wymiaru M N i wetora b wymiaru M chcemy znale¹ wetor x
Podstawy modelowania w j zyku UML
Podstawy modelowania w j zyku UML dr hab. Bo»ena Wo¹na-Szcze±niak Akademia im. Jan Dªugosza bwozna@gmail.com Wykªad 8 Diagram pakietów I Diagram pakietów (ang. package diagram) jest diagramem strukturalnym,
ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15
ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych
c Marcin Sydow Spójno± Grafy i Zastosowania Grafy Eulerowskie 2: Drogi i Cykle Grafy Hamiltonowskie Podsumowanie
2: Drogi i Cykle Spis Zagadnie«drogi i cykle spójno± w tym sªaba i silna k-spójno± (wierzchoªkowa i kraw dziowa) dekompozycja grafu na bloki odlegªo±ci w grae i poj cia pochodne grafy Eulera i Hamiltona
Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe
Wst p do sieci neuronowych, wykªad 14 Zespolone sieci neuronowe M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toru«, Poland 2011-18-02 Motywacja Liczby
Wzorce projektowe strukturalne cz. 1
Wzorce projektowe strukturalne cz. 1 Krzysztof Ciebiera 19 pa¹dziernika 2005 1 1 Wst p 1.1 Podstawowe wzorce Podstawowe wzorce Podstawowe informacje Singleton gwarantuje,»e klasa ma jeden egzemplarz. Adapter
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
PRZYPOMNIENIE Ka»d przestrze«wektorow V, o wymiarze dim V = n < nad ciaªem F mo»na jednoznacznie odwzorowa na przestrze«f n n-ek uporz dkowanych:
Plan Spis tre±ci 1 Homomorzm 1 1.1 Macierz homomorzmu....................... 2 1.2 Dziaªania............................... 3 2 Ukªady równa«6 3 Zadania 8 1 Homomorzm PRZYPOMNIENIE Ka»d przestrze«wektorow
Baza danych - Access. 2 Budowa bazy danych
Baza danych - Access 1 Baza danych Jest to zbiór danych zapisanych zgodnie z okre±lonymi reguªami. W w»szym znaczeniu obejmuje dane cyfrowe gromadzone zgodnie z zasadami przyj tymi dla danego programu
COLT - Obliczeniowa teoria uczenia si
Hung Son Nguyen (UW) COLT - Obliczeniowa teoria uczenia si 2007 1 / 32 COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen Institute of Mathematics, Warsaw University son@mimuw.edu.pl 2007 Hung Son Nguyen
Eksploracja Danych. (c) Marcin Sydow. Wst p. Data Science. Wprowadzenie. Cykl eksperymentu. Uczenie maszynowe. Zasoby.
Wprowadzenie Zawarto± wykªadu wst p cykl eksperymentu uczenie zasoby podsumowanie Zawarto± kursu Kurs eksploracji danych mo»na podzieli na nast puj ce cz ±ci: 1 zagadnienia zwi zane z przygotowaniem i
Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions)
Elementarna statystyka Dwie próby: porównanie dwóch proporcji (Two-sample problem: comparing two proportions) Alexander Bendikov Uniwersytet Wrocªawski 25 maja 2016 Elementarna statystyka Dwie próby: porównanie