Nauka o słyszeniu. Wykład III +IV Wysokość+ Głośność dźwięku
|
|
- Julia Niewiadomska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Nauka o słyszeniu Wykład III +IV Wysokość+ Głośność dźwięku Anna Preis, apraton@amu.edu.pl
2 Plan wykładu - wysokość Wysokość dźwięku-definicja Periodyczność Dźwięk harmoniczny Wysokość dźwięku, z i bez fo JND - dyskryminacja częstotliwościowa Selektywność częstotliwościowa Siła wysokości Zależność wysokości od poziomu dźwięku Wysokość tonalna i chroma
3 Czym jest wysokość? Periodyczością? Harmonicznością? Brakiem dudnień? Wiadomo, że jest cechą wrażenia słuchowego podobnie jak głośność Cecha wrażenia słuchowego ze względu na którą można uporządkować dźwięki od najniższych do najwyższych
4 Wysokość dźwięku Większość muzycznych instrumentów ma wyraźną wysokość związaną z periodycznością dźwięku
5 Ta sama periodyczność inny skład widmowy
6 Opis prezentacji dźwiękowej Cook 12 Prezentowane będą impulsu tonalne dla tonów o następujących częstotliwościach: 13.5, 27.5, 55, 110, 220, 440, 880,1760,3520 Dla: 4 okresów 10 okresów 25 okresów
7 Periodyczność Liczba cykli zależy od częstotliwości Ile cykli musi być aby to wrażenie było wyraźne- zależy od częstotliwości Przykład muzyczny Cook nr 12 Sama periodyczność nie wystarczy aby usłyszeć wysokość dźwięku!!
8 Dodawanie tonów- dźwięk harmoniczny Widmo częstotliwościowe
9 Natura dźwięku muzycznego
10 Opis prezentacji dźwiękowej Prezentowane będą dwa przykłady dodawania harmonicznych do tonu o częstotliwości podstawowej: Dzwon: 251, 501, 603 i 750, 1005, 2083, 2421 i 2721, pozostałe harmoniczne Gitara: 251, 2h, 3h, 4h, 5h i 6h, 7h i 8h, 9h+10h+11h, pozostałe harmoniczne
11 Dodawanie tonów- dźwięk harmoniczny i nieharmoniczny F0=251 Hz 5 i 6F0 251 Hz 1506 Hz 2F0 502 Hz 7 i 8 F0 501 Hz 2083 Hz 3F0 9, 10 i 11 F0 603, 750 Hz 2421, 2721 Hz 4F0 pozostałe 1005 Hz pozostałe Widmo dźwięku gitary Widmo dźwięku dzwonu
12 Opis prezentacji dźwiękowej Cook 11 Prezentowany będzie proces dodawania kolejnych 12 harmonicznych dźwięku, tonów o jednakowych amplitudach Dla częstotliwości podstawowej fo=55 Hz Dla częstotliwości podstawowej fo=440 Hz
13 Wysokość i składowe harmoniczne Muzyczne dźwięki mają wiele harmonicznych, które są Cook nr 11 (te same amplitudy dla 55 i 440 Hz) wielokrotnościami podstawowej Jednak do usłyszenia wysokości związanej z podstawową jej fizyczna obecność w widmie nie jest potrzebna Wystarczą 3 kolejne harmoniczne aby wysłyszeć wysokość związaną z nieobecną podstawową
14 Opis prezentacji dźwiękowej Cook 13 Prezentowane będą dźwięki o częstotliwości podstawowej 55 i 440 Hz w następującej sekwencji: 12 kolejnych harmonicznych o amplitudach odpowiednio:1.2, 1.1, 1.0, 0.9, 0.8, 0.7, , 0.4, 0.3, 0.2, kolejnych harmonicznych o amplitudach odpowiednio: 1.2, 1.0, 0.8, 0.6, 0.4, harmonicznych o amplitudach: 0.4, 0.8, 1.2, 1.2, 0.8, 0.4
15 Wysokość Jak słyszymy dla niskich 55 Hz i wysokich częstotliwości 440 Hz-Cook nr harmonicznych 6 harmonicznych 7-12 harmonicznych
16 Efekt brakującej podstawowej W przypadku (b) i (c) fizycznie nie występuje składowa podstawowa o częstotliwości f= 400Hz a wysokość dźwięku słyszymy taką samą w tych trzech przypadkach. Dlaczego??
17 Nieparzyste harmoniczne Cook nr 15 słuchamy dźwięk z 12 harmonicznymi a później z 6 nieparzystymi Jaka jest wysokość?
18 Opis prezentacji dźwiękowej Cook 15 Prezentowane będą w parach dźwięki: wszystkie harmoniczne nieparzyste harmoniczne Dla następujących częstotliwości: 880, 440, 220,110, 55, 27.5
19 Nieparzyste harmoniczne
20 Terhardt 1972 (17 FAS) Fo=120 Hz 33 składowe, filtr od 300 Hz 28 składowych
21 Terhardt 1972 (18FAS) Przykład mowy :po zastosowaniu filtru 300Hz -4000Hz
22 Przykład z dźwiękiem w którym występują spectral pitches 600:300,200,150,120,100,85.7, : 400, 266.7, 200, : 500, 333, 250, 200, : 600, 400, 300, 240, 200,..
