Nauka o słyszeniu. Wykład III +IV Wysokość+ Głośność dźwięku

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nauka o słyszeniu. Wykład III +IV Wysokość+ Głośność dźwięku"

Transkrypt

1 Nauka o słyszeniu Wykład III +IV Wysokość+ Głośność dźwięku Anna Preis, apraton@amu.edu.pl

2 Plan wykładu - wysokość Wysokość dźwięku-definicja Periodyczność Dźwięk harmoniczny Wysokość dźwięku, z i bez fo JND - dyskryminacja częstotliwościowa Selektywność częstotliwościowa Siła wysokości Zależność wysokości od poziomu dźwięku Wysokość tonalna i chroma

3 Czym jest wysokość? Periodyczością? Harmonicznością? Brakiem dudnień? Wiadomo, że jest cechą wrażenia słuchowego podobnie jak głośność Cecha wrażenia słuchowego ze względu na którą można uporządkować dźwięki od najniższych do najwyższych

4 Wysokość dźwięku Większość muzycznych instrumentów ma wyraźną wysokość związaną z periodycznością dźwięku

5 Ta sama periodyczność inny skład widmowy

6 Opis prezentacji dźwiękowej Cook 12 Prezentowane będą impulsu tonalne dla tonów o następujących częstotliwościach: 13.5, 27.5, 55, 110, 220, 440, 880,1760,3520 Dla: 4 okresów 10 okresów 25 okresów

7 Periodyczność Liczba cykli zależy od częstotliwości Ile cykli musi być aby to wrażenie było wyraźne- zależy od częstotliwości Przykład muzyczny Cook nr 12 Sama periodyczność nie wystarczy aby usłyszeć wysokość dźwięku!!

8 Dodawanie tonów- dźwięk harmoniczny Widmo częstotliwościowe

9 Natura dźwięku muzycznego

10 Opis prezentacji dźwiękowej Prezentowane będą dwa przykłady dodawania harmonicznych do tonu o częstotliwości podstawowej: Dzwon: 251, 501, 603 i 750, 1005, 2083, 2421 i 2721, pozostałe harmoniczne Gitara: 251, 2h, 3h, 4h, 5h i 6h, 7h i 8h, 9h+10h+11h, pozostałe harmoniczne

11 Dodawanie tonów- dźwięk harmoniczny i nieharmoniczny F0=251 Hz 5 i 6F0 251 Hz 1506 Hz 2F0 502 Hz 7 i 8 F0 501 Hz 2083 Hz 3F0 9, 10 i 11 F0 603, 750 Hz 2421, 2721 Hz 4F0 pozostałe 1005 Hz pozostałe Widmo dźwięku gitary Widmo dźwięku dzwonu

12 Opis prezentacji dźwiękowej Cook 11 Prezentowany będzie proces dodawania kolejnych 12 harmonicznych dźwięku, tonów o jednakowych amplitudach Dla częstotliwości podstawowej fo=55 Hz Dla częstotliwości podstawowej fo=440 Hz

13 Wysokość i składowe harmoniczne Muzyczne dźwięki mają wiele harmonicznych, które są Cook nr 11 (te same amplitudy dla 55 i 440 Hz) wielokrotnościami podstawowej Jednak do usłyszenia wysokości związanej z podstawową jej fizyczna obecność w widmie nie jest potrzebna Wystarczą 3 kolejne harmoniczne aby wysłyszeć wysokość związaną z nieobecną podstawową

14 Opis prezentacji dźwiękowej Cook 13 Prezentowane będą dźwięki o częstotliwości podstawowej 55 i 440 Hz w następującej sekwencji: 12 kolejnych harmonicznych o amplitudach odpowiednio:1.2, 1.1, 1.0, 0.9, 0.8, 0.7, , 0.4, 0.3, 0.2, kolejnych harmonicznych o amplitudach odpowiednio: 1.2, 1.0, 0.8, 0.6, 0.4, harmonicznych o amplitudach: 0.4, 0.8, 1.2, 1.2, 0.8, 0.4

15 Wysokość Jak słyszymy dla niskich 55 Hz i wysokich częstotliwości 440 Hz-Cook nr harmonicznych 6 harmonicznych 7-12 harmonicznych

16 Efekt brakującej podstawowej W przypadku (b) i (c) fizycznie nie występuje składowa podstawowa o częstotliwości f= 400Hz a wysokość dźwięku słyszymy taką samą w tych trzech przypadkach. Dlaczego??

17 Nieparzyste harmoniczne Cook nr 15 słuchamy dźwięk z 12 harmonicznymi a później z 6 nieparzystymi Jaka jest wysokość?

18 Opis prezentacji dźwiękowej Cook 15 Prezentowane będą w parach dźwięki: wszystkie harmoniczne nieparzyste harmoniczne Dla następujących częstotliwości: 880, 440, 220,110, 55, 27.5

19 Nieparzyste harmoniczne

20 Terhardt 1972 (17 FAS) Fo=120 Hz 33 składowe, filtr od 300 Hz 28 składowych

21 Terhardt 1972 (18FAS) Przykład mowy :po zastosowaniu filtru 300Hz -4000Hz

22 Przykład z dźwiękiem w którym występują spectral pitches 600:300,200,150,120,100,85.7, : 400, 266.7, 200, : 500, 333, 250, 200, : 600, 400, 300, 240, 200,..

