Fale cz. 2. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fale cz. 2. Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek"

Transkrypt

1 Fale cz. 2 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl 1 dr inż. Ireneusz Owczarek Fale cz. 2 Dźwięki Fala akustyczna to rozchodzaca się w ośrodku zmiana (zaburzenie) gęstości, ciśnienia ośrodka, temperatury i energii, oraz zwiazane z ta zmiana mechaniczne drgania czasteczek ośrodka. Zaburzenie to nie powoduje przesunięcia średnich położeń atomów ośrodka. W cieczach i gazach fala akustyczna jest fala podłużna, w ciałach stałych może być zarówno fala podłużna, jak i poprzeczna. Dźwięk, jak każda fala mechaniczna, rozchodzi się tym lepiej, im bardziej sprężysty jest ośrodek. Prędkość fali w powietrzu w warunkach normalnych 331,8 m s, a dla wody wynosi 1497 m s. Dźwięk wrażenie słuchowe spowodowane fala akustyczna rozchodzac a się w ośrodku sprężystym. 2 dr inż. Ireneusz Owczarek Fale cz. 2 Dźwięki... Cechy subiektywne dźwięków wysokość dźwięku zależy od częstotliwości (im większa częstotliwość sygnału, tym wyższy dźwięk), głośność dźwięku zależy od natężenia, barwa dźwięku zależy m. in. od zawartości wyższych harmonicznych, czas trwania dźwięku. Cechy te zwiazane sa ściśle z odpowiednimi parametrami fali akustycznej. 3 dr inż. Ireneusz Owczarek Fale cz. 2 Dźwięki... Każdy dźwięk składa się z pewnej ilości dźwięków podstawowych, tj. tonów. Wysokość dźwięku subiektywna ocena częstotliwości dźwięku. Określona wysokość dźwięku można przypisać tonowi. Głośność dźwięku jest cecha wrażenia słuchowego, która umożliwia odróżnianie dźwięków cichszych i głośniejszych. Odczuwana subiektywnie głośność dźwięku jest proporcjonalna (ale nie zawsze wprost proporcjonalna) do amplitudy odbieranej fali akustycznej. Wrażenie głośności określa się przez poziom głośności wyrażona w fonach. 4 dr inż. Ireneusz Owczarek Fale cz. 2

2 Dźwięki... Barwa dźwięku to cecha, która pozwala rozróżnić dwa dźwięki o takich samych pozostałych cechach subiektywnych (rozróżnienie rodzaju instrumentu). Na barwę wpływa struktura widmowa i zmiana widma w czasie. Barwa dźwięku jest określona przez wyższe harmoniczne, a przede wszystkim przez ich częstości i natężenia w stosunku do tonu podstawowego. Dzięki barwie rozróżnia się od jakiego instrumentu dany dźwięk (o tym samym tonie podstawowym) pochodzi, np. ze skrzypiec, trabki czy fortepianu. Klasyfikacja dźwięków ze względu na barwę majace określona wysokość ton odpowiada drganiom harmonicznym źródeł o jednej, ściśle określonej częstotliwości wieloton harmoniczny, składajacy się z tonów o dowolnej częstotliwości. nie majace określonej wysokości wieloton nieharmoniczny, szum (widmo ciagłe częstotliwości fal sinusoidalnych występujacych w szumie zapełniaja pewien przedział). Szum biały I(f)ma stała wartość w całym zakresie słyszalności. 5 dr inż. Ireneusz Owczarek Fale cz. 2 Dźwięki... Czas trwania dźwięku zależy od czasu, w jakim drga ciało; z chwila, gdy ciało przestaje drgać, gdy drgania zanikaja, zanika również i dźwięk. Czas trwania dźwięku przedłuża się pozornie, gdy dźwięk zostaje zagrany w dużym pomieszczeniu o ścianach odbijajacych falę dźwiękowa, np. w kościele (zjawisko pogłosu). Wielkości obiektywne opisujace dźwięk częstotliwość, struktura czasowa, lokalizacja przestrzenna. Dźwięki ze względu na częstotliwość dzieli się na: infradźwięki (f < 16 Hz) ucho ludzkie nie odbiera dźwięków o takich częstotliwościach, dźwięki słyszalne (16 Hz < f < 20 khz) pasmo akustyczne, ultradźwięki (f > 20 khz) sa nieprzyjemne dla ludzkiego ucha. Struktura czasowa wynika z różnicy czasu pomiędzy zjawiskiem rzeczywistym a czasem percepcji. 6 dr inż. Ireneusz Owczarek Fale cz. 2 Dźwięki... Lokalizacja przestrzenna jest cecha polegajac a na określeniu kierunku, z którego dźwięk dociera do słuchacza i odległości dzielacej obserwatora od źródła. Kierunki źródeł dźwięku w przestrzeni określa się zwykle w odniesieniu do głowy słuchacza. Parametry biorace udział w ocenie odległości źródła od słuchacza to: zmniejszajacy się, ze wzrostem odległości, poziom ciśnienia akustycznego, zwiększajacy się stosunek energii fali bezpośredniej do energii fal odbitych ze zmniejszeniem odległości, zwiększajacy się udział składowych wysokoczęstotliwościowych (zmiana barwy dźwięku) zmniejszenie odległości. 7 dr inż. Ireneusz Owczarek Fale cz. 2 Widmo dźwięku Twierdzenie Fouriera Każda fala złożona może być analizowana lub rozłożona (pod pewnymi warunkami) na szereg składowych sinusoidalnych o odpowiednich częstotliwościach, amplitudach i fazach. Składowa podstawowa ma częstotliwość równa częstotliwości powtarzania obwiedni złożonego sygnału dźwiękowego. Najniższy ton występujacy w takim dźwięku nazywa się główna składowa harmoniczna, a odpowiadajaca mu częstotliwość częstotliwościa podstawowa lub wysokościa dźwięku. 8 dr inż. Ireneusz Owczarek Fale cz. 2

3 Wyższe harmoniczne Fala wypadkowa powstaje w wyniku dodawania modu podstawowego i wyższych harmonicznych. Fale generowane przez różne instrumenty, gdy pierwsze harmoniczne maja taka sama częstotliwość. 9 dr inż. Ireneusz Owczarek Fale cz. 2 Wielkości w akustyce Pole akustyczne wytworzone przez źródło dźwięku charakteryzowane jest przez ciśnienie akustyczne, natężenie dźwięku. Ciśnienie akustyczne to różnica chwilowej wartości ciśnienia i ciśnienia statycznego (średniego). Jego wartość podaje się w paskalach: p A = p(t) p st 1 Pa = 1 N m 2. Najmniejsze ciśnienie akustyczne, które wywołuje u człowieka wrażenie słuchowe wynosi Pa. Górna granica słyszenia granica bólu wynosi około Pa. 10 dr inż. Ireneusz Owczarek Fale cz. 2 Wielkości w akustyce... Ciśnienie akustyczne jest bardzo małe w porównaniu z ciśnieniem atmosferycznym Moc akustyczna Jednostka mocy akustycznej jest 1 W. N = E t = S p2 A ρv 11 dr inż. Ireneusz Owczarek Fale cz. 2 Wielkości w akustyce... Przemieszczenie w kierunku osi x s(x, t) = s m cos(ωt kx). Zmiana ciśnienia p(x, t) = (vρω) s m sin(ωt kx). 12 dr inż. Ireneusz Owczarek Fale cz. 2

4 Wielkości w akustyce... Poziom natężenia dźwięku można wyznaczyć za pomoca pomiaru ciśnienia akustycznego. W polu swobodnym (brak odbić): I = p2 A ρ 0c gdzie ρ 0c impedancja charakterystyczna (dla powietrza równa 413 Pa m ). s Poziom ciśnienia akustycznego L p = 10 log ( p p 0 ) 2 = 20 log p p 0 gdzie p 0 = Pa jest poziomem odniesienia. Dla fali płaskiej poziom ciśnienia dźwięku odpowiada poziomowi natężenia dźwięku L I = L p. 13 dr inż. Ireneusz Owczarek Fale cz. 2 Wielkości w akustyce... Natężenie dźwięku to energia przenoszona w polu akustycznym w ciagu 1 sekundy (moc) przez powierzchnię jednostkowa I = E S t = N S Jednostka natężenia dźwięku jest 1 W. m 2 Natężenie dźwięku zależy od odległości od źródła dźwięku I = Nzr 4πr 2. Poziom mocy akustycznej L N = log N N 0 gdzie N 0 = W m 2 dla f = 1 khz. 14 dr inż. Ireneusz Owczarek Fale cz. 2 Wielkości w akustyce... Poziom natężenia dźwięku L I = log I I 0 gdzie minimalne natężenie dźwięku słyszane przez ucho ludzkie I 0 = W dla f = 1 khz. m 2 Jednostka jest bel. Często stosuje się jednostkę podwielokrotna, decybel 1 db = 1 10 B wówczas LI = 10 log I I 0. Minimalne natężenie dźwięku wywołujace ból ucha wówczas L I = 120 db. I b = 1 W m 2 dla f = 1 khz, 15 dr inż. Ireneusz Owczarek Fale cz. 2 Wielkości w akustyce przykłady Dla dźwięku o natężeniu równym progowi słyszalności Dla dźwięku o natężeniu I = 10 5 W m 2 tych dźwięków L = log I0 I 0 = log 1 = 0. docierajacym z ulicy poziom natężenia L = log 10 5 W m W m 2 = log 10 7 = 7 B = 70 db. Jeżeli podczas koncertu rockowego natężenie dźwięku osiaga 1 W, to m 2 jest to próg bólu! 1 W m 2 L = log = log = 12 B = 120 db, W m 2 16 dr inż. Ireneusz Owczarek Fale cz. 2

5 Wielkości w akustyce przykład Średni poziom natężenia dźwięku każdego z dwóch odbiorników radiowych wynosi 45 db. Jaki będzie średni poziom natężenia dźwięku, gdy oba odbiorniki sa jednocześnie właczone, odbierajac różne programy? Jeżeli natężenie dźwięku płynacego z jednego odbiornika jest I R, to poziom natężenia dźwięku wynosi: L 1 = 45 db = 10 log IR I 0. Przy dwóch właczonych odbiornikach natężenie dźwięku a poziom natężenia: I R + I R = 2I R, L 2 = 10 log 2IR = I 0 ( ) = 10 log 2 + log IR = 10 log 2 + L 1 I 0 = 3 db + 45 db = 48 db. Z tego wynika, że chociaż natężenie dźwięku podwaja się, to poziom natężenia rośnie tylko o około 3 db. 17 dr inż. Ireneusz Owczarek Fale cz. 2 Cechy dźwięków Głośność dźwięku to cecha subiektywna i odzwierciedla fizjologiczne właściwości ucha. Zależy od częstotliwości. Największa czułość ucha przypada w zakresie 2 3 khz. Głośność wzorcowa to głośność dźwięku o częstotliwości 1 khz i natężeniu I 0 = W m 2. Jednostka poziomu głośności jest fon. Fon jest równy poziomowi natężenia (w db) tonu o częstotliwości 1 khz, którego głośność jest równa głośności tego dźwięku. Dźwięki o tej samej liczbie fonów wywołuja to samo wrażenie głośności, ale nie musza być to dźwięki identyczne w sensie barwy (np. o różnych częstotliwościach). 18 dr inż. Ireneusz Owczarek Fale cz. 2 Cechy dźwięków... Krzywe jednakowej głośności (izofony) "normalnego" ucha. 19 dr inż. Ireneusz Owczarek Fale cz. 2 Propagacja dźwięku Rozchodzenie się dźwięku Zjawiska fizyczne w przestrzeni otwartej: 1 wpływ czynników atmosferycznych: wiatr, wilgotność, temperatura, 2 tłumienie dźwięku w powietrzu. Natężenie dźwięku i ciśnienia akustycznego zmniejsza się w funkcji odległości od źródła (rozproszenie energii akustycznej w ośrodku, pochłanianie energii przez ośrodek). 3 odbicie fali i pochłanianie energii akustycznej na granicy dwóch ośrodków, 4 dyfrakcja fali (ugięcie fali), czyli zmianę kierunku rozchodzenia się fali na szczelinach, krawędziach, przeszkodach. Zasada Huygensa każde chwilowe położenie czoła fali jest zbiorem źródeł kulistych fal elementarnych. 20 dr inż. Ireneusz Owczarek Fale cz. 2

6 Rozchodzenie się dźwięku Zjawiska fizyczne w pomieszczeniu zamkniętym Echo opóźniona fala akustyczna, docierajaca z powrotem po odbiciu się od przeszkody. Dla usłyszenia w powietrzu przez człowieka echa akustycznego przeszkoda odbijajaca musi znajdować się dalej niż 17 m, co odpowiada czasowi powrotu fali równemu 50 ms. Echo akustyczne wykorzystuje się w echosondach, hydrolokacji, defektoskopii. Echo trzepoczace (ang. flutter echo) jest szczególnym rodzajem echa akustycznego to wrażenie dźwiękowe zwiazane z percepcja kilku oddzielnych w czasie impulsów, które przynosza w równych odstępach czasu fale odbite. Zjawisko to występuje w pomieszczeniach w których przeciwległe ściany, a ich powierzchnie w dużym stopniu odbijaja falę akustyczna. Wygenerowanie w takim pomieszczeniu krótkiego impulsu, powoduje wielokrotne, naprzemienne odbicie fali od każdej z przegród, postrzegane przez obserwatora podobnie jak dźwięk trzepoczacych ptasich skrzydeł. 21 dr inż. Ireneusz Owczarek Fale cz. 2 Rozchodzenie się dźwięku Zjawiska fizyczne w pomieszczeniu zamkniętym... Przy krótszym interwale czasów emisji i powrotu fali rejestruje się zjawisko pogłosu. Pogłos polega na zanikaniu w pomieszczeniu dźwięku po jego wybrzmieniu. Spowodowany jest wielokrotnymi odbiciami fal dźwiękowych od ścian pomieszczenia, w którym znajduje się źródło dźwięku (dla odległości mniejszej niż 30 m). Zależy od: ilości powierzchni odbijajacych, współczynnika absorpcji, ilości odbić. Najdłuższy czas pogłosu w zamkniętym pomieszczeniu występuje w wielkim grobowcu w Indiach Przedgangesowych Taj Mahal. Dźwięk milknie tam dopiero po 30 sekundach! 22 dr inż. Ireneusz Owczarek Fale cz. 2 Zjawisko Dopplera Różne przypadki Ruchomy obserwator, nieruchome źródło Zjawisko Dopplera polega na zmianie rejestrowanej częstości fali, gdy źródło lub obserwator (detektor) poruszaja się względem ośrodka, w którym rozchodza się fale (np. powietrza). W przypadku fal elektromagnetycznych, znaczenie ma jedynie różnica prędkości źródła oraz obserwatora. 23 dr inż. Ireneusz Owczarek Fale cz. 2 Zjawisko Dopplera Różne przypadki Ruchomy obserwator, nieruchome źródło... Obserwator porusza się w kierunku czół rozchodzacej się fali. Wówczas w czasie t czoła fali przesuna się względem obserwatora na odległość vt + vdt. Liczba długości fali mieszczacych się w tym przesunięciu vt + vdt. λ Szybkość, z jaka obserwator napotka kolejne długości fali odpowiada częstości f = vt + vdt 1 λ t = v + vd λ v + vd = f 0. v Gdy obserwator oddala się od źródła f v vd = f 0. v 24 dr inż. Ireneusz Owczarek Fale cz. 2

7 Zjawisko Dopplera Różne przypadki Ruchome źródło, nieruchomy obserwator Ruch źródła S powoduje zmianę długości emitowanych przez nie fal dźwiękowych i zmianę częstości rejestrowanej przez detektor obserwatora. Gdy źródło porusza się w kierunku nieruchomego (względem ośrodka) obserwatora, to obserwator zarejestruje częstość f v = f 0. v vs Gdy źródło oddala się od obserwatora f v = f 0. v + vs 25 dr inż. Ireneusz Owczarek Fale cz. 2 Zjawisko Dopplera Różne przypadki Efekt Dopplera Ogólna zależność dla zjawisko Dopplera f ob = f o v ± vd v vs gdzie v jest prędkościa dźwięku w powietrzu, a vs 0 i vd 0. Obserwator rejestruje inna częstotliwość niż emitowana: wyższa jeśli odległość między źródłem a obserwatorem maleje, niższa jeśli odległość między źródłem a obserwatorem wzrasta. 26 dr inż. Ireneusz Owczarek Fale cz. 2 Fala uderzeniowa Zjawisko Dopplera Prędkości naddźwiękowe Jest zaburzeniem ośrodka (skokowy wzrost ciśnienia i gęstości), rozchodzacym się w danym ośrodku z prędkościa większa od prędkości dźwięku (prędkość źródła dźwięku jest większa od prędkości dźwięku). Płaskie czoło fali uderzeniowej zmienia się w stożek. Również energia koncentruje się na powierzchni stożka. Połowa kata rozwarcia stożka sin ϑ = v = 1 vs M gdzie M jest liczba Macha. 27 dr inż. Ireneusz Owczarek Fale cz. 2 Fala uderzeniowa... Zjawisko Dopplera Prędkości naddźwiękowe 28 dr inż. Ireneusz Owczarek Fale cz. 2

8 Źródła infradźwięków Infradźwięki Infradźwięki fale akustyczne o częstotliwości mniejszej od 16 Hz. Infradźwięki nie sa słyszane przez człowieka (słonie i wieloryby wykorzystuja je do komunikacji na duże odległości), lecz przy odpowiednim poziomie ciśnienia akustycznego moga oddziaływać powodujac zaniepokojenie, nudności itp. Infradźwięki maja bardzo duża długość fali powyżej 17 m, przez to sa słabo tłumione w skorupie ziemskiej i w wodzie, moga się rozchodzić na znaczne odległości. Źródła: wodospady rezonans między woda i skała, wyładowania atmosferyczne, wiatr opływajacy wysokie budynki, wybuchy atomowe lub termojadrowe, helikoptery, fala uderzeniowa samoloty naddźwiękowe, rakiety, szybkie przepływy gazów np. dmuchawy wielkopiecowe, kanały wentylacyjne, narzędzia udarowe, pneumatyczne. 29 dr inż. Ireneusz Owczarek Fale cz. 2 Infradźwięki... Źródła infradźwięków Ujemne skutki (zależa od czasu działania i poziomu natężenia) drgania rezonansowe klatki piersiowej, przepony, organów trawienia, zaburzenia systemu oddychania, choroby układu trawienia, zakłócenia organu równowagi i ostrości widzenia, paraliż, zatrzymanie akcji serca, pękanie naczyń krwionośnych, osłabienie, bóle głowy. Poziom natężenia < 120 db niezbyt szkodliwe, db lekkie zakłócenia procesów fizjologicznych, zmęczenie, db wymioty, zakłócenia równowagi, > 170 db stwierdzono śmiertelne działanie na zwierzętach, zwykle na skutek przekrwienia płuc. 30 dr inż. Ireneusz Owczarek Fale cz. 2 Ultradźwięki Własności ultradźwięków Ultradźwięki to dźwięki o częstotliwości wyższej niż 20 khz. Niektóre zwierzęta moga emitować i słyszeć ultradźwięki, np. pies, szczur, delfin, wieloryb, chomik czy nietoperz. 31 dr inż. Ireneusz Owczarek Fale cz. 2 Własności ultradźwięków... Ultradźwięki Własności: 20 khz 1 GHz, mała długość fali, dobra kolimacja wiazki (równoległa wiazka), podlegaja prawom optyki geometrycznej odbicie, załamanie, prostoliniowe rozchodzenie się, można je skupiać i odbijać soczewki i zwierciadła ultradźwiękowe, w cieczach powoduja kawitację (tj. powstawania pęcherzyków pary lub gazu towarzyszace w pewnych warunkach przepływowi), amplitudy prędkości i przyspieszenia ruchu drgajacego czasteczek ośrodka w czasie rozchodzenia się w nim ultradźwięków dużo większe niż w przypadku dźwięku, podobnie amplituda ciśnienia akustycznego. Długość fali: λ = v f, λ w powietrzu λ w wodzie 20 khz 1,72 cm 7,49 cm 350 khz 0,98 cm 4,27 cm 5 MHz 0,069 cm 0,30 cm 32 dr inż. Ireneusz Owczarek Fale cz. 2

9 Własności hiperdźwięków Ultradźwięki Hiperdźwięki to dźwięki o częstotliwościach większych, niż ultradźwięki, przy czym za dolna granicę przyjmuje się zazwyczaj 10 GHz. Hiperdźwięki można wykrywać za pomoca bardzo skomplikowanych technik. Niektórzy specjalnie przeszkoleni radiesteci też potrafia je wykryć. Hiperdźwięki moga rozchodzić się jedynie w kryształach, ponieważ w gazach, moga rozchodzić się tylko fale sprężyste o długości większej od odległości między czasteczkami. 33 dr inż. Ireneusz Owczarek Fale cz. 2 Zastosowanie ultradźwięków bierne Zastosowania Zastosowanie: czynne (fala oddziałuje z ośrodkiem, ma to miejsce przy dużych mocach), bierne (nie oddziałuje z ośrodkiem). Badanie ośrodków defektoskopia ( Hz), mikrodefektoskopia ( Hz), medycyna. Metoda echa 34 dr inż. Ireneusz Owczarek Fale cz. 2 Zastosowanie ultradźwięków czynne Zastosowania Terapia Kosmetyka 35 dr inż. Ireneusz Owczarek Fale cz. 2 Literatura Zastosowania Halliday D., Resnick R, Walker J. Podstawy Fizyki t PWN, Praca zbiorowa pod red. A. Justa Wstęp do analizy matematycznej i wybranych zagadnień z fizyki. Wydawnictwo PŁ, Łódź Jaworski B., Dietłaf A. Kurs Fizyki t PWN, Strona internetowa prowadzona przez CMF PŁ e-fizyka. Podstawy fizyki. Kakol Z., Żukrowski J. kakol/wyklady_pl.htm Wykłady z fizyki. 36 dr inż. Ireneusz Owczarek Fale cz. 2

Fale cz. 2. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

Fale cz. 2. dr inż. Ireneusz Owczarek CMF PŁ  2012/13 Fale cz. 2 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Fale dźwiękowe 2 1.1. Fala złożona................................................

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db - Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są

Bardziej szczegółowo

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski

Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość. dr inż. Romuald Kędzierski Fale dźwiękowe - ich właściwości i klasyfikacja ze względu na ich częstotliwość dr inż. Romuald Kędzierski Czym jest dźwięk? Jest to wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

Drgania i fale sprężyste. 1/24

Drgania i fale sprężyste. 1/24 Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

ZJAWISKA FIZYCZNE ZWIĄZANE Z POWSTAWANIEM I PROPAGACJĄ FAL DŹWIĘKOWYCH.

ZJAWISKA FIZYCZNE ZWIĄZANE Z POWSTAWANIEM I PROPAGACJĄ FAL DŹWIĘKOWYCH. ZJAWISKA FIZYCZNE ZWIĄZANE Z POWSTAWANIEM I PROPAGACJĄ FAL DŹWIĘKOWYCH. DŹWIĘK Aspekt psychofizjologiczny wrażenie zmysłowe odbierane przez narząd słuchu Aspekt fizyczny - zaburzenie falowe sprężystego

Bardziej szczegółowo

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne.

Drania i fale. Przykład drgań. Drgająca linijka, ciało zawieszone na sprężynie, wahadło matematyczne. Drania i fale 1. Drgania W ruchu drgającym ciało wychyla się okresowo w jedną i w drugą stronę od położenia równowagi (cykliczna zmiana). W położeniu równowagi siły działające na ciało równoważą się. Przykład

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

FALE DŹWIĘKOWE. fale podłużne. Acos sin

FALE DŹWIĘKOWE. fale podłużne. Acos sin ELEMENTY AKUSTYKI Fale dźwiękowe. Prędkość dźwięku. Charakter dźwięku. Wysokość, barwa i natężenie dźwięku. Poziom natężenia i głośności. Dudnienia. Zjawisko Dopplera. Fala dziobowa. Fala uderzeniowa.

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1 RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy

Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy Prowadzący: Kamil Fedus pokój nr 569 lub 2.20 COK konsultacje: środy 12 00-14 00 e-mail: kamil@fizyka.umk.pl Istotne informacje 20 spotkań (40 godzin lekcyjnych) wtorki (s. 22, 08:00-10:00), środy (s.

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Mapa akustyczna Torunia

Mapa akustyczna Torunia Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis, Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje

Bardziej szczegółowo

Fale mechaniczne i akustyka

Fale mechaniczne i akustyka Fale mechaniczne i akustyka Wstęp: siła jako element decydujący o rodzaju ruchu Na pierwszym wykładzie, dynamiki Newtona omawiając II zasadę dr d r F r,, t = m dt dt powiedzieliśmy, że o tym, jakim ruchem

Bardziej szczegółowo

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż. Ruch drgajacy dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Ruch drgajacy Drgania harmoniczne Drgania oscylacje to cykliczna

Bardziej szczegółowo

ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH

ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH Politechnika Wrocławska Instytut Telekomunikacji i Akustyki SYSTEMY NAGŁOŚNIENIA TEMAT SEMINARIUM: ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH prowadzący: mgr. P. Kozłowski

Bardziej szczegółowo

Fale elektromagnetyczne

Fale elektromagnetyczne Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z izyki -Zestaw 13 -eoria Drgania i ale. Ruch drgający harmoniczny, równanie ali płaskiej, eekt Dopplera, ale stojące. Siła harmoniczna, ruch drgający harmoniczny Siłą harmoniczną (sprężystości)

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

PRZYKŁADY RUCHU HARMONICZNEGO. = kx

PRZYKŁADY RUCHU HARMONICZNEGO. = kx RUCH HARMONICZNY; FALE PRZYKŁADY RUCHU HARMONICZNEGO F d k F s k Gdowski F k Każdy ruch w którym siła starająca się przywrócić położenie równowagi jest proporcjonalna do wychylenia od stanu równowagi jest

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Przygotowała: prof. Bożena Kostek

Przygotowała: prof. Bożena Kostek Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej

Bardziej szczegółowo

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE

WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ EKOLOGII LABORATORIUM FIZYCZNE Ćwiczenie Nr 2 Temat: WYZNACZNIE CZĘSTOŚCI DRGAŃ WIDEŁEK STROIKOWYCH METODĄ REZONANSU Warszawa 2009 1 WYZNACZANIE PRĘDKOŚCI DŹWIĘKU ZA POMOCĄ

Bardziej szczegółowo

LIGA klasa 2 - styczeń 2017

LIGA klasa 2 - styczeń 2017 LIGA klasa 2 - styczeń 2017 MAŁGORZATA IECUCH IMIĘ I NAZWISKO: KLASA: GRUA A 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Głośność dźwięku jest zależna od

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Przyjmij w zadaniach prędkość

Bardziej szczegółowo

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi

Bardziej szczegółowo

AKUSTYKA. Matura 2007

AKUSTYKA. Matura 2007 Matura 007 AKUSTYKA Zadanie 3. Wózek (1 pkt) Wózek z nadajnikiem fal ultradźwiękowych, spoczywający w chwili t = 0, zaczyna oddalać się od nieruchomego odbiornika ruchem jednostajnie przyspieszonym. odbiornik

Bardziej szczegółowo

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3

Drgania i fale zadania. Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Zadanie 2 Zadanie 3 Zadanie 4 Zapisz, w którym punkcie wahadło ma największą energię kinetyczną, a w którym największą energię potencjalną? A B C Zadanie 5 Zadanie 6 Okres drgań pewnego wahadła

Bardziej szczegółowo

Fale w przyrodzie - dźwięk

Fale w przyrodzie - dźwięk Fale w przyrodzie - dźwięk Fala Fala porusza się do przodu. Co dzieje się z cząsteczkami? Nie poruszają się razem z falą. Wykonują drganie i pozostają na swoich miejscach Ruch falowy nie powoduje transportu

Bardziej szczegółowo

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie. Ćwiczenie T - 6 Fale dźwiękowe i zjawisko dudnień I. Cel ćwiczenia: rejestracja i analiza fal dźwiękowych oraz zjawiska dudnienia. II. Przyrządy: interfejs CoachLab II +, czujnik dźwięku, dwa kamertony

Bardziej szczegółowo

Zastosowanie ultradźwięków w technikach multimedialnych

Zastosowanie ultradźwięków w technikach multimedialnych Zastosowanie ultradźwięków w technikach multimedialnych Janusz Cichowski, p. 68 jay@sound.eti.pg.gda.pl Katedra Systemów Multimedialnych, Wydział Elektroniki Telekomunikacji i Informatyki, Politechnika

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk Dźwięk jest to fala akustyczna rozchodząca się w ośrodku sprężystym lub wrażenie słuchowe wywołane tą falą. Fale akustyczne to fale głosowe, czyli falowe

Bardziej szczegółowo

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 1. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 1 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Klasyfikacja fal fale mechaniczne zaburzenie przemieszczające się w ośrodku sprężystym, fale elektromagnetyczne

Bardziej szczegółowo

Doświadczalne wyznaczanie prędkości dźwięku w powietrzu

Doświadczalne wyznaczanie prędkości dźwięku w powietrzu Doświadczalne wyznaczanie prędkości dźwięku w powietrzu Autorzy: Kamil Ćwintal, Adam Tużnik, Klaudia Bernat, Paweł Safiański uczniowie klasy I LO w Zespole Szkół Ogólnokształcących im. Edwarda Szylki w

Bardziej szczegółowo

Sonochemia. Dźwięk. Fale dźwiękowe należą do fal mechanicznych, sprężystych. Fale poprzeczne i podłużne. Ciało stałe (sprężystość postaci)

Sonochemia. Dźwięk. Fale dźwiękowe należą do fal mechanicznych, sprężystych. Fale poprzeczne i podłużne. Ciało stałe (sprężystość postaci) Dźwięk 1 Fale dźwiękowe należą do fal mechanicznych, sprężystych Fale poprzeczne i podłużne Ciało stałe (sprężystość postaci) fale poprzeczne i podłużne Dźwięk 2 Właściwości fal podłużnych Prędkość dźwięku

Bardziej szczegółowo

FIZYKA KLASA III GIMNAZJUM

FIZYKA KLASA III GIMNAZJUM 2016-09-01 FIZYKA KLASA III GIMNAZJUM SZKOŁY BENEDYKTA Treści nauczania Tom III podręcznika Tom trzeci obejmuje następujące punkty podstawy programowej: 5. Magnetyzm 6. Ruch drgający i fale 7. Fale elektromagnetyczne

Bardziej szczegółowo

Percepcja dźwięku. Narząd słuchu

Percepcja dźwięku. Narząd słuchu Percepcja dźwięku Narząd słuchu 1 Narząd słuchu Ucho zewnętrzne składa się z małżowiny i kanału usznego, zakończone błoną bębenkową, doprowadza dźwięk do ucha środkowego poprzez drgania błony bębenkowej;

Bardziej szczegółowo

Fizyka 12. Janusz Andrzejewski

Fizyka 12. Janusz Andrzejewski Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające

Bardziej szczegółowo

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie.

Fale dźwiękowe wstęp. Wytworzenie fali dźwiękowej w cienkim metalowym pręcie. Fale dźwiękowe wstęp Falami dźwiękowymi nazywamy fale podłużne, które rozchodzą się w ośrodkach sprężystych Ludzkie ucho rozpoznaje fale dźwiękowe o częstotliwości od około 20 Hz do około 20 khz (zakres

Bardziej szczegółowo

2.6.3 Interferencja fal.

2.6.3 Interferencja fal. RUCH FALOWY 1.6.3 Interferencja fal. Pojęcie interferencja odnosi się do fizycznych efektów nie zakłóconego nakładania się dwóch lub więcej ciągów falowych. Doświadczenie uczy, że fale mogą przebiegać

Bardziej szczegółowo

12.Opowiedz o doświadczeniach, które sam(sama) wykonywałeś(aś) w domu. Takie pytanie jak powyższe powinno się znaleźć w każdym zestawie.

12.Opowiedz o doświadczeniach, które sam(sama) wykonywałeś(aś) w domu. Takie pytanie jak powyższe powinno się znaleźć w każdym zestawie. Fizyka Klasa III Gimnazjum Pytania egzaminacyjne 2017 1. Jak zmierzyć szybkość rozchodzenia się dźwięku? 2. Na czym polega zjawisko rezonansu? 3. Na czym polega zjawisko ugięcia, czyli dyfrakcji fal? 4.

Bardziej szczegółowo

SPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe.

SPRAWDZIAN NR 1. Oceń prawdziwość każdego zdania. Zaznacz P, jeśli zdanie jest prawdziwe, lub F, jeśli jest fałszywe. SRAWDZIAN NR 1 AGNIESZKA JASTRZĘBSKA IMIĘ I NAZWISKO: KLASA: GRUA A 1. Gitara akustyczna jest instrumentem, który wydaje dźwięk po pobudzeniu struny do drgań. Oceń prawdziwość każdego zdania. Zaznacz,

Bardziej szczegółowo

AKUSTYKA. Fizyka Budowli. Akustyka techniczna WYKŁAD Z PRZEDMIOTU: a) akustyki urbanistycznej. b) akustyki wnętrz

AKUSTYKA. Fizyka Budowli. Akustyka techniczna WYKŁAD Z PRZEDMIOTU: a) akustyki urbanistycznej. b) akustyki wnętrz AKUSTYKA WYKŁAD Z PRZEDMIOTU: Fizyka Budowli Akustyka techniczna Kształtowaniem właściwych warunków akustycznych w miejscu pobytu ludzi zajmuje się dyscyplina naukowa zwana akustyką techniczną. W budownictwie

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku

Wyznaczanie prędkości dźwięku Wyznaczanie prędkości dźwięku OPRACOWANIE Jak można wyznaczyć prędkość dźwięku? Wyznaczanie prędkości dźwięku metody doświadczalne. Prędkość dźwięku w powietrzu wynosi około 330 m/s. Dokładniejsze jej

Bardziej szczegółowo

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana

Wykład 3: Jak wygląda dźwięk? Katarzyna Weron. Matematyka Stosowana Wykład 3: Jak wygląda dźwięk? Katarzyna Weron Matematyka Stosowana Fala dźwiękowa Podłużna fala rozchodząca się w ośrodku Powietrzu Wodzie Ciele stałym (słyszycie czasem sąsiadów?) Prędkość dźwięku: stal

Bardziej szczegółowo

Dźwięk w muzyce europejskiej

Dźwięk w muzyce europejskiej Podstawowe pojęcia Rozchodzenie się dźwięku akustyka - dział fizyki zajmujący się falami dźwiękowymi fala dźwiękowa (akustyczna) - dowolna fala podłużna rozchodząca się w ośrodku sprężystym dźwięk - wrażenie

Bardziej szczegółowo

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 1 Drgania i fale 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Drgania i fale Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Imię i nazwisko ucznia Klasa Data

Imię i nazwisko ucznia Klasa Data ID Testu: 245YAC9 Imię i nazwisko ucznia Klasa Data 1. Jednostka częstotliwości jest: A. Hz B. m C. m s D. s 2. Okres drgań jest to A. amplituda drgania. B. czas jednego pełnego drgania. C. częstotliwość,

Bardziej szczegółowo

Systemy i Sieci Radiowe

Systemy i Sieci Radiowe Systemy i Sieci Radiowe Wykład 4 Media transmisyjne część Program wykładu Widmo sygnałów w. cz. Modele i tryby propagacji Anteny Charakterystyka kanału radiowego zjawiska propagacyjne 1 Transmisja radiowa

Bardziej szczegółowo

Podstawy elektroniki i akustyki

Podstawy elektroniki i akustyki 1 Podstawy elektroniki i akustyki Dr Klaudiusz Majchrowski Wykład dla Elektroradiologii 2 Elementy akustyki Wykład 2 3 Fala dźwiękowa Fala dźwiękowa to forma transmisji energii przez ośrodek sprężysty.

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.

Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. RUCH FALOWY Wyklad 9 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe, mikrofale,

Bardziej szczegółowo

Temat: Zagrożenie hałasem

Temat: Zagrożenie hałasem MODUŁ IV LEKCJA 2 Temat: Zagrożenie hałasem Formy realizacji: ścieżka edukacyjna, lekcja fizyki, techniki (45 minutowa jednostka lekcyjna). Cele szczegółowe lekcji: uświadomienie zagrożeń związanych z

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH

TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH TEMAT: OBSERWACJA ZJAWISKA DUDNIEŃ FAL AKUSTYCZNYCH Autor: Tomasz Kocur Podstawa programowa, III etap edukacyjny Cele kształcenia wymagania ogólne II. Przeprowadzanie doświadczeń i wyciąganie wniosków

Bardziej szczegółowo

Dźwięk podstawowe wiadomości technik informatyk

Dźwięk podstawowe wiadomości technik informatyk Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń:

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń: Przedmiotowy system oceniania z fizyki kl.ii Wymagania edukacyjne Fizyka klasa II gimnazjum 1. Ruch i siły. 11 godz. L.p. Temat lekcji Wymagania na ocenę dopuszczającą 1 Ruch jednostajny prostoliniowy.

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Nauka o słyszeniu. Wykład III +IV Wysokość+ Głośność dźwięku

Nauka o słyszeniu. Wykład III +IV Wysokość+ Głośność dźwięku Nauka o słyszeniu Wykład III +IV Wysokość+ Głośność dźwięku Anna Preis, email: apraton@amu.edu.pl 21-28.10.2015 Plan wykładu - wysokość Wysokość dźwięku-definicja Periodyczność Dźwięk harmoniczny Wysokość

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ. Metody kształcenia (wg W. Okonia): dyskusja, eksperyment pokazowy, wykład

SCENARIUSZ ZAJĘĆ. Metody kształcenia (wg W. Okonia): dyskusja, eksperyment pokazowy, wykład Katarzyna Budzanowska SCENARIUSZ ZAJĘĆ Typ szkoły: ponadgimnazjalna Etap kształcenia: IV Rodzaj zajęć: lekcje fizyki Temat zajęć: Aby zagrać tak jak Chopin Cechy fal dźwiękowych Cele kształcenia: 1. Cel

Bardziej szczegółowo

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH

POMIAR PRĘDKOŚCI DŹWIĘKU METODĄ REZONANSU I METODĄ SKŁADANIA DRGAŃ WZAJEMNIE PROSTOPADŁYCH Ćwiczenie 5 POMIR PRĘDKOŚCI DŹWIĘKU METODĄ REZONNSU I METODĄ SKŁDNI DRGŃ WZJEMNIE PROSTOPDŁYCH 5.. Wiadomości ogólne 5... Pomiar prędkości dźwięku metodą rezonansu Wyznaczanie prędkości dźwięku metodą

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

8. Fale dźwiękowe. 8.1. Rodzaje wrażeń słuchowych.

8. Fale dźwiękowe. 8.1. Rodzaje wrażeń słuchowych. 8. Fale dźwiękowe 8.1. Rodzaje wrażeń słuchowych. Szczególnym rodzajem fal mechanicznych są fale dźwiękowe. Spotykamy się z nimi codziennie kiedy mówimy i kiedy słuchamy. Często umilają nam życie ale i

Bardziej szczegółowo

Nauka o słyszeniu Wykład IV Głośność dźwięku

Nauka o słyszeniu Wykład IV Głośność dźwięku Nauka o słyszeniu Wykład IV Głośność dźwięku Anna Preis, email: apraton@amu.edu.pl 26.10.2016 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Pole elektromagnetyczne. POLE ELEKTROMAGNETYCZNE - pewna przestrzeń, w której obrębie cząstki oddziałują na siebie elektrycznie i magnetycznie.

Pole elektromagnetyczne. POLE ELEKTROMAGNETYCZNE - pewna przestrzeń, w której obrębie cząstki oddziałują na siebie elektrycznie i magnetycznie. Pole elektromagnetyczne POLE ELEKTROMAGNETYCZNE - pewna przestrzeń, w której obrębie cząstki oddziałują na siebie elektrycznie i magnetycznie. INDUKCJA ELEKTROMAGNETYCZNA zjawisko powstawania siły elektromagnetycznej

Bardziej szczegółowo

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń:

Wymagania edukacyjne Fizyka klasa II gimnazjum. Wymagania na ocenę dostateczną Uczeń: Przedmiotowy system oceniania dla uczniów z opinią PPP z fizyki kl.ii Wymagania edukacyjne Fizyka klasa II gimnazjum 1. Ruch i siły. 11 godz. L.p. Temat lekcji Wymagania na ocenę dopuszczającą 1 Ruch jednostajny

Bardziej szczegółowo

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi

Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Krzysztof Łapsa Wyznaczenie prędkości fal ultradźwiękowych metodami interferencyjnymi Cele ćwiczenia Praktyczne zapoznanie się ze zjawiskiem interferencji fal akustycznych Wyznaczenie prędkości fal ultradźwiękowych

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

1.3. ZASADY PROPAGACJI DŹWIĘKU.

1.3. ZASADY PROPAGACJI DŹWIĘKU. .3. ZASADY PROPAGACJ DŹWĘKU. W ośrodkach jednorodnych nie zaburzonych (np. przez wiatr bądź gradient temperatury) fale dźwiękowe rozchodzą się prostoliniowo. Jednak amplituda tych drgań maleje ze wzrostem

Bardziej szczegółowo

Fale cz. 1. dr inż. Ireneusz Owczarek CMF PŁ 2012/13

Fale cz. 1. dr inż. Ireneusz Owczarek CMF PŁ  2012/13 Fale cz. 1 dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Plan wykładu Spis treści 1. Procesy falowe 1.1. Klasyfikacja fal..............................................

Bardziej szczegółowo

Podstawy fizyki sezon 1 VIII. Ruch falowy

Podstawy fizyki sezon 1 VIII. Ruch falowy Podstawy fizyki sezon 1 VIII. Ruch falowy Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Gdzie szukać fal? W potocznym

Bardziej szczegółowo

Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do

Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej jest mierzone ciśnienie akustyczne

Bardziej szczegółowo

Badanie widma fali akustycznej

Badanie widma fali akustycznej Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 30 III 2009 Nr. ćwiczenia: 122 Temat ćwiczenia: Badanie widma fali akustycznej Nr. studenta:... Nr. albumu: 150875

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Badanie efektu Dopplera metodą fali ultradźwiękowej

Badanie efektu Dopplera metodą fali ultradźwiękowej Badanie efektu Dopplera metodą fali ultradźwiękowej Cele eksperymentu 1. Pomiar zmiany częstotliwości postrzeganej przez obserwatora w spoczynku w funkcji prędkości v źródła fali ultradźwiękowej. 2. Potwierdzenie

Bardziej szczegółowo

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż.

Plan wykładu. Ruch drgajacy. Drgania harmoniczne... Drgania harmoniczne. Oscylator harmoniczny Przykłady zastosowań. dr inż. Plan wykładu Ruch drgajacy 1 Przykłady zastosowań dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 01/13 Drgania wymuszone 3 Drgania zachodzace w tym samym kierunku

Bardziej szczegółowo

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t)

Ψ(x, t) punkt zamocowania liny zmienna t, rozkład zaburzeń w czasie. x (lub t) RUCH FALOWY 1 Fale sejsmiczne Fale morskie Kamerton Interferencja RÓWNANIE FALI Fala rozchodzenie się zaburzeń w ośrodku materialnym lub próżni: fale podłużne i poprzeczne w ciałach stałych, fale podłużne

Bardziej szczegółowo

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014.

Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014. Feynmana wykłady z fizyki. [T.] 1.2, Optyka, termodynamika, fale / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7. Warszawa, 2014 Spis treści Spis rzeczy części 1 tomu I X 26 Optyka: zasada najkrótszego

Bardziej szczegółowo

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY

36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V POZIOM PODSTAWOWY 36P5 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - V Drgania Fale Akustyka Optyka geometryczna POZIOM PODSTAWOWY Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s.

1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 1. Jeśli częstotliwość drgań ciała wynosi 10 Hz, to jego okres jest równy: 20 s, 10 s, 5 s, 0,1 s. 2. Dwie kulki, zawieszone na niciach o jednakowej długości, wychylono o niewielkie kąty tak, jak pokazuje

Bardziej szczegółowo

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum

Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Przedmiotowy system oceniania z fizyki dla klasy III gimnazjum Szczegółowe wymagania na poszczególne stopnie (oceny) 1. Drgania i fale R treści nadprogramowe Stopień dopuszczający Stopień dostateczny Stopień

Bardziej szczegółowo