23 Dyskryminacja częstotliwościowa JND- słuchamy jeden sygnał po drugim, w różnych chwilach czasowych Wielkość JND zależy od metody modulacyjne progi (FMDL) i bez modulacji (DLF) Wyznaczamy w ten sposób próg różnicowy
24 Wysokość i JND Ton o f= 500 Hz jest modulowany częstotliwościowo 100, 30, 10, 3, 1 Hz Ton o f= 5000Hz jest modulowany częstotliwościowo 100, 30, 10, 3, i 1 Hz
25
26 Selektywność słuchowa Kiedy dwa dźwięki słyszymy oddzielnie?
27
28 Opis prezentacji dźwiękowej Ton o f=1000 Hz i f=1000 Hz Ton o f=1000 Hz i f=1001 Hz dudnienia Ton o f=1000 Hz i f=1004 Hz dudnienia Ton o f=1000 Hz i f=1020 Hz siła fluktuacji Ton o f=1000 Hz i f=1070 Hz chropowatość Ton o f=1000 Hz i f=1414 Hz dwa tony osobno
29 Two Tones, Different Hearing Events Sinuston 1 khz und Hz Schwebung Fluktuation, R-Rauhigkeit Rauhigkeit Zweiton Komplex Schwankung (Rumbling, Kollern)
30 Wewnątrz filtru słuchowego/wstęgi krytycznej? Dudnienia Chropowatość Siła fluktuacji
31
32 Opis prezentacji f f B f 1 f 2 f2 2 f 1 f 1 f f 2
33 Dudnienia Hz Hz Hz fb=10 Hz f=225 Hz fb=10 Hz f=445 Hz fb=10 Hz f=3525hz
34 Chropowatość Hz Hz Hz
35 Opis prezentacji dźwiękowej Prezentowanych będzie 11 sygnałów o tej samej głośności i tej samej wysokości ale o różnej sile wysokości. Każdy sygnał będzie powtórzony trzy razy
36 trzy powtórzenia Siła wysokości
37 Opis prezentacji dźwiękowej Trzy tony będą prezentowane częstotliwościach: 200 Hz 50 db i 200 Hz 75 db - niższy 1000 Hz 50 db i 1000 Hz 75 db - niższy 6000 Hz 50 db i 6000 Hz 75 db - wyższy
38 Jak wysokość zależy od poziomu 15FAS 200 Hz, 1000Hz niższa wysokość 6000Hz - wyższa wysokość 50 db -75dB Każda para powtórzona 3 razy
39 Opis prezentacji Prezentowane będą dźwięki w których zmieniać się będzie tylko tzw. tonalna wysokość na przykładach: szumu bez zmiany chromy wszystkie instrumenty smyczkowe bez zmiany chromy wszystkie tony sinusoidalne bez zmiany chromy jeszcze jeden przykład z szumem
40 Cook nr 51
41 Opis prezentacji Prezentowane będą dwie melodie, które możemy rozpoznać ze względu na taka samą chromę przy róznej tonalnej wysokości: wysokości umieszczone w przypadkowych oktawach wysokości umieszczone w sąsiednich oktawach wysokości umieszczone we właściwych miejscach
42 Chroma
43 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność dźwięku, poziom głośnościdefinicje Krzywe jednakowej głośności JND Perspektywa słuchowa
44 Absolutna czułość słuchu Zakres częstotliwości Hz 10^(-11) cm -5000Hz
45 Próg słyszenia
46 Metoda Bekesego wyznaczania progu słyszenia
47
48 Filtrowanie krzywą A i krzywą C (db (A) i db (C) Krzywa korekcyjna A (mimo swojej niedoskonałości) jest najpowszechniej stosowana do przerabiania wskazań miernika poziomu dźwięku na ucho ludzkie. Krzywa ta jest odwróceniem krzywej równej głośności dla 40 db. Użycie tej krzywej powoduje, że miernik staje się mniej czuły na duże i małe częstotliwości. Pomiary poziomu ciśnienia dźwięku ważonego krzywą 48 A wyrażamy w db (A).
49 Krzywa korekcyjna C jest liniowa w dużym zakresie częstotliwości i może być stosowana do pomiarów dźwięków o dużych poziomach wyniki pomiarów wyrażamy w db(c). Istnieje też krzywa korekcyjna B rzadko używana, o charakterystyce pomiędzy krzywą A a krzywą C. 49
50 Jeśli używany jest filtr A (krzywa korekcyjna A) poziom ciśnienia dźwięku ważony tą krzywą wyrażany jest w db (A). Tak ważony poziom nie odpowiada głośności, ponieważ filtr A w bardzo niedoskonały sposób imituje działanie ucha ludzkiego. W celu określenia głośności dźwięku należy odwołać się do pewnych wyidealizowanych krzywych krzywych izofonicznych. 50
51 Opis prezentacji Prezentowane będą dwie serie tonów: pierwsza seria o takich samych amplitudach, druga seria o do dopasowanych ze względu na głośność dla następujących częstotliwości: 55, 82.5, 110, 165, 220, 330, 440, 660, 880, 1320, 1760, 2640, 3520, 5280 Hz Cook 16
52 Dźwięki o równych poziomach i różnych częstotliwościach nie są jednakowo głośne Wynika to z nierównej czułości ucha ludzkiego na różne częstotliwości. Ucho jest najbardziej czułe w zakresie 1-4 khz. Znacznie mniej czułe jest dla częstotliwości spoza tego zakresu. Mierniki poziomu dźwięku wyposażone są w filtry, których charakterystyka częstotliwościowa jest zbliżona do charakterystyki ucha. Ton f=1000hz, dźwięk: 500, 1000, 1500, 2000, 2500, 3000, dźwięk: 500, 1100, 1773, 2173, 2717, 3141 Cook 18 52
53 Dlaczego używamy decybeli? Duży zakres dynamiczny dźwięków odbieranych przez ludzkie ucho (od 20 mikropaskali do ok. 2 paskali), a więc duży zakres liczb jakim należałoby się posługiwać jest bardzo niewygodny. Dlatego notacja decybelowa operująca mniejszymi liczbami jest wygodniejsza. 53