23 Dyskryminacja częstotliwościowa JND- słuchamy jeden sygnał po drugim, w różnych chwilach czasowych Wielkość JND zależy od metody modulacyjne progi (FMDL) i bez modulacji (DLF) Wyznaczamy w ten sposób próg różnicowy

24 Wysokość i JND Ton o f= 500 Hz jest modulowany częstotliwościowo 100, 30, 10, 3, 1 Hz Ton o f= 5000Hz jest modulowany częstotliwościowo 100, 30, 10, 3, i 1 Hz

25

26 Selektywność słuchowa Kiedy dwa dźwięki słyszymy oddzielnie?

27

28 Opis prezentacji dźwiękowej Ton o f=1000 Hz i f=1000 Hz Ton o f=1000 Hz i f=1001 Hz dudnienia Ton o f=1000 Hz i f=1004 Hz dudnienia Ton o f=1000 Hz i f=1020 Hz siła fluktuacji Ton o f=1000 Hz i f=1070 Hz chropowatość Ton o f=1000 Hz i f=1414 Hz dwa tony osobno

29 Two Tones, Different Hearing Events Sinuston 1 khz und Hz Schwebung Fluktuation, R-Rauhigkeit Rauhigkeit Zweiton Komplex Schwankung (Rumbling, Kollern)

30 Wewnątrz filtru słuchowego/wstęgi krytycznej? Dudnienia Chropowatość Siła fluktuacji

31

32 Opis prezentacji f f B f 1 f 2 f2 2 f 1 f 1 f f 2

33 Dudnienia Hz Hz Hz fb=10 Hz f=225 Hz fb=10 Hz f=445 Hz fb=10 Hz f=3525hz

34 Chropowatość Hz Hz Hz

35 Opis prezentacji dźwiękowej Prezentowanych będzie 11 sygnałów o tej samej głośności i tej samej wysokości ale o różnej sile wysokości. Każdy sygnał będzie powtórzony trzy razy

36 trzy powtórzenia Siła wysokości

37 Opis prezentacji dźwiękowej Trzy tony będą prezentowane częstotliwościach: 200 Hz 50 db i 200 Hz 75 db - niższy 1000 Hz 50 db i 1000 Hz 75 db - niższy 6000 Hz 50 db i 6000 Hz 75 db - wyższy

38 Jak wysokość zależy od poziomu 15FAS 200 Hz, 1000Hz niższa wysokość 6000Hz - wyższa wysokość 50 db -75dB Każda para powtórzona 3 razy

39 Opis prezentacji Prezentowane będą dźwięki w których zmieniać się będzie tylko tzw. tonalna wysokość na przykładach: szumu bez zmiany chromy wszystkie instrumenty smyczkowe bez zmiany chromy wszystkie tony sinusoidalne bez zmiany chromy jeszcze jeden przykład z szumem

40 Cook nr 51

41 Opis prezentacji Prezentowane będą dwie melodie, które możemy rozpoznać ze względu na taka samą chromę przy róznej tonalnej wysokości: wysokości umieszczone w przypadkowych oktawach wysokości umieszczone w sąsiednich oktawach wysokości umieszczone we właściwych miejscach

42 Chroma

43 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność dźwięku, poziom głośnościdefinicje Krzywe jednakowej głośności JND Perspektywa słuchowa

44 Absolutna czułość słuchu Zakres częstotliwości Hz 10^(-11) cm -5000Hz

45 Próg słyszenia

46 Metoda Bekesego wyznaczania progu słyszenia

47

48 Filtrowanie krzywą A i krzywą C (db (A) i db (C) Krzywa korekcyjna A (mimo swojej niedoskonałości) jest najpowszechniej stosowana do przerabiania wskazań miernika poziomu dźwięku na ucho ludzkie. Krzywa ta jest odwróceniem krzywej równej głośności dla 40 db. Użycie tej krzywej powoduje, że miernik staje się mniej czuły na duże i małe częstotliwości. Pomiary poziomu ciśnienia dźwięku ważonego krzywą 48 A wyrażamy w db (A).

49 Krzywa korekcyjna C jest liniowa w dużym zakresie częstotliwości i może być stosowana do pomiarów dźwięków o dużych poziomach wyniki pomiarów wyrażamy w db(c). Istnieje też krzywa korekcyjna B rzadko używana, o charakterystyce pomiędzy krzywą A a krzywą C. 49

50 Jeśli używany jest filtr A (krzywa korekcyjna A) poziom ciśnienia dźwięku ważony tą krzywą wyrażany jest w db (A). Tak ważony poziom nie odpowiada głośności, ponieważ filtr A w bardzo niedoskonały sposób imituje działanie ucha ludzkiego. W celu określenia głośności dźwięku należy odwołać się do pewnych wyidealizowanych krzywych krzywych izofonicznych. 50

51 Opis prezentacji Prezentowane będą dwie serie tonów: pierwsza seria o takich samych amplitudach, druga seria o do dopasowanych ze względu na głośność dla następujących częstotliwości: 55, 82.5, 110, 165, 220, 330, 440, 660, 880, 1320, 1760, 2640, 3520, 5280 Hz Cook 16

52 Dźwięki o równych poziomach i różnych częstotliwościach nie są jednakowo głośne Wynika to z nierównej czułości ucha ludzkiego na różne częstotliwości. Ucho jest najbardziej czułe w zakresie 1-4 khz. Znacznie mniej czułe jest dla częstotliwości spoza tego zakresu. Mierniki poziomu dźwięku wyposażone są w filtry, których charakterystyka częstotliwościowa jest zbliżona do charakterystyki ucha. Ton f=1000hz, dźwięk: 500, 1000, 1500, 2000, 2500, 3000, dźwięk: 500, 1100, 1773, 2173, 2717, 3141 Cook 18 52

