SYMULACJE KOMPUTEROWE W FIZYCE I W ŻYCIU. Krzysztof Kułakowski WFiIS AGH
|
|
- Wanda Skowrońska
- 7 lat temu
- Przeglądów:
Transkrypt
1 SYMULACJE KOMPUTEROWE W FIZYCE I W ŻYCIU Krzysztof Kułakowski WFiIS AGH Techniczny Uniwersytet Otwarty,
2 W fizyce: - nieprzewidywalność - chaos
3 W życiu: - ewolucja więzi społecznych - teoria dobierania się w pary
4 Pierre Simon de Laplace ( ) Gdyby jakiś nieograniczony umysł znał w dowolnym momencie wszystkie siły działające w przyrodzie i wzajemne położenie wszystkich jej elementów oraz gdyby umysł ten był wystarczająco potężny, by poddać te dane analizie, mógłby zawrzeć w jednym wzorze ruch najpotężniejszych obiektów wszechświata i najmniejszego atomu. Umysł taki nie znałby pojęcia niepewności i mógłby patrzeć na przyszłość tak jak na przeszłość.
5 Ale świat nie jest taki. Przyczynowość? Może. Przewidywalność? Nie.
6 Przepis Laplace a: 1. Określ stan początkowy układu 2. Zapisz równanie ruchu i rozwiąż je 3. Znajdź stan układu w przyszłości Równanie ruchu: ma = F masa przyspieszenie, czyli szybkość zmiany prędkości Siła, określona przez warunki zewnętrzne Rozwiązanie: położenie i prędkość układu w funkcji czasu
7 Przepis Laplace a: 1. Określ stan początkowy 2. Włącz równanie ruchu 3. Oblicz stan w przyszłości Kontrprzykład: iteracyjne równanie logistyczne x n+1 = a x n (1-x n ) Czy ten przepis zawsze działa? Niektóre równania są złośliwe...
8 Przepis Laplace a: 1. Określ stan początkowy 2. Włącz równanie ruchu 3. Oblicz stan w przyszłości Przykład: iteracyjne równanie logistyczne x n+1 = a x n (1-x n ) x n a
9 Co psuje przepis Laplace a? 1. Określ stan początkowy 2. Włącz równanie ruchu 3. Oblicz stan w przyszłości z jaką dokładnością? n x(n) x (n)
10 0 Ln x-x n
11 Przykład: pogoda w Augustowie dx/dt = σ(y-x) dy/dt = rx-y-xz dz/dt = -bz+xy
12 Dygresja o symulacji: numeryczne rozwiązywanie równań różniczkowych dx/dt = σ(y-x) x/ t = σ(y-x) równanie wyjściowe przybliżenie numeryczne X[i+ 1]=x[i]+ t σ(y[i]-x[i]) t=i t instrukcje w programie
13 Inny przykład: HIPERION Księżyc Saturna 410 x 260 x 220 km Okres orbity 21 dni 7 godzin Odkryty 1848 Zdjęcie Hiperion koziołkuje chaotycznie pod wpływem innego księżyca, Tytana.
14 Inny przykład: wahadło niepowtarzalne tzw. (WFiIS AGH)
15
16 Nigdy nie otrzymamy dwa razy......takiego samego wzoru.
17 Położenie końca wahadła w różnych momentach czasu symulacja.
18 Narastanie w czasie różnicy między trajektoriami. log
19 Wniosek : Niektóre problemy w fizyce nie dadzą się skutecznie badać metodą symulacji. Ich natura matematyczna sprawia, że rozwiązanie jest bardzo wrażliwe na warunki początkowe, np. położenie i prędkość. Pomiar tych wielkości jest ZAWSZE obciążony pewną niepewnością. Tak więc nauka nie pozwala przewidzieć przyszłości niektórych układów fizycznych.