54 Głośność dźwięku Cecha wrażenia słuchowego ze względu na którą można uporządkować dźwięki od najcichszych do najgłośniejszych
55 Krzywa korekcyjna A i C 55
56 Głośność, fony, sony Fon jest jednostką poziomu głośności, związaną z decybelami przez psychofizyczne pomiary reakcji ucha człowieka. Dla częstotliwości 1 khz odczyty w fonach i db są z definicji takie same. W eksperymencie zadaniem słuchaczy było dostrojenie głośności sygnału, do głośności tonu o częstotliwości 1 khz i danym poziomie ciśnienia akustycznego. Badany sygnał ma tyle fonów ile decybeli ma równogłośny z nim ton 1 khz. W fonach wyrażamy poziom głośności. 56
57 Żeby przejść z decybeli na fony należy posłużyć się krzywymi równej głośności. Są one zależne od poziomu ciśnienia akustycznego (dla większych poziomów stają się bardziej płaskie). 57
58 Głośność, fony, sony Poziom głośności wyrażony w fonach określa z jakim tonem 1kHz jest równogłośny badany dźwięk, nie określa natomiast ile razy jeden dźwięk jest głośniejszy od drugiego. Do tego celu służy skala sonów, określamy w niej głośność (poziom głośności określany jest w fonach!). 58
59 Głośność, fony, sony 1 son (głośności) jest równy 40 fonom (czyli jest równogłośny z tonem 1 khz o poziomie ciśnienia akustycznego 40 db). Dźwięk ma 2 sony jeśli jest 2 razy głośniejszy od dźwięku o głośności 1 sona. Dźwięk ma 0.5 sona jeśli jest 2 razy cichszy od dźwięku o głośności 1 sona. 59
60 Opis prezentacji Prezentowane są pary tonów o tej samej częstotliwości ale o różnej amplitudzie wyrażonej w decybelach. Jaka para wywołuje wrażenie podwojenia głośności - x db + 5 db - x db + 8 db - x db + 10 db
61 Głośność i skala db Dla tonu 1000 Hz i SPL=40dB głośność 1son, wzrost o 10 db podwojenie głośności Oryginał + 5dB, +8dB, +10dB
62 Doświadczalnie stwierdzono, że wzrost poziomu ciśnienia akustycznego o 10 db w przybliżeniu odpowiada podwojeniu głośności. Można zatem powiązać poziom głośności (w fonach) z głośnością (w sonach) : 0.5 sona = 30 fonów, 1 son = 40 fonów, 2 sony = 50 fonów, 4 sony = 60 fonów, etc. 62
63 Głośność i czas trwania Pary tonów o f=3000hz i różnych czasach trwania -1000ms 1000ms -1000ms 300ms -1000ms 100ms -1000ms 30ms -1000ms 10ms -1000ms 3ms Każda para jest prezentowana dwa razy
64 Głośność i JND Ton o f=1000 Hz i SPL=75 db modulowany amplitudowo z f=4hz Zmiany poziomu: 0.2, 0.5, 1 i 3 db Biały szum SPL=60 db modulowany amplitudowo z f=4 Hz Zmiany poziomu: 0.5, 1, 3 db
65 Słuchowa perspektywa Jak słuchamy orkiestry z 20 m i 300 to jej wymiar się redukuje tak jak w widzeniu Słuchowa perspektywa składa się z ważnych akustycznych i psychoakustycznych wymiarów
66 Głośność
67 pp=1/128 ff Głośność
68 Widmowe przesłanki
69 Przesłanki dotyczące odległości i odbić Cook 78 a. Jak w radiu b. Zmniejszony wysiłek c. Stosunek r/d stały ciszej w ustalony punkcie d. Tak samo jak w a tylko r/d wzrasta dźwięk dochodzi z dalszej odległości
70 Słuchowa perspektywa Ocena głośności źródła dźwięku zależy od: widmowe przesłanki odległościowe przesłanki (odbicia) gdy nie ma przesłanek widmowychodległościowe wystarczą do oceny głośności źródła dźwięku gdy nie ma odbić intensywność jest jedyną przesłanką do oceny głośności
Nauka o słyszeniu Wykład IV Głośność dźwięku
Nauka o słyszeniu Wykład IV Głośność dźwięku Anna Preis, email: apraton@amu.edu.pl 26.10.2016 Plan wykładu - głośność Próg słyszalności Poziom ciśnienia akustycznego SPL a poziom dźwięku SPL (A) Głośność
Nauka o słyszeniu Wykład IV Wysokość dźwięku
Nauka o słyszeniu Wykład IV Wysokość dźwięku Anna Preis, email: apraton@amu.edu.pl 8.11.2017 Plan wykładu Wysokość dźwięku-definicja Periodyczność Dźwięk harmoniczny Wysokość dźwięku, z i bez fo JND -
Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa,
Poziom dźwięku Decybel (db) jest jednostką poziomu; Ponieważ zakres zmian ciśnień fal akustycznych odbieranych przez ucho ludzkie mieści się w przedziale od 2*10-5 Pa do 10 2 Pa, co obejmuje 8 rzędów wielkości
Wysokość dźwięku w muzyce. III rok Reżyserii Dźwięku Anna Preis AM_5_2014
Wysokość dźwięku w muzyce III rok Reżyserii Dźwięku Anna Preis 3.04.2014 AM_5_2014 Czym jest wysokość? Skalą jasności? Periodycznością? Harmonicznością? Brakiem dudnień? Wiadomo, że jest wrażeniem dźwiękowym
Przygotowała: prof. Bożena Kostek
Przygotowała: prof. Bożena Kostek Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej
Nauka o słyszeniu. Wykład I Dźwięk. Anna Preis,
Nauka o słyszeniu Wykład I Dźwięk Anna Preis, email: apraton@amu.edu.pl 7. 10. 2015 Co słyszycie? Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie Natura dźwięku dwie definicje
Słuchanie w przestrzeni i czasie
Słuchanie w przestrzeni i czasie III rok Reżyserii Dźwięku Anna Preis 7.12.2015 AM_8_sluch_w_czas_przestrz Wzrok słuch Wzrok dominuje nad słuchem przykład - kino domowe Myślimy o świecie tak jak go widzimy
Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do
Ze względu na dużą rozpiętość mierzonych wartości ciśnienia (zakres ciśnień akustycznych obejmuje blisko siedem rzędów wartości: od 2x10 5 Pa do ponad 10 Pa) wygodniej jest mierzone ciśnienie akustyczne
Nauka o słyszeniu Wykład I Słyszenie akustyczne
Nauka o słyszeniu Wykład I Słyszenie akustyczne Anna Preis, email: apraton@amu.edu.pl 5. 10. 2016 Co Państwo słyszą? Demonstracja Słyszenie a słuchanie Słyszenie naturalne Plan wykładu Percepcja słuchowa
Mapa akustyczna Torunia
Mapa akustyczna Torunia Informacje podstawowe Mapa akustyczna Słownik terminów Kontakt Przejdź do mapy» Słownik terminów specjalistycznych Hałas Hałasem nazywamy wszystkie niepożądane, nieprzyjemne, dokuczliwe
Słuchanie w czasie i przestrzeni. III rok Reżyserii Dźwięku Anna Preis AM_6_2014
Słuchanie w czasie i przestrzeni III rok Reżyserii Dźwięku Anna Preis 10.04.14 AM_6_2014 Słuchanie świata? Wzrok dominuje nad słuchem przykład - kino domowe Myślimy o świecie tak jak go widzimy a niewidomi??
Percepcja dźwięku. Narząd słuchu
Percepcja dźwięku Narząd słuchu 1 Narząd słuchu Ucho zewnętrzne składa się z małżowiny i kanału usznego, zakończone błoną bębenkową, doprowadza dźwięk do ucha środkowego poprzez drgania błony bębenkowej;
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 32 AKUSTYKA Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania TEST JEDNOKROTNEGO WYBORU Przyjmij w zadaniach prędkość
Fale akustyczne. Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość. ciśnienie atmosferyczne
Fale akustyczne Jako lokalne zaburzenie gęstości lub ciśnienia w ośrodkach posiadających gęstość i sprężystość ciśnienie atmosferyczne Fale podłużne poprzeczne długość fali λ = v T T = 1/ f okres fali
Fale dźwiękowe. Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski
Fale dźwiękowe Jak człowiek ocenia natężenie bodźców słuchowych? dr inż. Romuald Kędzierski Podstawowe cechy dźwięku Ze wzrostem częstotliwości rośnie wysokość dźwięku Dźwięk o barwie złożonej składa się
Drgania i fale sprężyste. 1/24
Drgania i fale sprężyste. 1/24 Ruch drgający Każdy z tych ruchów: - Zachodzi tam i z powrotem po tym samym torze. - Powtarza się w równych odstępach czasu. 2/24 Ruch drgający W rzeczywistości: - Jest coraz
Dlaczego skrzypce nie są trąbką? o barwie dźwięku i dźwięków postrzeganiu
Dlaczego skrzypce nie są trąbką? o barwie dźwięku i dźwięków postrzeganiu Jan Felcyn, Instytut Akustyki UAM, 2016 O czym będziemy mówić? Czym jest barwa? Jak brzmią różne instrumenty? Co decyduje o barwie?
Dźwięk. Cechy dźwięku, natura światła
Dźwięk. Cechy dźwięku, natura światła Fale dźwiękowe (akustyczne) - podłużne fale mechaniczne rozchodzące się w ciałach stałych, cieczach i gazach. Zakres słyszalnej częstotliwości f: 20 Hz < f < 20 000
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO Cel ćwiczenia Celem ćwiczenia jest poznanie metodyki pomiarów audiometrycznych, a w szczególności
LABORATORIUM AUDIOLOGII I AUDIOMETRII
LABORATORIUM AUDIOLOGII I AUDIOMETRII ĆWICZENIE NR 4 MASKOWANIE TONU TONEM Cel ćwiczenia Wyznaczenie przesunięcia progu słyszenia przy maskowaniu równoczesnym tonu tonem. Układ pomiarowy I. Zadania laboratoryjne:
Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ
Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)
Laboratorium Elektronicznej Aparatury Medycznej I
Laboratorium Elektronicznej Aparatury Medycznej I Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Katedra Inżynierii Biomedycznej Dr inż. Wioletta Nowak ĆWICZENIE NR 1 POMIARY AUDIOMETRYCZNE
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 14 Pomiar zniekształceń nielinearnych głośnika
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 14 Pomiar zniekształceń nielinearnych głośnika 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych metod pomiaru zniekształceń nielinearnych, przyrządów
2. Zasady słyszenia przestrzennego. 2.1. Postrzeganie dźwięku przez człowieka.
2. Zasady słyszenia przestrzennego. 2.1. Postrzeganie dźwięku przez człowieka. Zdolność do przyjmowania duŝej ilości wraŝeń słuchowych w krótkim czasie wynika z psychofizjologicznych własności człowieka.
Metodyka i system dopasowania protez słuchu w oparciu o badanie percepcji sygnału mowy w szumie
Metodyka i system dopasowania protez w oparciu o badanie percepcji sygnału mowy w szumie opracowanie dr inż. Piotr Suchomski Koncepcja metody korekcji ubytku Dopasowanie szerokiej dynamiki odbieranego
System diagnostyki słuchu
System diagnostyki słuchu Politechnika Gdańska ul. Narutowicza 11/12 80-233 Gdańsk www.pg.gda.pl 1. Wprowadzenie Celem opracowanej aplikacji jest umożliwienie przeprowadzenie podstawowych testów słuchu,
2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1.
2LO 6 lu L 92, 93, 94 T3.5.2 Matematyczny opis zjawisk falowych cd. Na poprzednich lekcjach już było mamy to umieć 1. Ruch falowy 1. pokaz ruchu falowego 2. opis ruchu falowego słowami, wykresami, równaniami
Nauka o słyszeniu Wykład II System słuchowy
Nauka o słyszeniu Wykład II System słuchowy Anna Preis, email: apraton@amu.edu.pl 12.10.2016 neuroreille.com lub cochlea.eu Plan wykładu Anatomia i funkcja systemu słuchowego Ucho zewnętrzne Ucho środkowe
Słyszenie w środowisku
Słyszenie w środowisku Słyszenie źródeł dźwięków Anna Preis, email: apraton@amu.edu.pl 31.05.2017 PLAN WYSTĄPIENIA Badanie słyszenia dźwięku środowiskowego w podejściu: klasycznym ekologicznym kognitywistycznym
Akustyka Muzyczna. Wykład IV Analiza scen słuchowych. Anna Preis, AM_4_2014
Akustyka Muzyczna Wykład IV Analiza scen słuchowych Anna Preis, email: apraton@amu.edu.pl 3.11.2014 AM_4_2014 Identyfikacja źródeł dźwięków Zbiór dźwięków w środowisku scena słuchowa Identyfikacja źródeł
Wydział EAIiE Kierunek: Elektrotechnika. Wykład 12: Fale. Przedmiot: Fizyka. RUCH FALOWY -cd. Wykład /2009, zima 1
RUCH FALOWY -cd Wykład 9 2008/2009, zima 1 Energia i moc (a) dla y=y m, E k =0, E p =0 (b) dla y=0 drgający element liny uzyskuje maksymalną energię kinetyczną i potencjalną sprężystości (jest maksymalnie
Podstawy biofizyki zmysłu słuchu. Badanie progu pobudliwości ucha ludzkiego.
M5 Podstawy biofizyki zmysłu słuchu. Badanie progu pobudliwości ucha ludzkiego. Zagadnienia: Drgania mechaniczne. Fala mechaniczna powstawanie, mechanizm rozchodzenia się, własności, równanie fali harmonicznej.
P 13 HAŁAS NA STANOWISKU PRACY
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA w Nowym Sączu P 13 HAŁAS NA STANOWISKU PRACY Spis treści 1. Pojęcia i parametry dźwięku 2. Wartości dopuszczalne hałasu 3. Pomiary hałasu 4. Wnioski Zespół ćwiczeniowy:
Terminologia, definicje, jednostki miar stosowane w badaniach audiologicznych. Jacek Sokołowski
Terminologia, definicje, jednostki miar stosowane w badaniach audiologicznych Jacek Sokołowski Akustyka Akustyka jest to nauka o powstawaniu dźwięków i ich rozchodzeniu się w ośrodkach materialnych, zwykle
l a b o r a t o r i u m a k u s t y k i
Wrocław kwiecień 21 4SOUND Parametry akustyczne 4SOUND ul Klecińska 123 54-413 Wrocław info@4soundpl www4soundpl l a b o r a t o r i u m a k u s t y k i tel +48 53 127 733 lub 71 79 85 746 NIP: 811-155-48-81
Ruch falowy. Parametry: Długość Częstotliwość Prędkość. Częstotliwość i częstość kołowa MICHAŁ MARZANTOWICZ
Ruch falowy Parametry: Długość Częstotliwość Prędkość Częstotliwość i częstość kołowa Opis ruchu falowego Równanie fali biegnącej (w dodatnim kierunku osi x) v x t f 2 2 2 2 2 x v t Równanie różniczkowe
POMIARY AUDIOMETRYCZNE
Laboratorium Elektronicznej Aparatury Medycznej Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Katedra Inżynierii Biomedycznej ĆWICZENIE NR 9 POMIARY AUDIOMETRYCZNE Cel ćwiczenia Zapoznanie
Ochrona przeciwdźwiękowa (wykład ) Józef Kotus
Ochrona przeciwdźwiękowa (wykład 2 06.03.2008) Józef Kotus Wpływ hałasu na jakośćŝycia i zdrowie człowieka Straty związane z występowaniem hałasu Hałasem nazywa się wszystkie niepoŝądane, nieprzyjemne,
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Fal podłużna. Polaryzacja fali podłużnej
Fala dźwiękowa Podział fal Fala oznacza energię wypełniającą pewien obszar w przestrzeni. Wyróżniamy trzy główne rodzaje fal: Mechaniczne najbardziej znane, typowe przykłady to fale na wodzie czy fale
Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK
Dźwięk, gitara PREZENTACJA ADAM DZIEŻYK Dźwięk Dźwięk jest to fala akustyczna rozchodząca się w ośrodku sprężystym lub wrażenie słuchowe wywołane tą falą. Fale akustyczne to fale głosowe, czyli falowe
Fizyka skal muzycznych
Kazimierz Przewłocki Fizyka skal muzycznych Fala sprężysta rozchodząca się w gazie, cieczy lub ciele stałym przenosi pewną energię. W miarę oddalania się od źródła, natężenie zaburzenia sprężystego w ośrodku
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 2. Podstawowe rodzaje sygnałów stosowanych w akustyce, ich miary i analiza widmowa
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 2 Podstawowe rodzaje sygnałów stosowanych w akustyce, ich miary i analiza widmowa Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych rodzajów sygnałów stosowanych
1.Stosunek sygnału do szumu kwantyzacji dla n-bitowego kwantyzatora jest równy w przybliżeniu:
1.Stosunek sygnału do szumu kwantyzacji dla n-bitowego kwantyzatora jest równy w przybliżeniu: a) SNR = 2n [db] b) SNR = 6n [db] c) SNR = 10n [db] d) SNR = 12n [db 2. Prędkość dźwięku w gazach: a) Jest
1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom?
1. Po upływie jakiego czasu ciało drgające ruchem harmonicznym o okresie T = 8 s przebędzie drogę równą: a) całej amplitudzie b) czterem amplitudom? 2. Ciało wykonujące drgania harmoniczne o amplitudzie
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera
Jucatan, Mexico, February 005 W-10 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka
Barwa dźwięku muzycznego i metody jej skalowania. II rok reżyserii dźwięku AM_2_2016
Barwa dźwięku muzycznego i metody jej skalowania II rok reżyserii dźwięku 8.10.16 AM_2_2016 MIT wykłady Plan wykładu Natura dźwięku muzycznego Dwie definicje barwy dźwięku Widmo i przebieg czasowy Trzy
Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. 2 dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Fale sprężyste w gazach przemieszczenie warstwy cząsteczek s( x, t) = sm cos(kx t) zmiana ciśnienia
Generowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
Systemy multimedialne. Instrukcja 5 Edytor audio Audacity
Systemy multimedialne Instrukcja 5 Edytor audio Audacity Do sprawozdania w formacie pdf należy dołączyc pliki dźwiękowe tylko z podpunktu 17. Sprawdzić poprawność podłączenia słuchawek oraz mikrofonu (Start->Programy->Akcesoria->Rozrywka->Rejestrator
ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH
Politechnika Wrocławska Instytut Telekomunikacji i Akustyki SYSTEMY NAGŁOŚNIENIA TEMAT SEMINARIUM: ZASTOSOWANIE PSYCHOAKUSTYKI ORAZ AKUSTYKI ŚRODOWISKA W SYSTEMACH NAGŁOŚNIAJĄCYCH prowadzący: mgr. P. Kozłowski
Podstawy elektroniki i akustyki
1 Podstawy elektroniki i akustyki Dr Klaudiusz Majchrowski Wykład dla Elektroradiologii 2 Elementy akustyki Wykład 2 3 Fala dźwiękowa Fala dźwiękowa to forma transmisji energii przez ośrodek sprężysty.
Przykładowe poziomy natężenia dźwięków występujących w środowisku człowieka: 0 db - próg słyszalności 10 db - szept 35 db - cicha muzyka 45 db -
Czym jest dźwięk? wrażeniem słuchowym, spowodowanym falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne dla człowieka, zawarte są
Mowa w protetyce słuchu
Technologie mowy 12.01.2015 Agenda Wstęp Skąd ten temat? Mowa w badaniach słuchu Mowa w dopasowaniu aparatów słuchowych metody, ocena Systemy wspomagające zrozumienie mowy w cyfrowych aparatach słuchowych
LABORATORIUM AKUSTYKI SŁUCHU
LABORATORIUM AKUSTYKI SŁUCHU Temat ćwiczenia: ZAPAMIĘTYWANIE WYSOKOŚCI DŹWIĘKU. 1. Cel ćwiczenia. Celem ćwiczenia jest poznanie zdolności człowieka do zapamiętywania wysokości dźwięków oraz zapoznanie
WYZNACZANIE FILTRÓW SŁUCHOWYCH METODĄ SZUMU PRZESTRAJANEGO. Karolina Kluk, kkluk@amu.edu.pl
WYZNACZANIE FILTRÓW SŁUCHOWYCH METODĄ SZUMU PRZESTRAJANEGO Fast method for auditory filter shapes measurements Karolina Kluk, kkluk@amu.edu.pl Instytut Akustyki, Uniwersytet im. Adama Mickiewicza Institute
Efekt Lombarda. Czym jest efekt Lombarda?
Efekt Lombarda Na podstawie raportu Priscilli Lau z roku 2008 na Uniwersytecie w Berkeley wykonanego na podstawie badań w laboratorium Fonologii. Autor prezentacji: Antoni Lis Efekt Lombarda Czym jest
Akustyka muzyczna. Wykład 1 Wprowadzenie. O muzyce. Elementy muzyki. O dźwięku. dr inż. Przemysław Plaskota
Akustyka muzyczna Wykład 1 Wprowadzenie. O muzyce. Elementy muzyki. O dźwięku. dr inż. Przemysław Plaskota Informacje wstępne Przemysław Plaskota godziny konsultacji miejsce konsultacji p. 604 bud. C-5
Fale dźwiękowe i zjawisko dudnień. IV. Wprowadzenie.
Ćwiczenie T - 6 Fale dźwiękowe i zjawisko dudnień I. Cel ćwiczenia: rejestracja i analiza fal dźwiękowych oraz zjawiska dudnienia. II. Przyrządy: interfejs CoachLab II +, czujnik dźwięku, dwa kamertony
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
Rozdział I Podstawowe informacje o dźwięku Rozdział II Poziom głośności dźwięku a decybele Rozdział III Ucho ludzkie i odbieranie dźwięków
Spis Treści Wstęp Rozdział I Podstawowe informacje o dźwięku Prosta sinusoida Opis fali sinusoidalnej Rozchodzenie się dźwięku Taniec cząsteczek Rozchodzenie się fali dźwiękowej Dźwięk w przestrzeni swobodnej
Fale w przyrodzie - dźwięk
Fale w przyrodzie - dźwięk Fala Fala porusza się do przodu. Co dzieje się z cząsteczkami? Nie poruszają się razem z falą. Wykonują drganie i pozostają na swoich miejscach Ruch falowy nie powoduje transportu
Aktywne tłumienie drgań
Aktywne tłumienie drgań wykład dla specjalności Komputerowe Systemy Sterowania dla kierunku Automatyka i Robotyka Dr inŝ. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu Podstawowe
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Podstawy Akustyki. Drgania normalne a fale stojące Składanie fal harmonicznych: Fale akustyczne w powietrzu Efekt Dopplera.
W-1 (Jaroszewicz) 14 slajdów Podstawy Akustyki Drgania normalne a fale stojące Składanie fal harmonicznych: prędkość grupowa, dyspersja fal, superpozycja Fouriera, paczka falowa Fale akustyczne w powietrzu
Hałas maszyn i środowisko pracy
Krzywe korekcyjne, charakterystyki dynamiczne Hałas maszyn i środowisko pracy Czułość ucha ludzkiego jest największa dla dźwięków o częstotliwościach z przedziału od 800Hz do 4000Hz. Ze względu na to,
Słyszenie a słuchanie: klasyczne, ekologiczne i kognitywne podejście do słyszenia. III rok reżyserii dźwięku AM_1_2015
Słyszenie a słuchanie: klasyczne, ekologiczne i kognitywne podejście do słyszenia III rok reżyserii dźwięku 5.10.15 AM_1_2015 Plan wykładu Demonstracja Percepcja słuchowa i wzrokowa Słyszenie a słuchanie
P r o b l e m b a d a w c z y n r 6 6
Załącznik 1 P r o b l e m b a d a w c z y n r 6 6 POLITECHNIKA LUBELSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA ZAKŁAD INŻYNIERII ŚRODOWISKA WEWNĘTRZNEGO 20-618 LUBLIN, NADBYSTRZYCKA 40B OPRACOWANIE POD TYTUŁEM:
Neurobiologia na lekcjach informatyki? Percepcja barw i dźwięków oraz metody ich przetwarzania Dr Grzegorz Osiński Zakład Dydaktyki Fizyki IF UMK
Neurobiologia na lekcjach informatyki? Percepcja barw i dźwięków oraz metody ich przetwarzania Dr Grzegorz Osiński Zakład Dydaktyki Fizyki IF UMK IV Konferencja Informatyka w Edukacji 31.01 01.02. 2007
Metody badań słuchu. Badania elektrofizjologiczne w diagnostyce audiologicznej. Zastosowanie metod obiektywnych. dzieci. osoby dorosłe 2015-09-14
NSTYTUT FZJOLOG PATOLOG SŁUCHU WARSZAWA Krzysztof Kochanek Badania elektrofizjologiczne w diagnostyce audiologicznej Metody badań słuchu Metody psychoakustyczne behawioralne audiometryczne audiometria
TEORIA WYTWARZANIA DŹWIĘKÓW
1 TEORIA WYTWARZANIA DŹWIĘKÓW MOWY, FORMANTY, MODELOWANIE WYTWARZANIA DŹWIĘKÓW MOWY. mgr inż. Kuba Łopatka PLAN WYKŁADU 1. Teoria wytwarzania dźwięków mowy Ogólna teoria wytwarzania dźwięków mowy Ton krtaniowy
Kodowanie podpasmowe. Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania
Kodowanie podpasmowe Plan 1. Zasada 2. Filtry cyfrowe 3. Podstawowy algorytm 4. Zastosowania Zasada ogólna Rozkład sygnału źródłowego na części składowe (jak w kodowaniu transformacyjnym) Wada kodowania
Wykład 9: Fale cz. 2. dr inż. Zbigniew Szklarski
Wykład 9: Fale cz. dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Energia i natężenie fali Średnia energia ruchu drgającego elementu ośrodka o masie m, objętości V
Dane techniczne CIC CT IT 113 / / / / / / 55
Dane techniczne Sirion TM aparaty wewnątrzuszne CIC CT IT 113 / 40 113 / 40 118 / 55 51 db / 124 (symulator ucha) 40 db / 113 (sprzęgacz 2 ccm) 50 db / 124 (symulator ucha) 40 db / 113 (sprzęgacz 2 ccm)
Własności dynamiczne przetworników pierwszego rzędu
1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości
Działania służby medycyny pracy w aspekcie profilaktyki narażenia na hałas w miejscu pracy
Działania służby medycyny pracy w aspekcie profilaktyki narażenia na hałas w miejscu pracy Katarzyna Skręt Wojewódzki Ośrodek Medycyny Pracy w Rzeszowie Hałas Dźwięk wrażenie słuchowe, spowodowane falą
Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa
Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO
LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR 3 SPRAWDZANIE PARAMETRÓW AUDIOMETRU TONOWEGO. AUDIOMETRIA TONOWA DLA PRZEWODNICTWA POWIETRZNEGO I KOSTNEGO Cel ćwiczenia Ćwiczenie składa się z dwóch części. Celem
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr
Dźwięk podstawowe wiadomości technik informatyk
Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format
Imię i nazwisko ucznia Data... Klasa...
Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Częstotliwość
Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2
??? Wiadomość?? Dźwięk i psychika STEROWANIE UMYSŁEM GRACZA ZA POMOCĄ DRGAŃ POWIETRZA MARCIN KOSZÓW DLA TK GAMES 2 Plan 1. Cel prezentacji 2. Życie dźwięku Źródło Nośnik Ucho Odruch Podświadomość Interpretacja
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM. Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości.
SCENARIUSZ LEKCJI Z FIZYKI DLA KLASY III GIMNAZJUM Temat lekcji: Co wiemy o drganiach i falach mechanicznych powtórzenie wiadomości. Prowadzący: mgr Iwona Rucińska nauczyciel fizyki, INFORMACJE OGÓLNE
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku.
RUCH FALOWY Wyklad 9 1 Fala oscylacje w przestrzeni i w czasie. Zaburzenie, które rozchodzi się w ośrodku. Rodzaje fal: mechaniczne (na wodzie, fale akustyczne) elektromagnetyczne (radiowe, mikrofale,
(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP (96) Data i numer zgłoszenia patentu europejskiego:
RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2513897 (96) Data i numer zgłoszenia patentu europejskiego: 16.12.2009 09806015.5 (13) (51) T3 Int.Cl. G10K 15/04 (2006.01)
SoundTest-Master Miernik poziomu dźwięku. Instrukcja obsługi
SoundTest-Master Miernik poziomu dźwięku Instrukcja obsługi rew. 28.02.2014 Spis treści 1. Zasilanie.... 2 2. Włącz/Wyłącz.... 2 3. Nazewnictwo elementów urządzenia i ich funkcje.... 3 4. Ustawienie daty/godziny...
Dane techniczne. Pure binax TM. Dane techniczne. 7bx. Słuchawka S 56 db / 119 db SPL (symulator ucha) 45 db / 108 db SPL (sprzęgacz 2 ccm)
Dane techniczne Pure binax TM 7bx 5bx 3bx Słuchawka S 56 db / 119 (symulator ucha) 45 db / 108 (sprzęgacz 2 ccm) Słuchawka M db / 129 (symulator ucha) 60 db / 119 (sprzęgacz 2 ccm) Słuchawka P db / 134
Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych
XII Konferencja PLOUG Zakopane Październik 006 Automatyczna klasyfikacja instrumentów szarpanych w multimedialnych bazach danych Krzysztof Tyburek, Waldemar Cudny Uniwersytet Kazimierza Wielkiego, Instytut
VÉRITÉ rzeczywistość ma znaczenie Vérité jest najnowszym, zaawansowanym technologicznie aparatem słuchowym Bernafon przeznaczonym dla najbardziej wymagających Użytkowników. Nieprzypadkowa jest nazwa tego
Komputerowe modelowanie ludzkiego słuchu w kompresji dźwięku
Matematyka i informatyka może i trudne, ale nie nudne Wykład 6 Komputerowe modelowanie ludzkiego słuchu w kompresji dźwięku prelegent: mgr inż Krzysztof Popowski 23 wrzesień 2009 Plan wykładu Podstawowe
Transmisja i rejestracja sygnałów wprowadzenie oraz podstawy percepcji dźwięku i obrazu. Opracował: dr inż. Piotr Suchomski
Transmisja i rejestracja sygnałów wprowadzenie oraz podstawy percepcji dźwięku i obrazu Opracował: dr inż. Piotr Suchomski Kontakt Katedra Systemów Multimedialnych Wydział ETI dr inż. Piotr M. Suchomski,
Dźwięk dźwiękowi nierówny, czyli o tym jak brzmi XXI wiek
IX Studenckie Spotkania Analityczne 13-14.03.2008 Dźwięk dźwiękowi nierówny, czyli o tym jak brzmi XXI wiek Justyna Słomka Plan 1. Co to jest dźwięk? 2. Pojęcie syntezy dźwięku 3. Cel syntezowania dźwięków
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
P 6 G2. z rożkiem z filtrem CECHY PRODUKTU FUNKCJE AUTOMATYCZNE AKCESORIA CECHY PODSTAWOWE OPCJE KABLE I ADAPTERY DO PROGRAMOWANIA CECHY TECHNICZNE
z rożkiem z filtrem CECHY PRODUKTU Aparat zauszny typu Power z baterią 13 Do otwartego oraz zamkniętego dopasowania CECHY PODSTAWOWE Formowany rożek Komora baterii, jako włącznik/wyłącznik Przycisk programowany
Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa
Przygotowali: Bartosz Szatan IIa Paweł Tokarczyk IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które
8. Fale dźwiękowe. 8.1. Rodzaje wrażeń słuchowych.
8. Fale dźwiękowe 8.1. Rodzaje wrażeń słuchowych. Szczególnym rodzajem fal mechanicznych są fale dźwiękowe. Spotykamy się z nimi codziennie kiedy mówimy i kiedy słuchamy. Często umilają nam życie ale i
Systemy i Sieci Telekomunikacyjne laboratorium. Modulacja amplitudy
Systemy i Sieci Telekomunikacyjne laboratorium Modulacja amplitudy 1. Cel ćwiczenia: Celem części podstawowej ćwiczenia jest zbudowanie w środowisku GnuRadio kompletnego, funkcjonalnego odbiornika AM.