WYZNACZANIE CIEPŁA ROZPUSZCZANIA

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZANIE CIEPŁA ROZPUSZCZANIA"

Transkrypt

1 Zakład Pocesów Chemczych Bochemczych Poltechk Wocławske Temodyamka Pocesowa Laboatoum WYZNACZANIE CIEPŁA ROZPUSZCZANIA Wocław 007 1

2 Wstęp W takce ozpuszczaa zachodz pześce od stau początkowego układu, twozoego pzez czyste składk pzyszłe meszay, wszystke w te same tempeatuze pod tym samym cśeem, do stau końcowego, w któym, w te same tempeatuze pod tym samym cśeem stee tylko eda faza staowąca oztwó. Zmay w cząsteczkach zachodzące podczas ozpuszczaa są badzo głęboke. Rozewau ulegaą wązaa mędzycząsteczkowe, twozą sę owe wązaa, zaówo cząsteczkowe ak atomowe spolayzowae pomędzy óŝym cząsteczkam substac wyścowych. Solwataca est zawskem powszechym. Istota óŝcą mędzy ozpuszczaem a eakca chemcza est to, Ŝe z ozpuszczae, e moŝa wązać Ŝadych okeśloych stosuków stechometyczych. PoewaŜ poces ozpuszczaa taktuemy ako zobayczy zotemczy, efekt ceply będze ówy zmae etalp układu, gdyŝ edya pacą est paca zmay obętośc. Cepło ozpuszczaa zaleŝy od stosuku lośc ozpuszczalka do lośc substac ozpuszczoe, dąŝąc do akeś watośc gacze dla ozceńczeń dąŝących do eskończoośc. Często a kzywe cepła ozpuszczaa w fukc stęŝea końcowego oztwou poawa sę ekstemum. Zgode z powyŝszym cepłem ozpuszczaa azywać będzemy lośc cepła wydzelaą w czase ozpuszczaa odesoą do edego mola edego ze składków zgode z zaleŝoścą: = (1) Ozaczaąc pzez I c etalpe molową czystego składka pzed zmeszaem, a pzez I ego etalpe w oztwoze otzymaym zotemcze zobaycze otzymamy: a stąd, dla oztwou dwuskładkowego otzymamy: = ( I ) = I o + o (3) I = I o + ( I o ) (3a) I c ( I I ) = Gdze deksy: = substaca ozpuszczoa, = ozpuszczalk. c () Cel ćwczea Celem ćwczea est zalezee cepła ozpuszczaa zdefowaego ówaem 3a. poewaŝ poma powadz sę w waukach zblŝoych do adabatyczych zaduemy efekt ceply meszaa z zaleŝośc podstawowe:

3 ( m c T ) = p + (4) gdze st cepło stat w czase pomau. st Apaatua pomaowa Pomay cepła meszaa wykoue sę pzy pomocy zestawu kaloymetyczego ZKL 4. Zestaw te pzygotoway pewote do pomau cepła spalaa słuŝy, po usuęcu bomby kaloymetycze, do pomau cepła meszaa. Podstawowe elemety zestawu (ys.1) to: aczye kaloymetycze (1), klowae poleowae, umeszczoe a podstawce zolacye w płaszczu temostatyczym (). Pecyzyy temomet o podzałce 0,01 o C (3) umocoway est w uchwytach podśwetlacza skal pzez dwudzelą pokywę wduową wpowadzoy do aczya kaloymetyczego. Do meszaa ceczy w aczyu słuŝy meszadło z slczkem elektyczym (4). Zaówo temomet ak meszadło mocowae są a metalowych statywach tak skostuowaych, by umoŝlwć łatwe wymowae aczya kaloymetyczego. Zestaw zawea detycze kaloymety. Cetalą częścą zestawu staow pulpt steowczy (5), wyposaŝoy w lampk kotole zapalaące sę koleo w odstępach pęcosekudowych. Góa dola lampka zapalaą sę a pzema co 30 sekud z edoczesym udezeem gogu sygalzuącym momet odczytu tempeatuy. W dole częśc pulptu zaduą sę wyłączk: secowy gogu oaz podwóe wyłączk, po edym dla kaŝdego kaloymetu: meszadła mechaczego, podśwetlacza skal temometu, wbatoa. Wbato słuŝy do automatyczego, okesowego wywoływaa dgań temometu w celu zapobeŝea zahamowaom pzepływu tęc w kaplaze temometu. Pzebeg pomau NawaŜka substac, któe cepło ozpuszczaa est pzedmotem pomau zamkęta est w cekoścee bańce szklae umocowaa gumkam do stalowego pęta. Rodza substac e est zay wykouącym ćwczee. Dla kaŝde awaŝk est podaa e masa lość wody, któą aleŝy apełć aczye kaloymetycze. Wodę destylowaą odmeza sę pzez waŝee a wadze szalkowe z dokładoścą do 1g. Masa aczyka kaloymetyczego 1113g. W celu wykoaa pomau aleŝy: 1. Napełć aczye kaloymetycze okeśloą loścą wody.. Ustawć, pzy pomocy gzałk elektycze lub kostek lodu tempeatuę wody w aczyu w pzedzale o C, posługuąc sę pzy tym temometem z podzałką 0,5 o C. 3. Włączyć ultatemostat wstawć aczye kaloymetycze do płaszcza temostatowaego. 4. Wpowadzć do aczya meszadło, temomet pomaowy oaz baeczkę z póbką. 5. Pzykyć aczye kaloymetycze pokywą wduową. 6. Włączyć włączk główy, gogu, wbatoa, meszadła podśwetlacza skal odpowedego kaloymetu. 3

4 7. Delkatym ucham stalowego pęta z baeczką meszac wodę w aczyu kaloymetyczym otować wskazaa temometu. (pzez lupę) w odstępach 30 sekudowych. 8. Po ustablzowau sę tempeatuy (lub pzyostów tempeatuy) stłuc eegczym udezeem baeczkę szklaą o do aczya, w poblŝu kawędz. Opeace tą aleŝy wykoywac badzo ostoŝe, Ŝeby e uszkodzć temometu. Sam momet stłuczea powe wypaść me węce w polowe tewału mędzy dwoma koleym odczytam tempeatuy. 9. W dalszym cągu meszać oztwó w aczyu otować tempeatuy aŝ do osągęca stablzac. Oblczea Tempeatua początkowa T 1. JeŜel pzed stłuczeem baeczk wystąpła stablzaca tempeatuy (wahaa ok. 0,003 o C) to ako tempeatuę początkową pzymue sę śed ą z klku ostatch pomaów pzed stłuczeem bańk. Jeśl tempeatua wzastała lub malała w sposób w pzyblŝeu edostay, tempeatuę początkową okeśla sę pzez tepolacę lową ostatch pomaów do mometu stłuczea baeczk. Tempeatua końcowa T. Gdy wystąpła stablzaca tempeatuy lub stablzaca pzyostów tempeatuy po stłuczeu baeczk tempeatuę końcową wyzacza sę aalogcze do tempeatuy początkowe. Okeślee lośc wydzelaego cepła. Ilość cepła wydzeloego w takce pomau wyzacza sę z blasu ceplego układu: [ W + C ( m + m )]( ) = px w T T 1 (5) gdze W stała kaloymetu [J/deg] m masa awaŝk [kg] m w masa wody [kg] ( ) 1 T C p cepło właścwe oztwou w ego śede tempeatuze T + [J/kg deg] Podczas pomau uŝywa sę tylko lewego kaloymetu o stałe w [J/deg] oaz temometu o umeze fabyczym 408/75. Jako C p pzymue sę cepło właścwe wody w tempeatuze pomau (oztwó badzo sle ozceńczoy). Wszystke oblczea powy zostać wykoae z dokładoścą co ame 4 cyf zaczących. W spawozdau aleŝy podać: welkość awaŝk substac ozpuszczoe oaz lość wody, tabele odczytów wskazań temometu w aze potzeby wykesy tepolacye tempeatuy Oblczea: wykem pomau est podae z dokładoścą do 3 cyf zaczących. Wszystke welkośc aleŝy podawać w edostkach układu SI. 4

5 Rysuek 1. Schemat zestawu kaloymetów ZKL 4. 5

BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ

BADANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ Fzyka cała stałego, Elektyczość magetyzm BADANIE CHARAKTERYTYKI DIODY PÓŁPRZEWODNIKOWEJ 1. Ops teoetyczy do ćwczea zameszczoy jest a stoe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE..

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

brak podstaw do odrzucenia hipotezy zerowej.

brak podstaw do odrzucenia hipotezy zerowej. Paca domowa 9. W pewnym bowaze zanstalowano dwa automaty do napełnana butelek. Ilość pwa nalewana pzez pewszy est zmenną losową o ozkładze N( m,, a lość pwa dozowana pzez dug automat est zmenną losową

Bardziej szczegółowo

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI

Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze

Bardziej szczegółowo

PROPAGACJA NIEPEWNOŚCI W POMIARACH TEMPERATURY

PROPAGACJA NIEPEWNOŚCI W POMIARACH TEMPERATURY PROBLEMS AND PROGRESS IN METROLOGY PPM 8 Coeece Dgest Eml BURCON Główy Uząd Ma Samodzele Laboatoum Temomet PROPAGACJA NIEPEWNOŚCI W POMIARACH TEMPERATURY Laboatoa akedytowae, wzocując czujk tempeatuy,

Bardziej szczegółowo

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)

Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną) 1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej

Bardziej szczegółowo

Elektrostatyka-cz.2. Kondensatory, pojemność elektryczna Energia pola elektrycznego

Elektrostatyka-cz.2. Kondensatory, pojemność elektryczna Energia pola elektrycznego lektostatykacz. Kodesatoy, pojemość elektycza ega pola elektyczego Kodesato Składa sę z dwóch odzolowaych od sebe pzewodków Kodesato moża ładować ładukam elektyczym o jedakowej watośc pzecwych zakach Pojemość

Bardziej szczegółowo

+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba

+Ze (Z-1)e. Możliwe sytuacje: 1) orbita nie penetrująca kadłuba Atomy weloelektoowe: ekulombowsk potecał (cetaly) kedy? ektóe atomy weloelektoowe (p. alkalcze) maą elekto w śede odległ. od ąda >> ż odległośc pozostałych elektoów, el. walecyy kadłub atomu Róże stay

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

Stacja lutownicza 936AH

Stacja lutownicza 936AH Infomacje o podukcie Utwozo 20-09-2017 Stacja lutownicza 936AH Cena : 120,00 zł N katalogowy : 936AH Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Stacja

Bardziej szczegółowo

Stacja lutownicza 936DH

Stacja lutownicza 936DH Infomacje o podukcie Utwozo 28-09-2017 Stacja lutownicza 936DH Cena : 150,00 zł N katalogowy : 936DH Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Stacja

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD:

11/22/2014 STRATEGIE MIESZANE - MOTYWACJA. ROZWAśMY PRZYKŁAD: //4 Gry o sue zero - gry rozgrywae w strategach eszaych STRATEGIE IESZANE - OTYWACJA. ROZWAśY PRZYKŁAD: 5 DEFINICJA..6 Strategą eszaą π gracza P azyway kaŝdy rozkład prawdopodobeństwa określoy a zborze

Bardziej szczegółowo

Oznaczanie tiosiarczanu metodą miareczkowania kulometrycznego

Oznaczanie tiosiarczanu metodą miareczkowania kulometrycznego Ozaczae tosarczau metodą mareczkowaa kulometryczego Metoda: Mareczkowae kulometrycze Cel ćwczea: Celem ćwczea jest kulometrycze ozaczee tosarczau. Odczyk KH PO 4, roztwór maoway o stężeu c = /5 M Na HPO

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

METODY STATYCZNE Metody pomiaru twardości.

METODY STATYCZNE Metody pomiaru twardości. METODY STATYCZNE Metody pomiau twadości. Opacował: XXXXXXXX studia inŝynieskie zaoczne wydział mechaniczny semest V Gdańsk 00. Cel ćwiczenia. Celem ćwiczenia jest zapoznanie się z metodami pomiaów twadości,

Bardziej szczegółowo

Stacja lutownicza 927S produkcji CXG

Stacja lutownicza 927S produkcji CXG Infomacje o podukcie Utwozo 30-09-2017 Stacja lutownicza 927S podukcji CX Cena : 160,00 zł N katalogowy : CX-927S Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Stacja

Bardziej szczegółowo

Stacja lutownicza 936D ZHAOXIN

Stacja lutownicza 936D ZHAOXIN Infomacje o podukcie Utwozo 17-09-2016 Stacja lutownicza ZHAOXIN 936D zaoxin Cena : 120,00 zł Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Cyfowa stacja

Bardziej szczegółowo

WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO

WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO ĆWICZENIE 21 WYZNACZANIE CIEPŁA TOPNIENIA LODU METODĄ BILANSU CIEPLNEGO Cel ćwiczenia: Wyznaczenie ciepła topnienia lodu, zapoznanie się z pojęciami ciepła topnienia i ciepła właściwego. Zagadnienia: Zjawisko

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania

Powinowactwo chemiczne Definicja oraz sens potencjału chemicznego, aktywność Termodynamiczne funkcje mieszania ermdyamka układów rzeczywstych 2.7.1. Pwwactw chemcze 2.7.2. Defcja raz ses tecjału chemczeg aktywść 2.7.3. ermdyamcze fukcje meszaa 2.7.4. Klasyfkacja rztwrów Waruk ztermcz-zchrycze ) ( V F F j V V d

Bardziej szczegółowo

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym

Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

Stacja lutownicza 936A ZHAOXIN

Stacja lutownicza 936A ZHAOXIN Infomacje o podukcie Utwozo 30-09-2017 Stacja lutownicza ZHAOXIN 936A zaoxin Cena : 90,00 zł Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji 936A podukcji

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie

www.bdas.pl Rozdział 3 Zastosowanie języka SQL w statystyce opisowej 1 Wprowadzenie Rozdzał moogaf: 'Bazy Daych: Nowe Techologe', Kozelsk S., Małysak B., Kaspowsk P., Mozek D. (ed.), WKŁ 007 Rozdzał 3 Zastosowae języka SQL w statystyce opsowej Steszczee. Relacyje bazy daych staową odpowede

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna Enegia kinetyczna i paca. Enegia potencjalna Wykład 4 Wocław Uniesity of Technology 1 5-XI-011 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut 63 kg Paul Andeson

Bardziej szczegółowo

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego

PRZENIKANIE PRZEZ ŚCIANKĘ PŁASKĄ JEDNOWARSTWOWĄ. 3. wnikanie ciepła od ścianki do ośrodka ogrzewanego PRZENIKANIE W pzemyśle uch ciepła zachodzi ównocześnie dwoma lub tzema sposobami, najczęściej odbywa się pzez pzewodzenie i konwekcję. Mechanizm tanspotu ciepła łączący wymienione sposoby uchu ciepła nazywa

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Lutownica 60W z regulacją temperatury

Lutownica 60W z regulacją temperatury Infomacje o podukcie Utwozo 14-09-2017 Lutownica 936D CX z egulacją tempeatuy Cena : 140,00 zł N katalogowy : 936D CX Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Lutownica

Bardziej szczegółowo

Poradnik instalatora VITODENS 100-W

Poradnik instalatora VITODENS 100-W Poadnik instalatoa Vitodens 100-W, typ B1HA,, 6,5 do 35,0 kw Gazowy kocioł kondensacyjny, wiszący Wesja na gaz ziemny i płynny B1HA jednofunkcyjny 6,5 19,0 kw, 6,5 26,0 kw, 8,8 35 kw dwufunkcyjny 6,5 26,0

Bardziej szczegółowo

Spis treści I. Ilościowe określenia składu roztworów strona II. Obliczenia podczas sporządzania roztworów

Spis treści I. Ilościowe określenia składu roztworów strona II. Obliczenia podczas sporządzania roztworów Sps teśc I. Iloścowe okeślena składu oztwoów stona Ułaek wagowy (asowy ocent wagowy (asowy ocent objętoścowy Ułaek olowy 3 ocent olowy 3 Stężene olowe 3 Stężene pocentowe 3 Stężene noalne 4 Stężene olane

Bardziej szczegółowo

Modelowanie i Analiza Danych Przestrzennych

Modelowanie i Analiza Danych Przestrzennych Modelowae Aalza Daych Przestrzeych Wykład 8 Adrze Leśak Katedra Geoformatyk Iformatyk Stosowae Akadema Górczo-Hutcza w Krakowe Jaką postać ma warogram daych z tredem? Moża o wylczyć teoretycze prostego

Bardziej szczegółowo

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej

Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie

Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie 6 Rozdział WARSTWOWY MODL ZNISZCZNIA POWŁOK W CZASI PRZMIANY WODA-LÓD Wpowadzenie Występujące po latach eksploatacji zniszczenia zewnętznych powłok i tynków budowli zabytkowych posiadają często typowo

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego. Ćwiczenie może być realizowane za pomocą trzech wariantów zestawów pomiarowych: A, B i C.

ROZKŁAD NORMALNY. 2. Opis układu pomiarowego. Ćwiczenie może być realizowane za pomocą trzech wariantów zestawów pomiarowych: A, B i C. ĆWICZENIE 1 Opacowane statystyczne wynków ROZKŁAD NORMALNY 1. Ops teoetyczny do ćwczena zameszczony jest na stone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE (Wstęp do teo pomaów).

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił.

Praca i energia. x jest. x i W Y K Ł A D 5. 6-1 Praca i energia kinetyczna. Ruch jednowymiarowy pod działaniem stałych sił. ykład z fzyk. Pot Pomykewcz 40 Y K Ł A D 5 Pa enega. Pa enega odgywają waŝną olę zaówno w fzyce jak w codzennym Ŝycu. fzyce ła wykonuje konketną pacę, jeŝel dzała ona na pzedmot ma kładową wzdłuŝ pzemezczena

Bardziej szczegółowo

Prawo Gaussa. Potencjał elektryczny.

Prawo Gaussa. Potencjał elektryczny. Pawo Gaussa. Potencjał elektyczny. Wykład 3 Wocław Univesity of Technology 7-3- Inne spojzenie na pawo Coulomba Pawo Gaussa, moŝna uŝyć do uwzględnienia szczególnej symetii w ozwaŝanym zagadnieniu. Dla

Bardziej szczegółowo

Badania Operacyjne (dualnośc w programowaniu liniowym)

Badania Operacyjne (dualnośc w programowaniu liniowym) Badaa Operacye (dualośc w programowau lowym) Zadae programowaa lowego (PL) w postac stadardowe a maksmum () c x = max, podczas gdy spełoe są erówośc () ax = b ( m ), x 0 ( ) Zadae programowaa lowego (PL)

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Zasilacz laboratoryjny symetryczny PS-3005D-II

Zasilacz laboratoryjny symetryczny PS-3005D-II Infomacje o podukcie Utwozo 01-11-2017 Zasilacz laboatoyjny symetyczny PS-3005D-II Cena : 850,00 zł N katalogowy : PS-3005D-II Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Zasilacz laboratoryjny RXN-305D

Zasilacz laboratoryjny RXN-305D Infomacje o podukcie Utwozo 03-10-2017 Zasilacz laboatoyjny RXN-305D RXN305D Cena : 210,00 zł N katalogowy : RXN-305D Poducent : Zhaoxin Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena

Bardziej szczegółowo

Elektroniczne systemy pomiarowe

Elektroniczne systemy pomiarowe Elektonczne systemy pomaowe d nż. Mchał GRU tel. 32-50-543 al. m Kajowej 21, pok.15 Lteatua: 1. W. Wneck: Oganzacja systemów pomaowych. OWPW, Waszawa 1997 2. Paca zboowa pod ed. P. H. Sydenham a: Podęcznk

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie

ĆWICZENIA LABORATORYJNE Surowce energetyczne stałe i ich przetwarzanie Akademia Góniczo Hutnicza im. St. Staszica w Kakowie Wydział Enegetyki i Paliw Kateda Technologii Paliw ĆWICZENIA LABORATORYJNE Suowce enegetyczne stałe i ich pzetwazanie Ćwiczenie 4 Oznaczanie ciepła

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Zasilacz laboratoryjny RPS-3005D

Zasilacz laboratoryjny RPS-3005D Infomacje o podukcie Utwozo 19-01-2017 Zasilacz laboatoyjny RPS-3005D 0-30V 5A Cena : 320,00 zł N katalogowy : RPS-3005D Poducent : Zhaoxin Dostępność : Niedostępny Stan magazynowy : bak w magazynie Śednia

Bardziej szczegółowo

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5

L.Kowalski zadania ze statystyki opisowej-zestaw 5. ZADANIA Zestaw 5 L.Kowalsk zadaa ze statystyk opsowej-zestaw 5 Zadae 5. X cea (zł, Y popyt (tys. szt.. Mając dae ZADANIA Zestaw 5 x,5,5 3 3,5 4 4,5 5 y 44 43 43 37 36 34 35 35 Oblcz współczyk korelacj Pearsoa. Oblcz współczyk

Bardziej szczegółowo

Myjka ultradźwiękowa CD-4820 pojemność 2500ml

Myjka ultradźwiękowa CD-4820 pojemność 2500ml Infomacje o podukcie Utwozo 05-10-2017 Myjka ultadźwiękowa CD4820 2500ml Cena : 370,00 zł N katalogowy : CD-4820 Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia ocena : bak ecenzji Myjka ultadźwiękowa

Bardziej szczegółowo

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1

Materiały pomocnicze dla studentów I roku do wykładu Wstęp do fizyki I Wykład 1 Mateiał pomocnicze dla studentów I oku do wkładu Wstęp do fizki I Wkład 1 I. Skala i Wekto. Skala: Jest to wielkość, któą można jednoznacznie okeślić za pomocą liczb i jednostek; a więc mająca jednie watość,

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Spis treści. Rozdział 1 Charakterystyka i klasyfikacja instrumentów finansowych. Ryzyko w działalności przedsiębiorstwa

Spis treści. Rozdział 1 Charakterystyka i klasyfikacja instrumentów finansowych. Ryzyko w działalności przedsiębiorstwa Spis teści Wstęp.......................................... 7 Rozdział 1 Chaakteystyka i klasyfikacja instumentów finansowych. Ryzyko w działalności pzedsiębiostwa 1.1. Istota instumentów finansowych........................

Bardziej szczegółowo

Stacja lutownicza SOLOMON SL-30CMCESD

Stacja lutownicza SOLOMON SL-30CMCESD Infomacje o podukcie Utwozo 06-01-2017 Stacja lutownicza SL30-CMCESD Solom SL30CMCESD Cena : 410,00 zł N katalogowy : SL-30CMCESD Poducent : Solom Dostępność : Dostępny Stan magazynowy : badzo wysoki Śednia

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

Ćwiczenia z radiochemii 2

Ćwiczenia z radiochemii 2 Ćwiczenia z adiochemii 2 Geneato 99 Mo/ 99m Tc. Okeślenie znaku i wielkości ładunku jonów technetu-99m wykozystywanych do otzymywania adiofamaceutyków 1. Wstęp Technet-99m jest adionuklidem najpowszechniej

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia. Zdolność do wykonywania pracy lub produkowania ciepła

Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia. Zdolność do wykonywania pracy lub produkowania ciepła Jak miezyć i jak liczyć efekty cieplne eakcji? Enegia Zdolność do wykonywania pacy lub podukowania ciepła Paca objętościowa paca = siła odległość 06_73 P = F A W = F h N m = J P = F A Aea = A ciśnienie

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

PROGRAMOWANIE LINIOWE.

PROGRAMOWANIE LINIOWE. Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe

Bardziej szczegółowo

Wykład 8. Prawo Hooke a

Wykład 8. Prawo Hooke a Wykład 8 Pawo Hooke a Pod działaiem apężeń ciało tałe zmieia wó kztałt. Z doświadczeń wyika, że eżeli wielkość apężeia et mieza od pewe watości, zwae gaicą pężytości, to odkztałceie et odwacale i po uuięciu

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Chemia Poziom rozszerzony KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Chemia Poziom ozszezony Listopad W niniejszym schemacie oceniania zadań otwatych są pezentowane pzykładowe popawne odpowiedzi. W tego typu ch należy

Bardziej szczegółowo

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i

ZAJĘCIA NR 3. loga. i nosi nazwę entropii informacyjnej źródła informacji. p. oznacza, Ŝe to co po im występuje naleŝy sumować biorąc za i ZAJĘCIA NR Dzsaj omówmy o etro, redudacj, średej długośc słowa odowego o algorytme Huffmaa zajdowaa odu otymalego (od ewym względam; aby dowedzeć sę jam doczeaj do ońca). etro JeŜel źródło moŝe adawać

Bardziej szczegółowo

Wykład 15 Elektrostatyka

Wykład 15 Elektrostatyka Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kytea samozutnośc ocesów fzyko-chemcznych 2.5.1. Samozutność ównowaga 2.5.2. Sens ojęce ental swobodnej 2.5.3. Sens ojęce eneg swobodnej 2.5.4. Oblczane zman ental oaz eneg swobodnych KRYERIA SAMORZUNOŚCI

Bardziej szczegółowo

Stacja lutownicza SOLOMON SL20CMCESD

Stacja lutownicza SOLOMON SL20CMCESD Infomacje o podukcie Utwozo 16-08-2017 Stacja lutownicza SL20-CMC ESD Solom SL20CMCESD Cena : 330,00 zł N katalogowy : SL-20-CMCESD Poducent : Solom Dostępność : Dostępny Stan magazynowy : badzo wysoki

Bardziej szczegółowo

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC 4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.

Bardziej szczegółowo

rozwarcia 2α porusza sie wzd luż swojej osi (w strone

rozwarcia 2α porusza sie wzd luż swojej osi (w strone Zadanie Pocisk w kszta lcie stożka o polu podstawy S i kacie ozwacia 2α pousza sie z pedkości a v wzd luż swojej osi w stone wiezcho lka) w badzo ozzedzonym jednoatomowym gazie. Tempeatua gazu jest na

Bardziej szczegółowo

Ćwiczenie nr 25: Interferencja fal akustycznych

Ćwiczenie nr 25: Interferencja fal akustycznych Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja

Bardziej szczegółowo

Wykład 15. Reinhard Kulessa 1

Wykład 15. Reinhard Kulessa 1 Wykład 5 9.8 Najpostsze obwody elektyczne A. Dzielnik napięcia. B. Mostek Wheatstone a C. Kompensacyjna metoda pomiau siły elektomotoycznej D. Posty układ C. Pąd elektyczny w cieczach. Dysocjacja elektolityczna.

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego. Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Wyznaczanie ciepła właściwego cieczy metodą kalorymetryczną opracowanie ćwiczenia: dr J. Woźnicka, dr S. Belica ćwiczenie nr 38 Zakres zagadnień obowiązujących

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

Multimetr uniwersalny ST-51 typu 6w1

Multimetr uniwersalny ST-51 typu 6w1 Infomacje o podukcie Utwozo 10-02-2017 Mien uniwesalny ST-51 6w1 Cena : 230,00 zł N katalogowy : ST-51 Dostępność : Niedostępny Stan magazynowy : bak w magazynie Śednia ocena : bak ecenzji Ten multimet

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Fizyka 7. Janusz Andrzejewski

Fizyka 7. Janusz Andrzejewski Fzyka 7 Janusz Andzejewsk Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego

Bardziej szczegółowo

Metody numeryczne. Wykład nr 10. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 10. Dr Piotr Fronczak Meod ecze Wkład D Po Foczak Rówaa óŝczkowe cząskowe RRC lczba zech L L L F ząd ówaa: ząd awŝsze pochode 3 3 b chaakeska: lowe qas-lowe elowe C B A F E D C B A b c b a : : : :: : : : : : Nelowe lowe Qas

Bardziej szczegółowo

Nośniki swobodne w półprzewodnikach

Nośniki swobodne w półprzewodnikach Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych

Bardziej szczegółowo

Kondensatory. Definicja pojemności przewodnika: C = q V. stosunek!adunku wprowadzonego na przewodnik do wytworzonego potencja!u.

Kondensatory. Definicja pojemności przewodnika: C = q V. stosunek!adunku wprowadzonego na przewodnik do wytworzonego potencja!u. Kondensatoy Defncja pojemnośc pzewodnka: stosunek!adunku wpowadzonego na pzewodnk do wytwozonego potencja!u. -6 - Jednostka: faad, F, µ F F, pf F Kondensato: uk!ad co najmnej dwóch pzewodnków, pzedzelonych

Bardziej szczegółowo

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego

Dobór zmiennych objaśniających do liniowego modelu ekonometrycznego Dobó zmiennych objaśniających do liniowego modelu ekonometycznego Wstępnym zadaniem pzy budowie modelu ekonometycznego jest okeślenie zmiennych objaśniających. Kyteium wybou powinna być meytoyczna znajomość

Bardziej szczegółowo