20 Ewolucja więzi społecznych Praca z Przemkiem Gawrońskim i Piotrem Gronkiem WFiIS AGH
21 algebra Heidera Przyjaciel mojego przyjaciela jest moim przyjacielem Przyjaciel mojego wroga jest moim wrogiem Wróg mojego przyjaciela jest moim wrogiem Wróg mojego wroga jest moim przyjacielem
22 Dysonans poznawczy
23 Model POX Heidera (1946)
24 Równowaga Heidera na sieci mitoza społeczna Graf w pełni połączony: każdą parę wierzchołków łączy krawędź. Krawędziom przypisujemy liczby c(i,j)= ±1, oznaczające wrogość lub przyjaźń Uruchamiamy dynamikę, naprawiającą trójki wierzchołków (i,j,k) dla których c(i,j)c(j,k)c(k,i)<0 OBSERWUJEMY,że graf dzieli się na dwie części. Wewnątrz każdej z nich c(i,j)=+1. Krawędziom łączącym te części przypisane są wartości 1. Taki stan nazywa się równowagą Heidera.
25 Z.Wang, W.Thorngate, J. of Artificial Societies and Social Simulation (JASSS), Vol 6, No 3.
26 Skala Bogardusa przykład: Anglicy (Kleg & Yamamoto, Social Science J. 35 (1998) 183) Zaakceptowałbym Anglika jako: 1. członka rodziny 2. najlepszego przyjaciela 3. sąsiada zza ściany 4. współpracownika w biurze 5. znajomego w rozmowie 6. gościa w moim kraju 7. Nie pozwoliłbym na jego wjazd do mojego kraju.
27 Odległość Bogardusa badana w USA: średnia i pozycja na skali w 1925 i 1993 Anglicy Rosjanie Szkoci Indianie Irlandczycy Żydzi Francuzi Grecy Holendrzy Arabowie Szwedzi Meksykanie Duńczycy Murzyni Norwegowie Chińczycy Niemcy Japończycy Hiszpanie Koreańczycy Włosi Turcy Hindusi Polacy Średnia
28 tu: podejście ciągłe Zamiast c(i,j)=±1 używamy liczb rzeczywistych r(i,j) Uzasadnienie: w pomiarach socjologicznych używa się liczb rzeczywistych (skala Bogardusa) Równanie ruchu: lub z ograniczeniem na r(i,j), np: gdzie r(i,j) mieszczą się w przedziale (-R,R). = k j k r k i r dt j i dr ), ( ), ( ), ( = k j k r k i r R j i r dt j i dr ), ( ), ( * ), ( 1 ), ( 2 2
29 Najprostszy przykład: N=3 da/dt = b c (1-a 2 /R 2 ) db/dt = c a (1-b 2 /R 2 ) dc/dt = a b (1-c 2 /R 2 ) Warunek równowagi: abc>0 pociąga, że: albo a >0 i rośnie, albo a<0 i maleje, i to samo dla b, c.
30 Zależność elementów r(i,j) od czasu
31 #/(N-2) w funkcji czasu: N=10
32 #/(N-2) w funkcji czasu: N=200
33 Silne ograniczenie zakresu r(i,j) może prowadzić do wydłużenia i wygładzenia przebiegu procesu dochodzenia do równowagi Heidera η N=100 Brak ograniczenia 600 Ograniczenie r(i,j) do zakresu (-1,1) t rozkładem prostokątnym
34 Bez ograniczeń
35 Silne ograniczenia
36 2500 Dynamika rozkładu r(i,j) t= η t= t
37 Polaryzacja opinii w braku równowagi Heidera B A, # = M= A # B C Y Axis Title D E F G t i m e B, # = C, # = , 4-0, 2 0, 0 0, 2 0, 4 0, 6 X A x i s T i t l e D, # = Y Axis Title Y Axis Title Y Axis Title X A x i s T i t l e X A x i s T i t l e X A x i s T i t l e E, # = 4 0 F, # = 3 3 G, # = Y Axis Title Y Axis Title Y Axis Title X A x i s T i t l e X A x i s T i t l e X A x i s T i t l e
38 Jak Pan(i) ocenia dotychczasowe skutki wejścia w życie ustawy lustracyjnej? Maj 1999 Listopad V IX (raport CBOS, BS/152/1999)
39 przykład: kobiety z Natchez Dane: lista obecności 18 pań z miasteczka Natchez w Mississippi na 14 imprezach w 1935 roku. Freeman, 2003 : 21 sposobów określania klik i ich liderów. Bonacich+Lloyd, 2004 : jak obliczać status członków grup, jeśli r(i,j)<0. Tu: r(i,j,t=0)=p(i/j)p(j)-p(i)p(j) Wynik: zgodny z najlepszymi szacowaniami Freemana. Uwaga krytyczna: dynamika nie zmieniła podziału, który był założony od początku. Phot. by Ben Shahn, Natchez, MS, October 1935
40 Southern Women,
41 inny przykład: podział w klubie karate (W.W.Zachary, 1977) Dane wejściowe: więzy (ilość rozmów?) między zawodnikiem i-tym i j-tym w obserwowanym okresie czasu ( orks/data/ucinet/zachary.dat) Główny wynik: przyporządkowanie zawodników do dwóch grup, powstałych w wyniku konfliktu status w grupie numer zawodnika
42 wnioski z teorii relacji społecznych Bezpośrednią konsekwencją usuwania dysonansu poznawczego jest polaryzacja opinii. Jest ona obecna również w przypadku sieci nie w pełni połączonych, gdzie nie zawsze dochodzi do równowagi Heidera. Ta polaryzacja może być używana do przewidywania konfliktu.
43 Teoria dobierania się w pary Praca z Mateuszem Waśko WFiIS AGH, Kraków
44 Dimeryzacja = proces łączenia się merów w cząsteczki dwuczłonowe Dimeryzacja społeczna = proces łączenia się członków społeczności w pary
45 Grupa społeczna jako graf
46 Grupa społeczna jako graf Każdy węzeł (członek grupy) posiada pewne zasoby p(i) Wszystkie węzły grafu są w stanie początkowym ze sobą połączone (graf pełny) Krawędzie grafu są scharakteryzowane przez liczby dodatnie r(i,j), które określają wymianę zasobów
47 Dynamika układu
48 Dynamika układu Zmiany zasobów członków grupy są określane przez równania: Dwa pierwsze czynniki po prawej stronie gwarantują skończoność sumy zasobów wszystkich członków grupy [ ] = = + = N j N j i p j i r j p i j r j p N dt i dp ) ( ), ( ) ( ), ( ) ( ) (
49 Dynamika układu cd.
50 Dynamika układu cd. Zmiana ruchu zasobów podporządkowana jest regule: gdzie jest prędkością reorientacji wymiany zasobów Obowiązuje zasada: dajemy więcej temu kto nam daje więcej = 1 ) ( ), ( ) ( ), ( ), ( N k p i k r j p i j r dt j i dr k α α
51 Co to znaczy tworzyć parę?
52 Co to znaczy tworzyć parę? p(a) = p(b)
53 Efektywność dimeryzacji zależność od α α N = 10 = 0.2
54 Efektywność dimeryzacji zależność od α α N = 10 = 1
55 Zmiana ruchu zasobów nowe podejście
56 Zmiana ruchu zasobów nowe podejście Po usunięciu zasobów p z równania opisującego zmianę przepływu powoduje zmianę sposobu patrzenia na świat każdego członka grupy teraz dajemy więcej temu kto daje nam większy procent swoich zasobów, niezależnie od tego ile ich jest. dr ( i, dt j) = α r( j, i) k r( k, i) N 1
57 Nowe wnioski Okazuje się, że w takim przypadku prawie za każdym razem dochodzi do łączenia się w pary Parametr α jest teraz odpowiedzialny jedynie za szybkość znalezienia partnera
58 Skutek: Efektywność społecznej dimeryzacji rośnie
59 Zwiększona efektywność α N = 10 = 0.2
60 Zwiększona efektywność α N = 10 = 1
61 Powstawanie trójkątów Zdarzają się jednak przypadki, że wśród członków grupy powstają trzyosobowe podgrupy Można wyróżnić dwa typy trójkątów
62 Typ 1
63 Typ 2
64 Rodzaje trójkątów Typ 1 Typ 2 ( A) = 2 * p( B) = 2 p( C) p * p ( A) p( B) p( C)
65 Przykład wystąpienia trójkąta - typ 1 α N = 10 = 1
66 Częstość występowania trójkątów 100 N=10 N=20 80 częstość występowania trójek alfa
67 Podsumowanie teorii dimeryzacji: 1. Jeżeli członkowie społeczności reorientują swoje preferencje, nie biorąc pod uwagę ilości zasobów partnerów, to proces dimeryzacji jest o wiele bardziej efektywny. Nikt nie pozostaje samotnie. 2. Z punktu widzenia biologicznego (wymiana genów) i ekonomicznego (wymiana dóbr) takie rozwiązanie jest utopijne. Jednak, jeśli ograniczyć problem do znalezienia partnera, to w ramach modelu rozwiązanie okazuje się skuteczne.
68 Przedyskutowaliśmy kilka problemów dotyczących symulacji komputerowych w fizyce i w życiu. Mówiliśmy o niespodziankach. W symulacjach dotyczących fizyki czasem czegoś się nie da. W symulacjach dotyczących życia czasem coś jest możliwe.
69
Równowaga Heidera symulacje mitozy społecznej
Równowaga Heidera symulacje mitozy społecznej Przemysław Gawroński Katedra Informatyki Stosowanej we współpracy z Krzysztofem Kułakowskim, Piotrem Gronkiem Plan Klasyczny model równowagi Heidera. Skala
Równowaga Heidera czyli mitoza spoleczna
Równowaga Heidera czyli mitoza spoleczna Pr zemyslaw Gawr onski Krzysztof Kulakowski WFiIS AGH plan Kilka slów o socjofizyce Tematyka: grupy i sieci Równowaga Heidera Skala Bogardusa Dynamika ciagla Wyniki
Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego
Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
CENTRUM BADANIA OPINII SPOŁECZNEJ
CENTRUM BADANIA OPINII SPOŁECZNEJ SEKRETARIAT OŚRODEK INFORMACJI 629-35 - 69, 628-37 - 04 693-46 - 92, 625-76 - 23 UL. ŻURAWIA 4A, SKR. PT.24 00-503 W A R S Z A W A TELEFAX 629-40 - 89 INTERNET http://www.cbos.pl
EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA
Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Ć W I C Z E N I E N R M-2
INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum
Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język
Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa
Arkadiusz Neubauer IV rok, Fizyka z Informatyką. Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa 1 Problem fizyczny W poniższej pracy przedstawiono numeryczną metodę obliczania widma Lapunowa
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Wzorce sekunda Aktualnie niepewność pomiaru czasu to 1s na 70mln lat!!! 2 Modele w fizyce Uproszczenie problemów Tworzenie prostych modeli, pojęć i operowanie nimi 3 Opis ruchu Opis
A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t
B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej
Zastosowania pochodnych
Zastosowania pochodnych Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 SZACOWANIE NIEPEWNOŚCI POMIAROWEJ Przykład: objętość kuli Kulka z łożyska tocznego ma średnicę 2,3 mm, co oznacza, że objętość
Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.
ZADANIA ZAMKNIĘTE W zadaniach -5 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie. ( pkt) Wskaż rysunek, na którym zaznaczony jest zbiór wszystkich liczb rzeczywistych spełniających nierówność
KOMUNIKATzBADAŃ. Zmiany nastawienia Polaków do innych narodów NR 113/2015 ISSN 2353-5822
KOMUNIKATzBADAŃ NR 3/25 ISSN 2353-5822 Zmiany nastawienia Polaków do innych narodów Przedruk i rozpowszechnianie tej publikacji w całości dozwolone wyłącznie za zgodą CBOS. Wykorzystanie fragmentów oraz
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości
Modelowanie matematyczne a eksperyment
Modelowanie matematyczne a eksperyment Budowanie modeli w środowisku Hildegard Urban-Woldron Ogólnopolska konferencja, 28.10. 2011, Warszawa Plan Budowanie modelu w środowisku Równania i wartości Uruchomienie
dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B
Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 11 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Dla każdej dodatniej
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.
ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 49988 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Odległość punktu A =
Scenariusz lekcji matematyki dla klasy I Gimnazjum
Scenariusz lekcji matematyki dla klasy I Gimnazjum Temat: Przekształcanie wzorów. Cel ogólny : przekształcanie wzorów matematycznych i fizycznych z zastosowaniem metod rozwiązywania równań. Cele operacyjne:
ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA
Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 2018 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera
Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3
Andrzej J. Osiadacz Maciej Chaczykowski Łukasz Kotyński Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz, Maciej Chaczykowski, Łukasz Kotyński,
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
FIZYKA. Wstęp cz.2. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wstęp cz. IZYKA Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-, pok.3 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zastosowanie rachunku różniczkowego w fizyce V t s V s t V ds PRZYKŁAD:
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 194057 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) { 21x 14y = 28 Rozwiazaniem
Powtórzenie wiadomości z klasy I. Temat: Ruchy prostoliniowe. Obliczenia
Powtórzenie wiadomości z klasy I Temat: Ruchy prostoliniowe. Obliczenia Ruch jest względny 1.Ruch i spoczynek są pojęciami względnymi. Można jednocześnie być w ruchu względem jednego ciała i w spoczynku
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
Klasa I. 5. Cenę pewnego towaru dwukrotnie zwiększono o 30% i obecnie kosztuje on 422,50 zł. Jaka była początkowa cena tego towaru?
Klasa I. Na planie wykonanym w skali : 2000 odległość między domem Kasi a domem Basi wynosi7,3 cm. Jaka jest rzeczywista odległość między ich domami? 2. Jaką miarę ma kąt przyległy do kąta o mierze 62?
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,
MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
MAJ Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby.
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM
POSTAWY PROZDROWOTNE
POSTAWY PROZDROWOTNE ne badanie GfK Styczeń 2015 1 Metodologia 2 Kraje, metodologia, wielkość próby Łącznie przebadano ponad 28,000 respondentów w wieku 15+ w 23 krajach Zastosowano wywiady online lub
Zadanie 3. Na prostej o równaniu y = 2x 3 znajdź punkt P, którego odległość od punktu A = ( 2, -1 ) jest najmniejsza. Oblicz AP
Zadania do samodzielnego rozwiązania: II dział Funkcja liniowa, własności funkcji Zadanie. Liczba x = - 7 jest miejscem zerowym funkcji liniowej f ( x) ( a) x 7 dla A. a = - 7 B. a = C. a = D. a = - 1
CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI
Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III CZEŚĆ PIERWSZA I. POTĘGI Zamienia potęgi o wykładniku całkowitym ujemnym na odpowiednie potęgi o wykładniku naturalnym. Oblicza wartości
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2
1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej
TEORIA CHAOSU. Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska
TEORIA CHAOSU Autorzy: Szymon Sapkowski, Karolina Seweryn, Olaf Skrabacz, Kinga Szarkowska Wydział MiNI Politechnika Warszawska Rok akademicki 2015/2016 Semestr letni Krótki kurs historii matematyki DEFINICJA
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Grawitacja okiem biol chemów i Linuxów.
Grawitacja okiem biol chemów i Linuxów. Spis treści 1. Odrobina teorii 2. Prawo powszechnego ciążenia 3. Geotropizm 4. Grawitacja na małą skalę ciężkość ciał 5. Grawitacja nie z tej Ziemi 6. Grawitacja
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 25 MARCA 2017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Najmniejsza liczba całkowita
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Twoim zadaniem jest przeliczenie temperatury podanej w skali Celsiusza na pozostałe trzy skale.
Zadanie 1 W Polsce stosuje się skale Celsiusza do wyznaczenia temperatury powietrza. W niektórych krajach lub zagadnieniach naukowych używa się również skali Kelvina, skali Fahrenheita lub skali Rankine'a.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 17 KWIETNIA 2010 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Jeżeli liczba 3b
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Ruch jednostajnie zmienny prostoliniowy
Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i
Zmienność wiatru w okresie wieloletnim
Warsztaty: Prognozowanie produktywności farm wiatrowych PSEW, Warszawa 5.02.2015 Zmienność wiatru w okresie wieloletnim Dr Marcin Zientara DCAD / Stermedia Sp. z o.o. Zmienność wiatru w różnych skalach
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Funkcja liniowa - podsumowanie
Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego
Ćwiczenie M6 Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła prostego M6.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie przyspieszenia ziemskiego poprzez analizę ruchu wahadła prostego. M6..
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi
Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie
Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii
Leonhard Euler Leonhard Euler ur. 15 kwietnia 1707 w Bazylei zm. 18 września 1783 w Petersburgu uważany za jednego z najbardziej produktywnych matematyków w historii Dzieciństwo i młodość przeprowadzka
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
LUBELSKA PRÓBA PRZED MATURĄ 2019
1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.
EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut
POZIOM PODSTAWOWY - GR 1 Czas pracy 170 minut Klasa Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH
ĆWICZENIE 13 TEORIA BŁĘDÓW POMIAROWYCH Pomiary (definicja, skale pomiarowe, pomiary proste, złożone, zliczenia). Błędy ( definicja, rodzaje błędów, błąd maksymalny i przypadkowy,). Rachunek błędów Sposoby
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Przygotowanie do poprawki klasa 1li
Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku
Y t=0. x(t)=v t. R(t) y(t)=d. Przelatujący supersamolot. R(t ) = D 2 + V 2 t 2. T = t + Δt = t + R(t) = t + D2 + V 2 t 2 T = R2 D 2 V. + R V d.
Przelatujący supersamolot Y t= R(t) D x(t)=v t y(t)=d Superszybki samolot o prędkości V przelatuje po linii prostej przechodzącej w odległości D od obserwatora (dla ułatwienia przyjąć X=Vt). Na skutek
EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Podstawy fizyki sezon 1 III. Praca i energia
Podstawy fizyki sezon 1 III. Praca i energia Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha F.Żarnecki Praca Rozważamy
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi:
UZUPEŁNIA ZDAJĄCY miejsce na naklejkę
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2017 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 2 czerwca 2017
Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka
Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej
Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych. Definicja. Funkcją wymierną jednej zmiennej nazywamy
Podstawy fizyki wykład 4
Podstawy fizyki wykład 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Dynamika Obroty wielkości liniowe a kątowe energia kinetyczna w ruchu obrotowym moment bezwładności moment siły II zasada
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut. Rozwiązania zadań
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów 13 luty 2014 Czas 90 minut Rozwiązania zadań ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
Wymagania programowe na poszczególne stopnie szkolne klasa VI
Wymagania programowe na poszczególne stopnie szkolne klasa VI 6 5 4 3 2 LICZBY NATURALNE Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące
Warszawa, styczeń 2010 BS/12/2010 STOSUNEK POLAKÓW DO INNYCH NARODÓW
Warszawa, styczeń 2010 BS/12/2010 STOSUNEK POLAKÓW DO INNYCH NARODÓW Znak jakości przyznany CBOS przez Organizację Firm Badania Opinii i Rynku 3 października 2008 roku Fundacja Centrum Badania Opinii Społecznej
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu
W(x) = Stopień wielomianu jest równy: A. B. C. D. A. B. C. D.
Zadanie 9. (1 pkt.) (Czerwiec 014) Dane są wielomiany: x, P(x) = x 3 + x, Q(x) = (1 x)(x + 1) W(x) = 1 W(x) P(x) Q(x). Stopień wielomianu jest równy: 3 6 7 1 Zadanie 10. (1 pkt.) (Czerwiec 014) Pierwsza
Drgania wymuszone - wahadło Pohla
Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka
KRYTERIA OCENIANIA W KLASACH SZÓSTYCH - Matematyka 1. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryteriów na ocenę dopuszczającą. 2. Ocenę dopuszczającą otrzymuje uczeń, który: 2.1 Liczby
III. ZMIENNE LOSOWE JEDNOWYMIAROWE
III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta