O badaniach nad SZTUCZNĄ INTELIGENCJĄ
|
|
- Sebastian Turek
- 6 lat temu
- Przeglądów:
Transkrypt
1 O badaniach nad SZTUCZNĄ INTELIGENCJĄ
2 Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność systemów komputerowych. szczególny typ badań informatycznych.
3 Wykład 7. 0 badaniach nad sztuczną inteligencją SI według M. MINSKY EGO Sztuczna Inteligencja (Artificial Intelligence): Nauka o maszynach realizujących zadania, które wymagają inteligencji wtedy, gdy są wykonywane przez ludzi.
4 Wykład 7. 0 badaniach nad sztuczną inteligencją Badania nad SI jako dział INFORMATYKI INFORMATYKA Automatyzacja wszelkich procesów (sterowanie, komunikacja ) Badania nad SI Automatyzacja czynności poznawczych ludzi (np. percepcja)
5 Wykład 7. O badaniach nad sztuczną inteligencją Co powinien umieć system SI? podejmować decyzje uczyć się GŁÓWNE OBSZARY BADAŃ komunikować się z ludźmi (1) podejmowanie decyzji (2) uczenie się (3) komunikacja komputer-człowiek
6 Wykład 7. O badaniach nad sztuczną inteligencją DZIEDZINY badań szczegółowych Trzy poziomy badań TEORIE TECHNIKI PRZETWARZANIA DANYCH KONKRETNE ALGORYTMY Przykłady szczegółowych dziedzin badawczych Metody reprezentacji wiedzy Metody automatycznego wnioskowania Automatyzacja wnioskowania w logikach nieklasycznych Automatyczne uczenie się Przetwarzanie języka naturalnego Rozpoznawanie i przetwarzanie obrazów Eksploracja danych Systemy eksperckie Sieci neuronowe Programowanie ewolucyjne Teoria zbiorów rozmytych Teoria zbiorów przybliżonych
7 Wykład 7. O badaniach nad sztuczną inteligencją KALENDARIUM Okres wstępny. - Ukazują się fundamentalne prace teoretyczne, powstają pierwsze komputery. (A. Turing, J. von Neumann, N. Wiener, W. McCulloch) Okres rozwoju podstawowych koncepcji. - Powstają pierwsze, wyspecjalizowane teorie i narzędzia SI. (techniki logiczne i symboliczne, sieci neuronowe, teoria zbiorów rozmytych, algorytmy genetyczne, LISP) - Powstają pierwsze komputerowe programy SI (programy szachowe, Logic Theorist, General Problem Solver) Okres krytyki i zwrotu w stronę konkretnych zastosowań. - Powstają wyspecjalizowane systemy: eksperckie (np. MYCIN i DENDRAL) oraz neuropodobne (np. sieci Grossberga i Fukushimy) Od roku Okres bujnego rozwoju i szerokich zastosowań. - Postępuje specjalizacja. - Ostatnie lata charakteryzuje zwrot w stronę metod pozalogicznych i tendencja do hybrydyzacji.
8 Wykład 7. O badaniach nad sztuczną inteligencją Logicyzm czy naturalizm? Logicyzm Istotą intelektu jest zdolność do logicznych rozumowań (znamy je z matematyki). Sztuczna inteligencja powinna zatem opierać się na logice, tj. symbolicznych rachunkach logicznych (np. na rachunku predykatów). Naturalizm Intelekt rozwija się w toku ewolucji, jego podstawę zaś stanowi mózg. Sztuczną inteligencję należy budować wzorując się na naturze, czyli odnosząc się do teorii biologicznych i psychologicznych.
9 Systemy eksperckie Wykład 7. O badaniach nad sztuczną inteligencją Rozwiązania logicystyczne Systemy wnioskujące równie skutecznie, jak eksperci w danej dziedzinie. Działające na podstawie bazy wiedzy: faktów i reguł (implikacji), stosowanych zgodnie z zasadami logiki. Programy do gier Programy generujące optymalne strategie gier (tj. sekwencje ruchów), zależnie od reguł danej gry i jej stanu początkowego (np. programy szachowe).
10 Wykład 7. O badaniach nad sztuczną inteligencją Rozwiązania naturalistyczne Sztuczne sieci neuronowe Samoorganizujące się sieci sztucznych neuronów, przetwarzające dane w sposób równoległy i rozproszony (podobnie do ludzkiego mózgu). Programy ewolucyjne Programy poszukujące rozwiązań metodą populacyjną i po części losową, z wykorzystaniem takich operacji jak mutacja, rekombinacja kodu i selekcja (podobnie do naturalnej ewolucji).
11 Wykład 7. O badaniach nad sztuczną inteligencją Systemy hybrydowe System hybrydowy System wykorzystujący techniki logicystyczne i naturalistyczne, a także różne techniki obydwu rodzajów. Typowy przykład: System ekspercki obejmujący reguły rozmyte (do przetwarzania informacji niepewnych), których kształt ustala się za pośrednictwem sieci neuropodobnej.
12 Wykład 7. O badaniach nad sztuczną inteligencją Zagadnienia filozoficzne (1) Czy istotą inteligencji jest algorytm? JAKI? Czy istotą myślenia jest algorytm? JAKI?
13 Wykład 7. O badaniach nad sztuczną inteligencją Zagadnienia filozoficzne (2) Kiedy system sztuczny można uznać za inteligentny (w znaczeniu ludzkim)? Czy wystarczy oryginalny test Turinga? Czy wystarczy udoskonalony test Turinga?
14 Wykład 7. O badaniach nad sztuczną inteligencją Zagadnienia filozoficzne (3) Czy w ogóle można skonstruować systemy o inteligencji porównywalnej z ludzką? TAK. Bo istotą ludzkiej inteligencji jest jakiś, niebywale złożony i jeszcze nieznany, algorytm. TAK. Ale będą to systemy bardzo wąsko wyspecjalizowane. NIE. Bo algorytmy są tylko zewnętrznym przejawem i/lub wytworem ludzkiej inteligencji. Jej źródło jest inne.
15 Wykład 7. O badaniach nad sztuczną inteligencją Zagadnienia filozoficzne (4) Czy ewentualna sztuczna realizacja intelektu może stanowić jego model? 1. Argumenty J. Searle a. Komputer może co najwyżej imitować zewnętrzne przejawy ludzkiej inteligencji. Wiemy jednak, że działa inaczej niż ludzki umysł. Analogie czysto zewnętrzne nie mówią nic o podobieństwach wewnętrznych. 2. Realizacja nic nie wyjaśnia. Może się okazać, że wspomniana realizacja po prostu działa, a odpowiadające za to zasady są równie nieprzejrzyste jak zasady działania intelektu. Innymi słowy, sama realizacja domaga się wyjaśnienia. 3. Model jest zbyt wąski. Model wyjaśnia, jak ludzie rozwiązują problemy, lecz odrywa proces rozwiązywania od procesów innych, które są z nim splecione. Chodzi o takie procesy, jak intuicja, rozumienie czy świadomy wgląd w istotę problemu.
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia
O badaniach nad SZTUCZNĄ INTELIGENCJĄ
O badaniach nad SZTUCZNĄ INTELIGENCJĄ SZTUCZNA INTELIGENCJA dwa podstawowe znaczenia Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące się), pewną dyscyplinę badawczą (dział
Festiwal Myśli Abstrakcyjnej, Warszawa, Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII?