53 Dlaczego używamy decybeli? Duży zakres dynamiczny dźwięków odbieranych przez ludzkie ucho (od 20 mikropaskali do ok. 2 paskali), a więc duży zakres liczb jakim należałoby się posługiwać jest bardzo niewygodny. Dlatego notacja decybelowa operująca mniejszymi liczbami jest wygodniejsza. 53

54 Głośność dźwięku Cecha wrażenia słuchowego ze względu na którą można uporządkować dźwięki od najcichszych do najgłośniejszych

55 Krzywa korekcyjna A i C 55

56 Głośność, fony, sony Fon jest jednostką poziomu głośności, związaną z decybelami przez psychofizyczne pomiary reakcji ucha człowieka. Dla częstotliwości 1 khz odczyty w fonach i db są z definicji takie same. W eksperymencie zadaniem słuchaczy było dostrojenie głośności sygnału, do głośności tonu o częstotliwości 1 khz i danym poziomie ciśnienia akustycznego. Badany sygnał ma tyle fonów ile decybeli ma równogłośny z nim ton 1 khz. W fonach wyrażamy poziom głośności. 56

57 Żeby przejść z decybeli na fony należy posłużyć się krzywymi równej głośności. Są one zależne od poziomu ciśnienia akustycznego (dla większych poziomów stają się bardziej płaskie). 57

58 Głośność, fony, sony Poziom głośności wyrażony w fonach określa z jakim tonem 1kHz jest równogłośny badany dźwięk, nie określa natomiast ile razy jeden dźwięk jest głośniejszy od drugiego. Do tego celu służy skala sonów, określamy w niej głośność (poziom głośności określany jest w fonach!). 58

59 Głośność, fony, sony 1 son (głośności) jest równy 40 fonom (czyli jest równogłośny z tonem 1 khz o poziomie ciśnienia akustycznego 40 db). Dźwięk ma 2 sony jeśli jest 2 razy głośniejszy od dźwięku o głośności 1 sona. Dźwięk ma 0.5 sona jeśli jest 2 razy cichszy od dźwięku o głośności 1 sona. 59

60 Opis prezentacji Prezentowane są pary tonów o tej samej częstotliwości ale o różnej amplitudzie wyrażonej w decybelach. Jaka para wywołuje wrażenie podwojenia głośności - x db + 5 db - x db + 8 db - x db + 10 db

61 Głośność i skala db Dla tonu 1000 Hz i SPL=40dB głośność 1son, wzrost o 10 db podwojenie głośności Oryginał + 5dB, +8dB, +10dB

62 Doświadczalnie stwierdzono, że wzrost poziomu ciśnienia akustycznego o 10 db w przybliżeniu odpowiada podwojeniu głośności. Można zatem powiązać poziom głośności (w fonach) z głośnością (w sonach) : 0.5 sona = 30 fonów, 1 son = 40 fonów, 2 sony = 50 fonów, 4 sony = 60 fonów, etc. 62

63 Głośność i czas trwania Pary tonów o f=3000hz i różnych czasach trwania -1000ms 1000ms -1000ms 300ms -1000ms 100ms -1000ms 30ms -1000ms 10ms -1000ms 3ms Każda para jest prezentowana dwa razy

64 Głośność i JND Ton o f=1000 Hz i SPL=75 db modulowany amplitudowo z f=4hz Zmiany poziomu: 0.2, 0.5, 1 i 3 db Biały szum SPL=60 db modulowany amplitudowo z f=4 Hz Zmiany poziomu: 0.5, 1, 3 db

65 Słuchowa perspektywa Jak słuchamy orkiestry z 20 m i 300 to jej wymiar się redukuje tak jak w widzeniu Słuchowa perspektywa składa się z ważnych akustycznych i psychoakustycznych wymiarów

66 Głośność

67 pp=1/128 ff Głośność

68 Widmowe przesłanki

69 Przesłanki dotyczące odległości i odbić Cook 78 a. Jak w radiu b. Zmniejszony wysiłek c. Stosunek r/d stały ciszej w ustalony punkcie d. Tak samo jak w a tylko r/d wzrasta dźwięk dochodzi z dalszej odległości

70 Słuchowa perspektywa Ocena głośności źródła dźwięku zależy od: widmowe przesłanki odległościowe przesłanki (odbicia) gdy nie ma przesłanek widmowychodległościowe wystarczą do oceny głośności źródła dźwięku gdy nie ma odbić intensywność jest jedyną przesłanką do oceny głośności

Nauka o słyszeniu Wykład IV Głośność dźwięku

Nauka o słyszeniu Wykład IV Głośność dźwięku Nauka o słyszeniu Wykład IV Głośność dźwięku Anna Preis, email: apraton@amu.edu.pl 26.10.2016 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność

Bardziej szczegółowo

Nauka o słyszeniu Wykład IV Wysokość dźwięku

Nauka o słyszeniu Wykład IV Wysokość dźwięku Nauka o słyszeniu Wykład IV Wysokość dźwięku Anna Preis, email: apraton@amu.edu.pl 8.11.2017 Plan wykładu Wysokość dźwięku-definicja Periodyczność Dźwięk harmoniczny Wysokość dźwięku, z i bez fo JND -

Bardziej szczegółowo

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,

Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości

Bardziej szczegółowo

Wysokość dźwięku w muzyce. III rok Reżyserii Dźwięku Anna Preis AM_5_2014

Wysokość dźwięku w muzyce. III rok Reżyserii Dźwięku Anna Preis AM_5_2014 Wysokość dźwięku w muzyce III rok Reżyserii Dźwięku Anna Preis 3.04.2014 AM_5_2014 Czym jest wysokość? Skalą jasności? Periodycznością? Harmonicznością? Brakiem dudnień? Wiadomo, że jest wrażeniem dźwiękowym

Bardziej szczegółowo

Przygotowała: prof. Bożena Kostek

Przygotowała: prof. Bożena Kostek Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej

Bardziej szczegółowo

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,

Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis, Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje

Bardziej szczegółowo

Słuchanie w przestrzeni i czasie

Słuchanie w przestrzeni i czasie Słuchanie w przestrzeni i czasie III rok Reżyserii Dźwięku Anna Preis 7.12.2015 AM_8_sluch_w_czas_przestrz Wzrok słuch Wzrok dominuje nad słuchem przykład - kino domowe Myślimy o świecie tak jak go widzimy

Bardziej szczegółowo

Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do

Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej jest mierzone ciśnienie akustyczne

Bardziej szczegółowo

Nauka o słyszeniu Wykład I Słyszenie akustyczne

Nauka o słyszeniu Wykład I Słyszenie akustyczne Nauka o słyszeniu Wykład I Słyszenie akustyczne Anna Preis, email: apraton@amu.edu.pl 5. 10. 2016 Co Państwo słyszą? Demonstracja Słyszenie a słuchanie Słyszenie naturalne Plan wykładu Percepcja słuchowa

Bardziej szczegółowo

Mapa akustyczna Torunia

Mapa akustyczna Torunia Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe

Bardziej szczegółowo

Słuchanie w czasie i przestrzeni. III rok Reżyserii Dźwięku Anna Preis AM_6_2014

Słuchanie w czasie i przestrzeni. III rok Reżyserii Dźwięku Anna Preis AM_6_2014 Słuchanie w czasie i przestrzeni III rok Reżyserii Dźwięku Anna Preis 10.04.14 AM_6_2014 Słuchanie świata? Wzrok dominuje nad słuchem przykład - kino domowe Myślimy o świecie tak jak go widzimy a niewidomi??

Bardziej szczegółowo

Percepcja dźwięku. Narząd słuchu

Percepcja dźwięku. Narząd słuchu Percepcja dźwięku Narząd słuchu 1 Narząd słuchu Ucho zewnętrzne składa się z małżowiny i kanału usznego, zakończone błoną bębenkową, doprowadza dźwięk do ucha środkowego poprzez drgania błony bębenkowej;

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Przyjmij w zadaniach prędkość

Bardziej szczegółowo

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne

Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali

Bardziej szczegółowo

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski

Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się

Bardziej szczegółowo

Drgania i fale sprężyste. 1/24

Drgania i fale sprężyste. 1/24 Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz

Bardziej szczegółowo

Dlaczego skrzypce nie są trąbką? o barwie dźwięku i dźwięków postrzeganiu

Dlaczego skrzypce nie są trąbką? o barwie dźwięku i dźwięków postrzeganiu Dlaczego skrzypce nie są trąbką? o barwie dźwięku i dźwięków postrzeganiu Jan Felcyn, Instytut Akustyki UAM, 2016 O czym będziemy mówić? Czym jest barwa? Jak brzmią różne instrumenty? Co decyduje o barwie?

Bardziej szczegółowo

Dźwięk. Cechy dźwięku, natura światła

Dźwięk. Cechy dźwięku, natura światła Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO Cel ćwiczenia Celem ćwiczenia jest poznanie metodyki pomiarów audiometrycznych, a w szczególności

Bardziej szczegółowo

LABORATORIUM AUDIOLOGII I AUDIOMETRII

LABORATORIUM AUDIOLOGII I AUDIOMETRII LABORATORIUM AUDIOLOGII I AUDIOMETRII ĆWICZENIE NR 4 MASKOWANIE TONU TONEM Cel ćwiczenia Wyznaczenie przesunięcia progu słyszenia przy maskowaniu równoczesnym tonu tonem. Układ pomiarowy I. Zadania laboratoryjne:

Bardziej szczegółowo

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ

Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)

Bardziej szczegółowo

Laboratorium Elektronicznej Aparatury Medycznej I

Laboratorium Elektronicznej Aparatury Medycznej I Laboratorium Elektronicznej Aparatury Medycznej I Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Katedra Inżynierii Biomedycznej Dr inż. Wioletta Nowak ĆWICZENIE NR 1 POMIARY AUDIOMETRYCZNE

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 14 Pomiar zniekształceń nielinearnych głośnika

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 14 Pomiar zniekształceń nielinearnych głośnika LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 14 Pomiar zniekształceń nielinearnych głośnika 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych metod pomiaru zniekształceń nielinearnych, przyrządów

Bardziej szczegółowo

2. Zasady słyszenia przestrzennego. 2.1. Postrzeganie dźwięku przez człowieka.

2. Zasady słyszenia przestrzennego. 2.1. Postrzeganie dźwięku przez człowieka. 2. Zasady słyszenia przestrzennego. 2.1. Postrzeganie dźwięku przez człowieka. Zdolność do przyjmowania duŝej ilości wraŝeń słuchowych w krótkim czasie wynika z psychofizjologicznych własności człowieka.

Bardziej szczegółowo

Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie

Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie Metodyka i system dopasowania protez w oparciu o badanie percepcji sygnału mowy w szumie opracowanie dr inż. Piotr Suchomski Koncepcja metody korekcji ubytku Dopasowanie szerokiej dynamiki odbieranego

Bardziej szczegółowo

System diagnostyki słuchu

System diagnostyki słuchu System diagnostyki słuchu Politechnika Gdańska ul. Narutowicza 11/12 80-233 Gdańsk www.pg.gda.pl 1. Wprowadzenie Celem opracowanej aplikacji jest umożliwienie przeprowadzenie podstawowych testów słuchu,

Bardziej szczegółowo

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.

2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. 2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. pokaz ruchu falowego 2. opis ruchu falowego słowami, wykresami, równaniami

Bardziej szczegółowo

Nauka o słyszeniu Wykład II System słuchowy

Nauka o słyszeniu Wykład II System słuchowy Nauka o słyszeniu Wykład II System słuchowy Anna Preis, email: apraton@amu.edu.pl 12.10.2016 neuroreille.com lub cochlea.eu Plan wykładu Anatomia i funkcja systemu słuchowego Ucho zewnętrzne Ucho środkowe

Bardziej szczegółowo

Słyszenie w środowisku

Słyszenie w środowisku Słyszenie w środowisku Słyszenie źródeł dźwięków Anna Preis, email: apraton@amu.edu.pl 31.05.2017 PLAN WYSTĄPIENIA Badanie słyszenia dźwięku środowiskowego w podejściu: klasycznym ekologicznym kognitywistycznym

Bardziej szczegółowo

Akustyka Muzyczna. Wykład IV Analiza scen słuchowych. Anna Preis, AM_4_2014

Akustyka Muzyczna. Wykład IV Analiza scen słuchowych. Anna Preis, AM_4_2014 Akustyka Muzyczna Wykład IV Analiza scen słuchowych Anna Preis, email: apraton@amu.edu.pl 3.11.2014 AM_4_2014 Identyfikacja źródeł dźwięków Zbiór dźwięków w środowisku scena słuchowa Identyfikacja źródeł

Bardziej szczegółowo

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1

Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1 RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie

Bardziej szczegółowo

Podstawy biofizyki zmysłu słuchu. Badanie progu pobudliwości ucha ludzkiego.

Podstawy biofizyki zmysłu słuchu. Badanie progu pobudliwości ucha ludzkiego. M5 Podstawy biofizyki zmysłu słuchu. Badanie progu pobudliwości ucha ludzkiego. Zagadnienia: Drgania mechaniczne. Fala mechaniczna powstawanie, mechanizm rozchodzenia się, własności, równanie fali harmonicznej.

Bardziej szczegółowo

P 13 HAŁAS NA STANOWISKU PRACY

P 13 HAŁAS NA STANOWISKU PRACY PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w Nowym Sączu P 13 HAŁAS NA STANOWISKU PRACY Spis treści 1. Pojęcia i parametry dźwięku 2. Wartości dopuszczalne hałasu 3. Pomiary hałasu 4. Wnioski Zespół ćwiczeniowy:

Bardziej szczegółowo

Terminologia, definicje, jednostki miar stosowane w badaniach audiologicznych. Jacek Sokołowski

Terminologia, definicje, jednostki miar stosowane w badaniach audiologicznych. Jacek Sokołowski Terminologia, definicje, jednostki miar stosowane w badaniach audiologicznych Jacek Sokołowski Akustyka Akustyka jest to nauka o powstawaniu dźwięków i ich rozchodzeniu się w ośrodkach materialnych, zwykle

Bardziej szczegółowo

l a b o r a t o r i u m a k u s t y k i

l a b o r a t o r i u m a k u s t y k i Wrocław kwiecień 21 4SOUND Parametry akustyczne 4SOUND ul Klecińska 123 54-413 Wrocław info@4soundpl www4soundpl l a b o r a t o r i u m a k u s t y k i tel +48 53 127 733 lub 71 79 85 746 NIP: 811-155-48-81

Bardziej szczegółowo

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ

Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe

Bardziej szczegółowo

POMIARY AUDIOMETRYCZNE

POMIARY AUDIOMETRYCZNE Laboratorium Elektronicznej Aparatury Medycznej Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Katedra Inżynierii Biomedycznej ĆWICZENIE NR 9 POMIARY AUDIOMETRYCZNE Cel ćwiczenia Zapoznanie

Bardziej szczegółowo

Ochrona przeciwdźwiękowa (wykład ) Józef Kotus

Ochrona przeciwdźwiękowa (wykład ) Józef Kotus Ochrona przeciwdźwiękowa (wykład 2 06.03.2008) Józef Kotus Wpływ hałasu na jakośćŝycia i zdrowie człowieka Straty związane z występowaniem hałasu Hałasem nazywa się wszystkie niepoŝądane, nieprzyjemne,

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Fal podłużna. Polaryzacja fali podłużnej

Fal podłużna. Polaryzacja fali podłużnej Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale

Bardziej szczegółowo

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK

Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk Dźwięk jest to fala akustyczna rozchodząca się w ośrodku sprężystym lub wrażenie słuchowe wywołane tą falą. Fale akustyczne to fale głosowe, czyli falowe

Bardziej szczegółowo

Fizyka skal muzycznych

Fizyka skal muzycznych Kazimierz Przewłocki Fizyka skal muzycznych Fala sprężysta rozchodząca się w gazie, cieczy lub ciele stałym przenosi pewną energię. W miarę oddalania się od źródła, natężenie zaburzenia sprężystego w ośrodku

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 2. Podstawowe rodzaje sygnałów stosowanych w akustyce, ich miary i analiza widmowa

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 2. Podstawowe rodzaje sygnałów stosowanych w akustyce, ich miary i analiza widmowa LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 2 Podstawowe rodzaje sygnałów stosowanych w akustyce, ich miary i analiza widmowa Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych rodzajów sygnałów stosowanych

Bardziej szczegółowo

1.Stosunek sygnału do szumu kwantyzacji dla n-bitowego kwantyzatora jest równy w przybliżeniu:

1.Stosunek sygnału do szumu kwantyzacji dla n-bitowego kwantyzatora jest równy w przybliżeniu: 1.Stosunek sygnału do szumu kwantyzacji dla n-bitowego kwantyzatora jest równy w przybliżeniu: a) SNR = 2n [db] b) SNR = 6n [db] c) SNR = 10n [db] d) SNR = 12n [db 2. Prędkość dźwięku w gazach: a) Jest

Bardziej szczegółowo

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?

1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka

Bardziej szczegółowo

Barwa dźwięku muzycznego i metody jej skalowania. II rok reżyserii dźwięku AM_2_2016

Barwa dźwięku muzycznego i metody jej skalowania. II rok reżyserii dźwięku AM_2_2016 Barwa dźwięku muzycznego i metody jej skalowania II rok reżyserii dźwięku 8.10.16 AM_2_2016 MIT wykłady Plan wykładu Natura dźwięku muzycznego Dwie definicje barwy dźwięku Widmo i przebieg czasowy Trzy

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia

Bardziej szczegółowo

Generowanie sygnałów na DSP

Generowanie sygnałów na DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą

Bardziej szczegółowo

Systemy multimedialne. Instrukcja 5 Edytor audio Audacity

Systemy multimedialne. Instrukcja 5 Edytor audio Audacity Systemy multimedialne Instrukcja 5 Edytor audio Audacity Do sprawozdania w formacie pdf należy dołączyc pliki dźwiękowe tylko z podpunktu 17. Sprawdzić poprawność podłączenia słuchawek oraz mikrofonu (Start->Programy->Akcesoria->Rozrywka->Rejestrator

Bardziej szczegółowo

ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH

ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH Politechnika Wrocławska Instytut Telekomunikacji i Akustyki SYSTEMY NAGŁOŚNIENIA TEMAT SEMINARIUM: ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH prowadzący: mgr. P. Kozłowski

Bardziej szczegółowo

Podstawy elektroniki i akustyki

Podstawy elektroniki i akustyki 1 Podstawy elektroniki i akustyki Dr Klaudiusz Majchrowski Wykład dla Elektroradiologii 2 Elementy akustyki Wykład 2 3 Fala dźwiękowa Fala dźwiękowa to forma transmisji energii przez ośrodek sprężysty.

Bardziej szczegółowo

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -

Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db - Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są

Bardziej szczegółowo

Mowa w protetyce słuchu

Mowa w protetyce słuchu Technologie mowy 12.01.2015 Agenda Wstęp Skąd ten temat? Mowa w badaniach słuchu Mowa w dopasowaniu aparatów słuchowych metody, ocena Systemy wspomagające zrozumienie mowy w cyfrowych aparatach słuchowych

Bardziej szczegółowo

LABORATORIUM AKUSTYKI SŁUCHU

LABORATORIUM AKUSTYKI SŁUCHU LABORATORIUM AKUSTYKI SŁUCHU Temat ćwiczenia: ZAPAMIĘTYWANIE WYSOKOŚCI DŹWIĘKU. 1. Cel ćwiczenia. Celem ćwiczenia jest poznanie zdolności człowieka do zapamiętywania wysokości dźwięków oraz zapoznanie

Bardziej szczegółowo

WYZNACZANIE FILTRÓW SŁUCHOWYCH METODĄ SZUMU PRZESTRAJANEGO. Karolina Kluk, kkluk@amu.edu.pl

WYZNACZANIE FILTRÓW SŁUCHOWYCH METODĄ SZUMU PRZESTRAJANEGO. Karolina Kluk, kkluk@amu.edu.pl WYZNACZANIE FILTRÓW SŁUCHOWYCH METODĄ SZUMU PRZESTRAJANEGO Fast method for auditory filter shapes measurements Karolina Kluk, kkluk@amu.edu.pl Instytut Akustyki, Uniwersytet im. Adama Mickiewicza Institute

Bardziej szczegółowo

Efekt Lombarda. Czym jest efekt Lombarda?

Efekt Lombarda. Czym jest efekt Lombarda? Efekt Lombarda Na podstawie raportu Priscilli Lau z roku 2008 na Uniwersytecie w Berkeley wykonanego na podstawie badań w laboratorium Fonologii. Autor prezentacji: Antoni Lis Efekt Lombarda Czym jest

Bardziej szczegółowo

Akustyka muzyczna. Wykład 1 Wprowadzenie. O muzyce. Elementy muzyki. O dźwięku. dr inż. Przemysław Plaskota

Akustyka muzyczna. Wykład 1 Wprowadzenie. O muzyce. Elementy muzyki. O dźwięku. dr inż. Przemysław Plaskota Akustyka muzyczna Wykład 1 Wprowadzenie. O muzyce. Elementy muzyki. O dźwięku. dr inż. Przemysław Plaskota Informacje wstępne Przemysław Plaskota godziny konsultacji miejsce konsultacji p. 604 bud. C-5

Bardziej szczegółowo

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.

Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie. Ćwiczenie T - 6 Fale dźwiękowe i zjawisko dudnień I. Cel ćwiczenia: rejestracja i analiza fal dźwiękowych oraz zjawiska dudnienia. II. Przyrządy: interfejs CoachLab II +, czujnik dźwięku, dwa kamertony

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Rozdział I Podstawowe informacje o dźwięku Rozdział II Poziom głośności dźwięku a decybele Rozdział III Ucho ludzkie i odbieranie dźwięków

Rozdział I Podstawowe informacje o dźwięku Rozdział II Poziom głośności dźwięku a decybele Rozdział III Ucho ludzkie i odbieranie dźwięków Spis Treści Wstęp Rozdział I Podstawowe informacje o dźwięku Prosta sinusoida Opis fali sinusoidalnej Rozchodzenie się dźwięku Taniec cząsteczek Rozchodzenie się fali dźwiękowej Dźwięk w przestrzeni swobodnej

Bardziej szczegółowo

Fale w przyrodzie - dźwięk

Fale w przyrodzie - dźwięk Fale w przyrodzie - dźwięk Fala Fala porusza się do przodu. Co dzieje się z cząsteczkami? Nie poruszają się razem z falą. Wykonują drganie i pozostają na swoich miejscach Ruch falowy nie powoduje transportu

Bardziej szczegółowo

Aktywne tłumienie drgań

Aktywne tłumienie drgań Aktywne tłumienie drgań wykład dla specjalności Komputerowe Systemy Sterowania dla kierunku Automatyka i Robotyka Dr inŝ. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu Podstawowe

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.

Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera. W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu

Bardziej szczegółowo

Hałas maszyn i środowisko pracy

Hałas maszyn i środowisko pracy Krzywe korekcyjne, charakterystyki dynamiczne Hałas maszyn i środowisko pracy Czułość ucha ludzkiego jest największa dla dźwięków o częstotliwościach z przedziału od 800Hz do 4000Hz. Ze względu na to,

Bardziej szczegółowo

Słyszenie a słuchanie: klasyczne, ekologiczne i kognitywne podejście do słyszenia. III rok reżyserii dźwięku AM_1_2015

Słyszenie a słuchanie: klasyczne, ekologiczne i kognitywne podejście do słyszenia. III rok reżyserii dźwięku AM_1_2015 Słyszenie a słuchanie: klasyczne, ekologiczne i kognitywne podejście do słyszenia III rok reżyserii dźwięku 5.10.15 AM_1_2015 Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie

Bardziej szczegółowo

P r o b l e m b a d a w c z y n r 6 6

P r o b l e m b a d a w c z y n r 6 6 Załącznik 1 P r o b l e m b a d a w c z y n r 6 6 POLITECHNIKA LUBELSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA ZAKŁAD INŻYNIERII ŚRODOWISKA WEWNĘTRZNEGO 20-618 LUBLIN, NADBYSTRZYCKA 40B OPRACOWANIE POD TYTUŁEM:

Bardziej szczegółowo

Neurobiologia na lekcjach informatyki? Percepcja barw i dźwięków oraz metody ich przetwarzania Dr Grzegorz Osiński Zakład Dydaktyki Fizyki IF UMK

Neurobiologia na lekcjach informatyki? Percepcja barw i dźwięków oraz metody ich przetwarzania Dr Grzegorz Osiński Zakład Dydaktyki Fizyki IF UMK Neurobiologia na lekcjach informatyki? Percepcja barw i dźwięków oraz metody ich przetwarzania Dr Grzegorz Osiński Zakład Dydaktyki Fizyki IF UMK IV Konferencja Informatyka w Edukacji 31.01 01.02. 2007

Bardziej szczegółowo

Metody badań słuchu. Badania elektrofizjologiczne w diagnostyce audiologicznej. Zastosowanie metod obiektywnych. dzieci. osoby dorosłe 2015-09-14

Metody badań słuchu. Badania elektrofizjologiczne w diagnostyce audiologicznej. Zastosowanie metod obiektywnych. dzieci. osoby dorosłe 2015-09-14 NSTYTUT FZJOLOG PATOLOG SŁUCHU WARSZAWA Krzysztof Kochanek Badania elektrofizjologiczne w diagnostyce audiologicznej Metody badań słuchu Metody psychoakustyczne behawioralne audiometryczne audiometria

Bardziej szczegółowo

TEORIA WYTWARZANIA DŹWIĘKÓW

TEORIA WYTWARZANIA DŹWIĘKÓW 1 TEORIA WYTWARZANIA DŹWIĘKÓW MOWY, FORMANTY, MODELOWANIE WYTWARZANIA DŹWIĘKÓW MOWY. mgr inż. Kuba Łopatka PLAN WYKŁADU 1. Teoria wytwarzania dźwięków mowy Ogólna teoria wytwarzania dźwięków mowy Ton krtaniowy

Bardziej szczegółowo

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania

Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania

Bardziej szczegółowo

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski

Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V

Bardziej szczegółowo

Dane techniczne CIC CT IT 113 / / / / / / 55

Dane techniczne CIC CT IT 113 / / / / / / 55 Dane techniczne Sirion TM aparaty wewnątrzuszne CIC CT IT 113 / 40 113 / 40 118 / 55 51 db / 124 (symulator ucha) 40 db / 113 (sprzęgacz 2 ccm) 50 db / 124 (symulator ucha) 40 db / 113 (sprzęgacz 2 ccm)

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

Działania służby medycyny pracy w aspekcie profilaktyki narażenia na hałas w miejscu pracy

Działania służby medycyny pracy w aspekcie profilaktyki narażenia na hałas w miejscu pracy Działania służby medycyny pracy w aspekcie profilaktyki narażenia na hałas w miejscu pracy Katarzyna Skręt Wojewódzki Ośrodek Medycyny Pracy w Rzeszowie Hałas Dźwięk wrażenie słuchowe, spowodowane falą

Bardziej szczegółowo

Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa

Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO

LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem

Bardziej szczegółowo

Kompresja dźwięku w standardzie MPEG-1

Kompresja dźwięku w standardzie MPEG-1 mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy

Bardziej szczegółowo

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr

Bardziej szczegółowo

Dźwięk podstawowe wiadomości technik informatyk

Dźwięk podstawowe wiadomości technik informatyk Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość

Bardziej szczegółowo

Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2

Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2 ??? Wiadomość?? Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2 Plan 1. Cel prezentacji 2. Życie dźwięku Źródło Nośnik Ucho Odruch Podświadomość Interpretacja

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.

SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.

Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. RUCH FALOWY Wyklad 9 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe, mikrofale,

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego: RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2513897 (96) Data i numer zgłoszenia patentu europejskiego: 16.12.2009 09806015.5 (13) (51) T3 Int.Cl. G10K 15/04 (2006.01)

Bardziej szczegółowo

SoundTest-Master Miernik poziomu dźwięku. Instrukcja obsługi

SoundTest-Master Miernik poziomu dźwięku. Instrukcja obsługi SoundTest-Master Miernik poziomu dźwięku Instrukcja obsługi rew. 28.02.2014 Spis treści 1. Zasilanie.... 2 2. Włącz/Wyłącz.... 2 3. Nazewnictwo elementów urządzenia i ich funkcje.... 3 4. Ustawienie daty/godziny...

Bardziej szczegółowo

Dane techniczne. Pure binax TM. Dane techniczne. 7bx. Słuchawka S 56 db / 119 db SPL (symulator ucha) 45 db / 108 db SPL (sprzęgacz 2 ccm)

Dane techniczne. Pure binax TM. Dane techniczne. 7bx. Słuchawka S 56 db / 119 db SPL (symulator ucha) 45 db / 108 db SPL (sprzęgacz 2 ccm) Dane techniczne Pure binax TM 7bx 5bx 3bx Słuchawka S 56 db / 119 (symulator ucha) 45 db / 108 (sprzęgacz 2 ccm) Słuchawka M db / 129 (symulator ucha) 60 db / 119 (sprzęgacz 2 ccm) Słuchawka P db / 134

Bardziej szczegółowo

Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych

Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych XII Konferencja PLOUG Zakopane Październik 006 Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych Krzysztof Tyburek, Waldemar Cudny Uniwersytet Kazimierza Wielkiego, Instytut

Bardziej szczegółowo

VÉRITÉ rzeczywistość ma znaczenie Vérité jest najnowszym, zaawansowanym technologicznie aparatem słuchowym Bernafon przeznaczonym dla najbardziej wymagających Użytkowników. Nieprzypadkowa jest nazwa tego

Bardziej szczegółowo

Komputerowe modelowanie ludzkiego słuchu w kompresji dźwięku

Komputerowe modelowanie ludzkiego słuchu w kompresji dźwięku Matematyka i informatyka może i trudne, ale nie nudne Wykład 6 Komputerowe modelowanie ludzkiego słuchu w kompresji dźwięku prelegent: mgr inż Krzysztof Popowski 23 wrzesień 2009 Plan wykładu Podstawowe

Bardziej szczegółowo

Transmisja i rejestracja sygnałów wprowadzenie oraz podstawy percepcji dźwięku i obrazu. Opracował: dr inż. Piotr Suchomski

Transmisja i rejestracja sygnałów wprowadzenie oraz podstawy percepcji dźwięku i obrazu. Opracował: dr inż. Piotr Suchomski Transmisja i rejestracja sygnałów wprowadzenie oraz podstawy percepcji dźwięku i obrazu Opracował: dr inż. Piotr Suchomski Kontakt Katedra Systemów Multimedialnych Wydział ETI dr inż. Piotr M. Suchomski,

Bardziej szczegółowo

Dźwięk dźwiękowi nierówny, czyli o tym jak brzmi XXI wiek

Dźwięk dźwiękowi nierówny, czyli o tym jak brzmi XXI wiek IX Studenckie Spotkania Analityczne 13-14.03.2008 Dźwięk dźwiękowi nierówny, czyli o tym jak brzmi XXI wiek Justyna Słomka Plan 1. Co to jest dźwięk? 2. Pojęcie syntezy dźwięku 3. Cel syntezowania dźwięków

Bardziej szczegółowo

Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 11. Fale mechaniczne.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające

Bardziej szczegółowo

P 6 G2. z rożkiem z filtrem CECHY PRODUKTU FUNKCJE AUTOMATYCZNE AKCESORIA CECHY PODSTAWOWE OPCJE KABLE I ADAPTERY DO PROGRAMOWANIA CECHY TECHNICZNE

P 6 G2. z rożkiem z filtrem CECHY PRODUKTU FUNKCJE AUTOMATYCZNE AKCESORIA CECHY PODSTAWOWE OPCJE KABLE I ADAPTERY DO PROGRAMOWANIA CECHY TECHNICZNE z rożkiem z filtrem CECHY PRODUKTU Aparat zauszny typu Power z baterią 13 Do otwartego oraz zamkniętego dopasowania CECHY PODSTAWOWE Formowany rożek Komora baterii, jako włącznik/wyłącznik Przycisk programowany

Bardziej szczegółowo

Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa

Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które

Bardziej szczegółowo

8. Fale dźwiękowe. 8.1. Rodzaje wrażeń słuchowych.

8. Fale dźwiękowe. 8.1. Rodzaje wrażeń słuchowych. 8. Fale dźwiękowe 8.1. Rodzaje wrażeń słuchowych. Szczególnym rodzajem fal mechanicznych są fale dźwiękowe. Spotykamy się z nimi codziennie kiedy mówimy i kiedy słuchamy. Często umilają nam życie ale i

Bardziej szczegółowo

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy

Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy Systemy i Sieci Telekomunikacyjne laboratorium Modulacja amplitudy 1. Cel ćwiczenia: Celem części podstawowej ćwiczenia jest zbudowanie w środowisku GnuRadio kompletnego, funkcjonalnego odbiornika AM.

Bardziej szczegółowo