Festiwal Myśli Abstrakcyjnej, Warszawa, 22.10.2017 Czy SZTUCZNA INTELIGENCJA potrzebuje FILOZOFII? Dwa kluczowe terminy Co nazywamy sztuczną inteligencją? zaawansowane systemy informatyczne (np. uczące
Wprowadzenie do teorii systemów ekspertowych
Myślące komputery przyszłość czy utopia? Wprowadzenie do teorii systemów ekspertowych Roman Simiński siminski@us.edu.pl Wizja inteligentnych maszyn jest od wielu lat obecna w literaturze oraz filmach z
Stefan Sokołowski SZTUCZNAINTELIGENCJA. Inst. Informatyki UG, Gdańsk, 2009/2010
Stefan Sokołowski SZTUCZNAINTELIGENCJA Inst. Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str.1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://inf.ug.edu.pl/ stefan/dydaktyka/sztintel/
SZTUCZNA INTELIGENCJA
Stefan Sokołowski SZTUCZNA INTELIGENCJA Inst Informatyki UG, Gdańsk, 2009/2010 Wykład1,17II2010,str1 SZTUCZNA INTELIGENCJA reguły gry Zasadnicze informacje: http://infugedupl/ stefan/dydaktyka/sztintel/
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy oólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
CZYM SĄ OBLICZENIA NAT A URALNE?
CZYM SĄ OBLICZENIA NATURALNE? Co to znaczy obliczać (to compute)? Co to znaczy obliczać (to compute)? wykonywać operacje na liczbach? (komputer = maszyna licząca) wyznaczać wartości pewnych funkcji? (program
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski
Historia sztucznej inteligencji Przygotował: Konrad Słoniewski Prahistoria Mit o Pigmalionie Pandora ulepiona z gliny Talos olbrzym z brązu Starożytna Grecja System sylogizmów Arystotelesa (VI w. p.n.e.)
PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"
PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, Spis treści
Metody i techniki sztucznej inteligencji / Leszek Rutkowski. wyd. 2, 3 dodr. Warszawa, 2012 Spis treści Przedmowa do wydania drugiego Przedmowa IX X 1. Wstęp 1 2. Wybrane zagadnienia sztucznej inteligencji
Sztuczna inteligencja - wprowadzenie
Sztuczna inteligencja - wprowadzenie Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Sztuczna inteligencja komputerów - wprowadzenie Kontakt: dr inż. Dariusz Banasiak, pok.
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj
Metody Sztucznej Inteligencji Methods of Artificial Intelligence. Elektrotechnika II stopień ogólno akademicki. niestacjonarne. przedmiot kierunkowy
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Elementy kognitywistyki II: Sztuczna inteligencja
Elementy kognitywistyki II: Sztuczna inteligencja Piotr Konderak Zakład Logiki i Filozofii Nauki p.203b, Collegium Humanicum konsultacje: wtorki, 16:00-17:00 kondorp@bacon.umcs.lublin.pl http://konderak.eu
Sztuczna inteligencja
Sztuczna inteligencja Przykładowe zastosowania Piotr Fulmański Wydział Matematyki i Informatyki, Uniwersytet Łódzki, Polska 12 czerwca 2008 Plan 1 Czym jest (naturalna) inteligencja? 2 Czym jest (sztuczna)
Alan M. TURING. Matematyk u progu współczesnej informatyki
Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać
Inteligencja. Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych
Wstęp Inteligencja Władysław Kopaliśki, Słownik wyrazów obcych i zwrotów obcojęzycznych inteligencja psych. zdolność rozumienia, kojarzenia; pojętność, bystrość; zdolność znajdowania właściwych, celowych
Umysł Komputer Świat TEX output: :17 strona: 1
Umysł Komputer Świat INFORMATYKA I FILOZOFIA Witold Marciszewski Paweł Stacewicz Umysł Komputer Świat O zagadce umysłu z informatycznego punktu widzenia E Warszawa Akademicka Oficyna Wydawnicza EXIT 2011
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY.
Ćwiczenie numer 4 JESS PRZYKŁADOWY SYSTEM EKSPERTOWY. 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przykładowym systemem ekspertowym napisanym w JESS. Studenci poznają strukturę systemu ekspertowego,
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Wprowadzenie Wprowadzenie 1 Program przedmiotu Poszukiwanie rozwiązań w przestrzeni stanów Strategie w grach Systemy decyzyjne i uczenie maszynowe Wnioskowanie
Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 205/206 Z-ID-602 Wprowadzenie do uczenia maszynowego Introduction to Machine Learning
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek:
Nazwa przedmiotu: METODY SZTUCZNEJ INTELIGENCJI W ZAGADNIENIACH EKONOMICZNYCH Artificial intelligence methods in economic issues Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu: obowiązkowy
Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013 http://www.wilno.uwb.edu.
SYLLABUS na rok akademicki 01/013 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr /3 Specjalność Bez specjalności Kod katedry/zakładu
Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych
Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są
KARTA PRZEDMIOTU. 17. Efekty kształcenia:
Z1-PU7 WYDANIE N1 Strona 1 z 4 (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: CYBERNETYKA 2. Kod przedmiotu: CYB 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia:
DLACZEGO WARTO PRZECZYTAĆ? ZAWARTOŚĆ KSIĄŻKI (bez podrozdziałów 2-go poziomu) CZĘŚĆ I. Sztuczne systemy uczące się
DLACZEGO WARTO PRZECZYTAĆ? Książka ta, choć ukazuje się w profesjonalnej serii informatycznej, wiele ma do powiedzenia tym humanistom, których pasjonuje zagadka ludzkiego umysłu i jego fenomenalnych możliwości.
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011
Sztuczna inteligencja i logika. Podsumowanie przedsięwzięcia naukowego Kisielewicz Andrzej WNT 20011 Przedmowa. CZĘŚĆ I: WPROWADZENIE 1. Komputer 1.1. Kółko i krzyżyk 1.2. Kodowanie 1.3. Odrobina fantazji
BIOCYBERNETYKA PROLOG
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej BIOCYBERNETYKA Adrian Horzyk PROLOG www.agh.edu.pl Pewnego dnia przyszedł na świat komputer Komputery
Elementy historii INFORMATYKI
Elementy historii INFORMATYKI Wykład 2. Elementy historii informatyki HISTORIA INFORMATYKI HISTORIA KOMPUTERÓW Wykład 2. Elementy historii informatyki Prehistoria informatyki: PASCAL i LEIBNIZ (1623 1662)
O REDUKCJI U-INFORMACJI
O REDUKCJI U-INFORMACJI DO DANYCH Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki o komunikacji KOMPUTER informatyka elektronika
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z inteligentnymi
Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym
POLITECHNIKA WARSZAWSKA Instytut Technik Wytwarzania Zastosowanie metod eksploracji danych (data mining) do sterowania i diagnostyki procesów w przemyśle spożywczym Marcin Perzyk Dlaczego eksploracja danych?
Metody sztucznej inteligencji w układach sterowania METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Metody sztucznej inteligencji w układach sterowania Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie
KIERUNKOWE EFEKTY KSZTAŁCENIA
WYDZIAŁ INFORMATYKI I ZARZĄDZANIA Kierunek studiów: INFORMATYKA Stopień studiów: STUDIA I STOPNIA Obszar Wiedzy/Kształcenia: OBSZAR NAUK TECHNICZNYCH Obszar nauki: DZIEDZINA NAUK TECHNICZNYCH Dyscyplina
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD XII: Modele i architektury poznawcze
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD XII: Modele i architektury poznawcze Architektury poznawcze Architektura poznawcza jako teoria poznania ludzkiego Anderson (1993): Architektura
Kierunek Zarządzanie I stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych
Kierunek Zarządzanie I stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Objaśnienie oznaczeń: Z efekty kierunkowe W wiedza U umiejętności
KIERUNEK: KOGNITYWISTYKA
KIERUNEK: KOGNITYWISTYKA Plan studiów pierwszego stopnia Cykl kształcenia 2018-2021 Rok akademicki 2018/2019 Zbo zaliczenie bez oceny Z zaliczenie z oceną E egzamin Jeżeli wykłady odbywają się równolegle
Sylabus modułu kształcenia na studiach wyższych. Nazwa Wydziału. Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia
Załącznik nr 4 do zarządzenia nr 12 Rektora UJ z 15 lutego 2012 r. Sylabus modułu kształcenia na studiach wyższych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Wydział Matematyki
Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Zastosowanie sztucznych sieci neuronowych Nazwa modułu w informatyce Application of artificial
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3
Algorytmy wspomagania decyzji Czyli co i jak 2018 andrzej.rusiecki@pwr.edu.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 230/C-3 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Elementy filozofii i metodologii INFORMATYKI
Elementy filozofii i metodologii INFORMATYKI Filozofia INFORMATYKA Metodologia Wykład 1. Wprowadzenie. Filozofia, metodologia, informatyka Czym jest FILOZOFIA? (objaśnienie ogólne) Filozofią nazywa się
JAKIEGO RODZAJU NAUKĄ JEST
JAKIEGO RODZAJU NAUKĄ JEST INFORMATYKA? Computer Science czy Informatyka? Computer Science czy Informatyka? RACZEJ COMPUTER SCIENCE bo: dziedzina ta zaistniała na dobre wraz z wynalezieniem komputerów
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych
Wykorzystanie metod ewolucyjnych w projektowaniu algorytmów kwantowych mgr inż. Robert Nowotniak Politechnika Łódzka 1 października 2008 Robert Nowotniak 1 października 2008 1 / 18 Plan referatu 1 Informatyka
WIEDZA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WIEDZA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki
zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych
Grupa efektów kierunkowych: Matematyka stosowana I stopnia - profil praktyczny (od 17 października 2014) Matematyka Stosowana I stopień spec. Matematyka nowoczesnych technologii stacjonarne 2015/2016Z
INFORMATYKA PLAN STUDIÓW NIESTACJONARNYCH 2-GO STOPNIA (W UKŁADZIE ROCZNYM) STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM 2015/16
-learning INFORMATYKA PLAN STUDIÓ NISTACJONARNYCH 2-GO STOPNIA ( UKŁADZI ROCZNYM) STUDIA ROZPOCZYNAJĄC SIĘ ROKU AKADMICKIM 2015/16 Rok I Zajęcia dydaktyczne obligatoryjne ybrane zagadnienia matematyki
Informatyka w medycynie Punkt widzenia kardiologa
Informatyka w medycynie Punkt widzenia kardiologa Lech Poloński Mariusz Gąsior Informatyka medyczna Dział informatyki zajmujący się jej zastosowaniem w ochronie zdrowia (medycynie) Stymulacja rozwoju informatyki
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski
Czy architektura umysłu to tylko taka sobie bajeczka? Marcin Miłkowski Architektura umysłu Pojęcie używane przez prawie wszystkie współczesne ujęcia kognitywistyki Umysł Przetwornik informacji 2 Architektura
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 2. ZASTOSOWANIA, HISTORIA, SYMBOLICZNA SI Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska ZASTOSOWANIA SI Rozwiązywanie zadań, gry,
Plan wykładów METODY SZTUCZNEJ INTELIGENCJI W UKŁADACH STEROWANIA
1 Plan wykładów Podstawy algorytmów genetycznych oraz ich aplikacje w procesach optymalizacji Sztuczne sieci neuronowe-formalne podstawy i wybrane aplikacje Wprowadzenie formysztucznej inteligencji Elementy
Sztuczna inteligencja Definicja Sztuczna inteligencja (AI - ang. artificial inteligence) lub krótko SI jest stosunkowo nową interdyscyplinarną dziedziną nauki, przedmiotem wielkich oczekiwań i ożywionych
O ISTOTNYCH OGRANICZENIACH METODY
O ISTOTNYCH OGRANICZENIACH METODY ALGORYTMICZNEJ Dwa pojęcia algorytmu (w informatyce) W sensie wąskim Algorytmem nazywa się każdy ogólny schemat procedury możliwej do wykonania przez uniwersalną maszynę
Algorytmy wspomagania decyzji Czyli co i jak andrzej.rusiecki.staff.iiar.pwr.wroc.pl s.
Algorytmy wspomagania decyzji Czyli co i jak 2013 andrzej.rusiecki@pwr.wroc.pl andrzej.rusiecki.staff.iiar.pwr.wroc.pl s. 911/D-20 O co chodzi? Celem przedmiotu jest ogólne zapoznanie się z podstawowymi
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA. Studia III stopnia (doktoranckie) kierunek Informatyka
Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach PROGRAM KSZTAŁCENIA Studia III stopnia (doktoranckie) kierunek Informatyka (przyjęty przez Radę Wydziału Informatyki i Nauki o Materiałach w
Repetytorium z matematyki 3,0 1,0 3,0 3,0. Analiza matematyczna 1 4,0 2,0 4,0 2,0. Analiza matematyczna 2 6,0 2,0 6,0 2,0
PROGRAM STUDIÓW I INFORMACJE OGÓLNE 1. Nazwa jednostki prowadzącej kierunek: Wydział Matematyki i Informatyki 2. Nazwa kierunku: Informatyka 3. Oferowane specjalności: 4. Poziom kształcenia: studia pierwszego
O ALGORYTMACH I MASZYNACH TURINGA
O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego
kierunkowy (podstawowy / kierunkowy / inny HES) nieobowiązkowy (obowiązkowy / nieobowiązkowy) polski drugi semestr letni (semestr zimowy / letni)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej
1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane
M T E O T D O ZI Z E E A LG L O G R O Y R TM
O ALGORYTMACH I METODZIE ALGORYTMICZNEJ Czym jest algorytm? Czym jest algorytm? przepis schemat zestaw reguł [ ] program ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające
Elementy kognitywistyki II: Sztuczna inteligencja. WYKŁAD III: Problemy agenta
Elementy kognitywistyki II: Sztuczna inteligencja WYKŁAD III: Problemy agenta To już było: AI to dziedzina zajmująca się projektowaniem agentów Określenie agenta i agenta racjonalnego Charakterystyka PAGE
Optymalizacja. Wybrane algorytmy
dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem
[1] [2] [3] [4] [5] [6] Wiedza
3) Efekty dla studiów drugiego stopnia - profil ogólnoakademicki na kierunku Informatyka w języku angielskim (Computer Science) na specjalności Sztuczna inteligencja (Artificial Intelligence) na Wydziale
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Gry komputerowe i multimedia, GKiM studia niestacjonarne Dla rocznika:
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Gry komputerowe i multimedia, GKiM studia niestacjonarne Dla rocznika: Rok I, semestr I (zimowy) 1 Etykieta w życiu publicznym
Podstawy sztucznej inteligencji
wykład I Czym jest SI? Przeszukiwanie problemy oraz jak je rozwiązywać 13 październik 2011 Plan wykładu Od inteligencji naturalnej do sztucznej? Przyjrzyjmy się krótko historii 1 Czym jest sztuczna inteligencja?
Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych
Kierunek Zarządzanie II stopnia Szczegółowe efekty kształcenia i ich odniesienie do opisu efektów kształcenia dla obszaru nauk społecznych Objaśnienie oznaczeń: Z efekty kierunkowe dla Zarządzania W wiedza
studia na WETI PG na kierunku automatyka i robotyka Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej 1
Dlaczego warto podjąć studia na WETI PG na kierunku automatyka i robotyka Wydział Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej 1 Automatyka i robotyka Konkurs punktów: język polski
KOGNITYWISTYKA PROGRAM OBOWIĄZUJĄCY STUDENTÓW Z REKRUTACJI OD ROKU 2012/2013. Rok I Semestr I
KOGNITYWISTYKA PROGRAM OBOWIĄZUJĄCY STUDENTÓW Z REKRUTACJI OD ROKU 2012/2013 A. NAZWA KIERUNKU STUDIÓW: KOGNITYWISTYKA B. POZIOM KSZTAŁCENIA: STUDIA JEDNOLITE MAGISTERSKIE C. PROFIL KSZTAŁCENIA: OGÓLNOAKADEMICKI
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja
Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja WSTĘP. MIĘDZY KRYTYKĄ A OBRONĄ ROZUMU OBLICZENIOWEGO 1. INteNCjA 2. KoMPozyCjA 3. tytuł CZĘŚĆ I. WOKÓŁ METODOLOGII ROZDZIAŁ 1. PO CZYM POZNAĆ
1 Programowanie urządzen mobilnych Sztuczna inteligencja i systemy 2 ekspertowe
SPECJALNOŚĆ: Programowanie Komputerów i Sieci Informatyczne Obowiązuje od roku akademickiego: 2007 / 2008 Przedmioty specjalnościowe oraz profili 1 Programowanie urządzen mobilnych 15 5 20 3 15 5 3 Sztuczna
Inteligentne Multimedialne Systemy Uczące
Działanie realizowane w ramach projektu Absolwent informatyki lub matematyki specjalistą na rynku pracy Matematyka i informatyka może i trudne, ale nie nudne Inteligentne Multimedialne Systemy Uczące dr
Informatyka- studia I-go stopnia
SPECJALNOŚĆ: Informatyka w Zarządzaniu Obowiązuje od roku akademickiego: 2007 / 2008 1 Modelowanie procesów biznesowych 30 30 60 6 2 2 6 2 Eksploracja danych 30 3 1 1 3 3 Wspomaganie decyzji w warunkach
Załącznik Nr 4. odniesienie do obszarowych efektów kształcenia w KRK. kierunkowe efekty kształceniaopis WIEDZA
Załącznik Nr 4. Odniesienie kierunkowych efektów kształcenia do obszarowych efektów kształcenia dla obszaru lub obszarów kształcenia przyporządkowanych temu kierunkowi Kognitywistyka z racji tradycji badawczych
Ontologie, czyli o inteligentnych danych
1 Ontologie, czyli o inteligentnych danych Bożena Deka Andrzej Tolarczyk PLAN 2 1. Korzenie filozoficzne 2. Ontologia w informatyce Ontologie a bazy danych Sieć Semantyczna Inteligentne dane 3. Zastosowania
Matryca pokrycia efektów kształcenia. Efekty kształcenia w zakresie wiedzy (cz. I)
Matryca pokrycia efektów kształcenia Matryca dla przedmiotów realizowanych na kierunku Informatyka i Ekonometria (z wyłączeniem przedmiotów realizowanych w ramach specjalności oraz przedmiotów swobodnego
Systemy eksperckie. Plan wykładu Wprowadzenie do sztucznej inteligencji. Wnioski z prób automatycznego wnioskowania w rachunku predykatów
Plan wykładu Systemy eksperckie Dr hab. inż. Joanna Józefowska, prof. pp 1/1 Wnioski z badań nad systemami mi w rachunku predykatów Reguły produkcji jako system reprezentacji Algorytm rozpoznaj-wykonaj
Algorytmy i schematy blokowe
Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,
Opis zakładanych efektów kształcenia dla kierunków studiów
Opis zakładanych efektów kształcenia dla kierunków studiów Kierunek studiów: LOGISTYKA Obszar kształcenia: obszar nauk technicznych i społecznych Dziedzina kształcenia: nauk technicznych i ekonomicznych
KARTA PRZEDMIOTU. Dyscyplina:
KARTA PRZEDMIOTU Jednostka: WIPiE Dyscyplina: Poziom studiów: 3 Semestr: 3 lub 4 Forma studiów: stacjonarne Język wykładowy: Nazwa przedmiotu: Metody sztucznej inteligencji Symbol przedmiotu: MSI Liczba
Rok I, semestr I (zimowy) Liczba godzin
Instytut Nauk Technicznych, PWSZ w Nysie Kierunek: Informatyka Specjalność: Gry komputerowe i multimedia, GKiM studia stacjonarne Dla rocznika: 2018/2019 Rok I, semestr I (zimowy) Lp. Nazwa przedmiotu
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
prawda symbol WIEDZA DANE komunikat fałsz liczba INFORMACJA kod (pojęcie interdyscyplinarne) znak wiadomość ENTROPIA forma przekaz
WIEDZA prawda komunikat symbol DANE fałsz kod INFORMACJA (pojęcie interdyscyplinarne) liczba znak forma ENTROPIA przekaz wiadomość Czy żyjemy w erze informacji? Czy żyjemy w erze informacji? RACZEJ TAK:
1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN. Agenda
Sieci neuropodobne 1. Historia 2. Podstawy neurobiologii 3. Definicje i inne kłamstwa 4. Sztuczny neuron i zasady działania SSN Agenda Trochę neurobiologii System nerwowy w organizmach żywych tworzą trzy
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.
Badania naukowe. Tomasz Poskrobko. Metodyka badań naukowych
Badania naukowe Tomasz Poskrobko Metodyka badań naukowych Badania naukowe w szerokim ujęciu etapowy proces twórczych czynności, przebiegający od ustalenia i powzięcia decyzji o rozwiązaniu problemu badawczego,
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 6 SYSTEMY ROZMYTE TYPU MAMDANIEGO
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 1: Wprowadzenie do
Opis. Wymagania wstępne (tzw. sekwencyjny system zajęć i egzaminów) Liczba godzin zajęć dydaktycznych z podziałem na formy prowadzenia zajęć
Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. nazwa SYLABUS A. Informacje ogólne Tę część wypełnia koordynator (w porozumieniu ze wszystkimi prowadzącymi dany przedmiot w jednostce)
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji
Jazda autonomiczna Delphi zgodna z zasadami sztucznej inteligencji data aktualizacji: 2017.10.11 Delphi Kraków Rozwój jazdy autonomicznej zmienia krajobraz technologii transportu w sposób tak dynamiczny,
INFORMATYKA. PLAN STUDIÓW NIESTACJONARNYCH 2-go STOPNIA (W UKŁADZIE ROCZNYM) STUDIA ROZPOCZYNAJĄCE SIĘ W ROKU AKADEMICKIM A K L S P
Rok I Zajęcia dydaktyczne obligatoryjne INFORMATYKA PLAN STUDIÓ NIESTACJONARNYCH 2-go STOPNIA ( UKŁADZIE ROCZNYM) ybrane zagadnienia matematyki wyższej Logika i teoria mnogości dla informatyków Zaawansowane
Optymalizacja optymalizacji
7 maja 2008 Wstęp Optymalizacja lokalna Optymalizacja globalna Algorytmy genetyczne Badane czasteczki Wykorzystane oprogramowanie (Algorytm genetyczny) 2 Sieć neuronowa Pochodne met-enkefaliny Optymalizacja
Efekty uczenia się na kierunku Ekonomia (studia pierwszego stopnia o profilu ogólnoakademickim)
Załącznik nr 2 do uchwały nr 414 Senatu Uniwersytetu Zielonogórskiego z dnia 29 maja 2019 r. Efekty na kierunku Ekonomia (studia pierwszego stopnia o profilu ogólnoakademickim) Tabela 1. Kierunkowe efekty
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład II: Modele pojęciowe Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie