Statystyczne metody przetwarzania danych
|
|
- Magda Marszałek
- 8 lat temu
- Przeglądów:
Transkrypt
1 Artfcal Intellgence Krzysztof Ślot, 2008 Statystyczne metody rzetwarzana danych Klasyfkacja mnmalnoodległoścowa Krzysztof Ślot Instytut Informatyk Stosowanej Poltechnka Łódzka
2 Artfcal Intellgence Krzysztof Ślot, 2008 Etay rocedury rozoznawana Wrowadzene Przetwarzane wstęne, obejmuje ekstrakcję obektu z tla Projektowane systemu rozoznawana Klasyfkacja, wykorzystująca wybrane cechy zbudowane modele klas Przygotowane danych Projektowane systemu Określ rerezentację loścową obektów Określ sosób modelowana klas Określene strateg klasyfkacj Zebrane etyketowane rzykładów Określene zborów: trenngowego testowego Przedmot wykładu Oblcz cechy renuj klasyfkator Klasyfkuj Imlementacja
3 Artfcal Intellgence Krzysztof Ślot, 2008 Klasyfkacja danych Przysane róbce etykety klasy Próbka jest rerezentowana rzez wektor cech (w odowednej rzestrzen cech Modele klas muszą być zbudowane w oarcu o rzykłady (defncje klas są neznane Przykłady mogą ne osadać etykety klasy (klasyfkacja nenadzorowana Dane, C C, C... C wyznacz: : C Podstawa klasyfkacj Maksymalzacja odbeństwa mędzy róbką a klasą (mnmalzacja różncy Posadane określonych właścwośc Stratega ostęowana Zbuduj loścowe modele klas oceń rzynależność róbk
4 Artfcal Intellgence Krzysztof Ślot, 2008 Stratege klasyfkacj Klasyfkacja danych Ocena odobeństwa: Klasyfkacja mnmalnoodległoścowa Klasyfkacja robablstyczna Posadane określonych właścwośc Klasyfkacja rzy użycu owerzchn decyzyjnych Etay budowy klasyfkatora renng Budowa model klas estymacja ch arametrów (zbór trenngowy estowane Ocena skutecznośc klasyfkacj rzy użycu róbek zboru testowego Proces klasyfkacj (rozoznawana Wyznaczane rzynależnośc neznanej róbk dokonywane rzy użycu zbudowanego klasyfkatora
5 Artfcal Intellgence Krzysztof Ślot, 2008 Podstawy Klasyfkacja mnmalno-odległoścowa Próbk są unktam w rzestrzen metrycznej Podobeństwo ocenane rzez określane odległośc mędzy róbką klasą Zwycęża klasa najblższa Stratege klasyfkacj mnmalnoodległoścowej Metoda najblższego sąsada (Nearest-Neghbor - NN Metoda najblższej średnej (Nearest-Mean - NM Klasyfkacja k-nn Rerezentacja welomodalna / metoda najblższego modu Problemy budowy klasyfkatora Postać modelu klasy trenng modelu Defncja odległośc mędzy róbką a klasą Zasada wyboru zwycęskej klasy
6 Artfcal Intellgence Krzysztof Ślot, 2008 Klasyfkacja NN Defncja komonentów metody Model (rototy klasy: zaamętane wszystke róbk zboru trenngowego (brak rocedury uczena klasyfkatora Odległość róbk od klasy: najmnejsza z odległośc mędzy róbką a elementam klasy k = arg j mn d(,c, d(,c = mn d(,c j C A d(,c B d(,c B < d(,c B C B d(,c A C B
7 Artfcal Intellgence Krzysztof Ślot, 2008 Klasyfkacja NN Właścwośc Prostota koncecyjna Brak rocedury uczena klasyfkatora Kosztowny oblczenowo roces klasyfkacj Wymagana duża amęć do składowana model klas Wrażlwość na złe rzykłady (neuchronne obecne w dużych zborach C A d(,c B CB d(,c A d (, C d (, C B A C A
8 Artfcal Intellgence Krzysztof Ślot, 2008 Klasyfkacja NM Defncja komonentów metody Model klasy: odstawowe właścwośc statystyczne zboru róbek średna, macerz kowarancj (rosty trenng Odległość róbk od klasy: odległość róbk do wartośc średnej/ odległość Machalobobsa (wyrażona w jednostkach odchylena k = arg d(, C = d(, M d(,, = mn M M 1 N N j= 1 j C A M A d(,m A d(, M d(, M C B d(,m B A C B MB B Odległość uwzględnająca rozrzuty (Machalonobsa d(, C d(, μ, Σ d(, C ( μ Σ 1 ( μ
9 Artfcal Intellgence Krzysztof Ślot, 2008 y 1 2 Właścwośc Prosty trenng Szybka klasyfkacja Mała wrażlwość na błędne rzykłady (efekt uśrednena Małe zasoby wymagane do zaamętana model klas Nejawne założene Gaussowskego modelu klasy: klasyfkacja lnowa d , ( d d , ( d NM klasyfkator lnowy 0 C 0 ( 2, (, ( d d Klasyfkacja NM
10 Artfcal Intellgence Krzysztof Ślot, 2008 Klasyfkacja NM Rozkłady welomodalne Rozkład jednomodalny: roblemy trywalne Rzeczywste roblemy rozoznawana: welomodalna rerezentacja klasy NM błędna klasyfkacja M A C A C A M B C B d (, M d(, M C B A A
11 Artfcal Intellgence Krzysztof Ślot, 2008 Metoda k-nn Defncja komonentów metody Model klasy : zaamętane wszystke róbk zboru trenngowego (brak rocedury uczena klasyfkatora Odległość róbk od klasy: klasa najlcznej rerezentowana wśród k- zwycęzców (k-najblższych róbek Parametr modelu: k wartość otymalna arametru mus być określona w faze trenngu r r C A C A C B C B r : k 1 C A r : k 3 C B
12 Artfcal Intellgence Krzysztof Ślot, 2008 Metoda k-nn Właścwośc Prosty trenng (wybór k dającego najleszą skuteczność rozoznawana na zborze trenngowym Arbtralne kształty owerzchn searujących klasy: możlwość rozwązana roblemów searowalnych nelnowo (trudnych Mała wrażlwość na błędne rzykłady (tym mnejsza m wększe k Złożoność oblczenowa Duża zajętość amęc rzez modele klas Przyśeszane metody k-nn Motywacja rac: duża skuteczność metody Sosób realzacj: ndeksowane róbek odowedne zawężane zboru testowanych kandydatów Metody: gruowane róbek, drzewa k-wymarowe
13 Artfcal Intellgence Krzysztof Ślot, 2008 Gruowane Metoda k-nn Zgrubna kwantyzacja rzestrzen cech (hersześcany Etyketa róbk: ndeks hersześcanu Krok 1 klasyfkacj: określ ndeks hersześcanu zawerającego srawdzaną róbkę Oblczaj odległośc tylko do rototyów zawartych wewnątrz znalezonego hersześcanu jego sąsadów
14 Artfcal Intellgence Krzysztof Ślot, 2008 Drzewa k-wymarowe Metoda k-nn Zgrubna kwantyzacja rzestrzen cech (adatacyjna Określane herłaszczyzn dzelących zbory na równe częśc (głębokość rocedury odzału: k Przysywane rototyom etyket obszarów Srawdzane odległośc tylko dla róbek z obszarów rzyległych LUL LUP RUL RUR L R LUL LUP RUL RUR U D U D L R L R L R L R LDL LDR RDL RDR LDL LDR RDL RDR Właścwośc Efektywność oblczenowa
15 Artfcal Intellgence Krzysztof Ślot, 2008 Welomodalna rerezentacja klas Defncja komonentów metody Model klasy: odstawowe właścwośc statystyczne modów klasy Odległość róbk od klasy: odległość do najblższego modu Odległość ownna uwzględnać rozrzuty: macerz kowarancj Prototy klasy: zbór modów rerezentowanych rzez arametry statystyczne k arg mn j j 1 d(, M, M C, j 1... m N N j1 j
16 Artfcal Intellgence Krzysztof Ślot, 2008 renng klasyfkatora Welomodalna rerezentacja klas Określene modów dla każdej z klas Lczba modów zwykle neznana z góry (mus być odkryta rzez rocedurę Algorytm k-średnch Iteracyjne owtarzane dwóch faz: Przysane róbk do modu (kandydata Reestymacja ołożeń modów Do uzyskana zbeżnośc Kryterum: średna odległość róbek od modów Powtarzane rocesu dla kolejnych wartośc k, wybór k otymalnego Przykład Założene: k=2, oczątkowe arametry modów m1=(0,1 m2 = (1,0 Próbk trenngowe: (0,2, (1,1, (2,0,(3,5,(4,4,(5,3
17 Artfcal Intellgence Krzysztof Ślot, 2008 Metoda k-średnch określana modów k=3 k=4 k=5 Kryterum k=6 k=7 Otymalna wartość k Właścwośc Umarkowane złożony trenng Arbtralne owerzchne decyzyjne rozwązywane trudnych roblemów Mała wrażlwość na złe rzykłady, szybka klasyfkacja, małe zasoby
18 Artfcal Intellgence Krzysztof Ślot, 2008 Cechy Meszanny model Gaussowskch (GMM Rozwnęce k-nm (można traktować w kategorach robablstycznych Lesze modelowane modów (orócz wartośc średnej nformacje o rozrzuce Mody są rerezentowane funkcjam Gaussa renng: Algorytm EM (Eectaton Mamzaton Analogczny do algorytmu k-średnch: dwe narzemenne fazy Faza 1: wyznaczene arametrów Gaussody (wektora średnego macerzy kowarancj, Faza 2: onowne etyketowane róbek (odstawa: orównane odległośc Machalonobsa Właścwośc metody Jedna z najskutecznejszych obecne metod klasyfkacj
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.
Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik
Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA
Macierz prawdopodobieństw przejścia w pojedynczym kroku dla łańcucha Markowa jest postaci
Zadane. Macerz radoodobeńst rzejśca ojedynczym kroku dla łańcucha Markoa...... o trzech stanach { } jest ostac 0 n 0 0 (oczyśce element stojący -tym erszu j -tej kolumne tej macerzy oznacza P( = j. Wtedy
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy
SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 15. ANALIZA DANYCH WYKRYWANIE OBSERWACJI ODSTAJĄCYCH, UZUPEŁNIANIE BRAKUJĄCYCH DANYCH Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska WYKRYWANIE
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja
Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
mę, nazwsko, nr ndeksu: Ekonometra egzamn 1//19 1. Egzamn trwa 9 mnut.. Rozwązywane zadań należy rozpocząć po ogłoszenu początku egzamnu a skończyć wraz z ogłoszenem końca egzamnu. Złamane tej zasady skutkuje
WYKRYWANIE WYJĄTKÓW PRZY UŻYCIU WEKTORÓW NOŚNYCH
Zeszyty Naukowe WSInf Vol 16, Nr 1, 2017 Agneszka Duraj Instytut Informatyk, Poltechnka Łódzka Wólczańska 215, 90-924 Łódź emal: agneszka.duraj@.lodz.l WYKRYWANIE WYJĄTKÓW PRZY UŻYCIU WEKTORÓW NOŚNYCH
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 18. ALGORYTMY EWOLUCYJNE - ZASTOSOWANIA Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska ZADANIE ZAŁADUNKU Zadane załadunku plecakowe
Karta (sylabus) modułu/przedmiotu
Karta (sylabus) mułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Materały budowlane II Constructon materals Rok: II Semestr: MK_26 Rzaje zajęć lczba gzn: Studa stacjonarne Studa
Plan wykładu. Sztuczne sieci neuronowe. Problem dwuklasowy (N=1) Problem klasyfikacji. Wykład 6: Ocena jakoci sieci neuronowej Sieci RBF KLASYFIKATOR
Plan wykładu Wykład 6: Ocena jakoc sec neuronowej Sec RBF Małgorzata Krtowska Katedra Orogramowana e-mal: mmac@.b.balystok.l Metody oceny jakoc sec neuronowych roblem klasyfkacj metody szacowana jakoc
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
WIELOKRYTERIALNY DOBÓR PARAMETRÓW OPERATORA MUTACJI W ALGORYTMIE EWOLUCYJNYM UCZENIA SIECI NEURONOWEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 91 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.91.0017 Stanisław PŁACZEK* WIELOKRYTERIALNY DOBÓR PARAMETRÓW OPERATORA MUTACJI W ALGORYTMIE
Algorytmy metaheurystyczne Wykład 11. Piotr Syga
Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Plan wykładu. Sztuczne sieci neuronowe. Problem dwuklasowy (N=1) Problem klasyfikacji. Wykład 4-5: Ocena jakości sieci neuronowej Sieci RBF
Plan wyładu Wyład 4-5: Ocena jaośc sec neuronowej Sec RBF Małgorzata Krętowsa Wydzał Informaty PB Metody oceny jaośc sec neuronowych roblem lasyfacj metody szacowana jaośc lasyfacj ocena jaośc lasyfacj
WOJSKOWA AKADEMIA TECHNICZNA im. Jar osława Dąbr owskiego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO
WOJSKOWA AKADEMIA TECHNICZNA m. Jar osława Dąbr owskego ZAKŁAD AWIONIKI I UZBROJENIA LOTNICZEGO Przedmot: PODSTAWY AUTOMATYKI I AUTOMATYZACJI (studa I stona) ĆWICZENIE RACHUNKOWE KOREKCJA LINIOWYCH UKŁADÓW
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
P 1, P 2 - wektory sił wewnętrznych w punktach powierzchni F wokół punktu A
TEORI STNU NPRĘŻENI. WEKTOR NPRĘŻENI r x P P P P, P - wektory sł wewnętrznych w unktach owerzchn wokół unktu P P r, P - suma sł wewnętrznych na owerzchn P P P P średna gęstość sł wewnętrznych na owerzchn
Dla dzielnej X (dividend) i dzielnika D 0 (divisor) liczby Q oraz R takie, Ŝe
zelene ekwencyjne zelene la dzelnej X (dvdend) dzelnka (dvor) lczby Q oraz R take, Ŝe X=Q R, R < nazywa ę lorazem Q (uotent) reztą R (remander) z dzelena X rzez. Równane dzelena moŝe meć rozwązana ełnające
Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 2 Potencjał membranowy u wyznaczany jest klasyczne: gdze: w waga -tego wejśca neuronu b ba
Nowoczesne technk nformatyczne - Ćwczene 2: PERCEPTRON str. 1 Ćwczene 2: Perceptron WYMAGANIA 1. Sztuczne sec neuronowe budowa oraz ops matematyczny perceptronu (funkcje przejśca perceptronu), uczene perceptronu
PROGRAM BADAŃ BIEGŁOŚCI SILESIALAB 2018
PROGRAM BADAŃ BIEGŁOŚCI SILESIALAB 2018 OŚRODEK BADAŃ I KONTROLI ŚRODOWISKA SP. Z O.O. w Katowcach KOD PORÓWNANIA /3/2018 SPIS TREŚCI 1. ORGANIZATOR PROGRAMU str. 2 2. UCZESTNICY BADAŃ BIEGŁOŚCI str. 2
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Korekcja liniowych układów regulacji automatycznej
WOJSKOWA AKADEMIA TECHNICZNA m. Jarosława Dąbrowskego Ćwczene rachunkowe Korekcja lnowych układów regulacj automatycznej mgr nż. Bartosz BRZOZOWSKI Warszawa 7 Cel ćwczena rachunkowego Podczas ćwczena oruszane
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Prawdziwa ortofotomapa
Prawdzwa ortofotomapa klasyczna a prawdzwa ortofotomapa mnmalzacja przesunęć obektów wystających martwych pól na klasycznej ortofotomape wpływ rodzaju modelu na wynk ortorektyfkacj budynków stratege opracowana
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING
METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING Maszyna Wektorów Nośnych Suort Vector Machine SVM Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Konstrukcja gier sprawiedliwych i niesprawiedliwych poprzez. określanie prawdopodobieństwa.
Fundacja Centrum Edukacj Obyatelskej, ul. Noakoskego 10, 00-666 Warszaa, e-mal: ceo@ceo.org.l; Akadema ucznoska, Tel. 22 825 04 96, e-mal: au@ceo.org.l; ęcej nformacj:.akademaucznoska.l 1 Konstrukcja ger
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Prokop jproko@sgh.waw.pl
MIKROEKONOMIA Prof. nadzw. dr hab. Jacek Proko roko@sgh.waw.l Statyka dynamka olgoolstyczne struktury rynku. Modele krótkookresowe konkurenc cenowe w olgoolu.. Model ogranczonych mocy rodukcynych ako wyaśnene
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy
Karta (sylabus) modułu/przedmiotu
Karta (sylabus) modułu/przedmotu Budownctwo (Nazwa kerunku studów) Studa I Stopna Przedmot: Kerowane procesem nwestycyjnym Management of constructon process Rok: III Semestr: 5 MK_48 Rodzaje zajęć lczba
Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe
Zakres zagadnienia Wrowadzenie do wsółczesnej inŝynierii Modele Deformowalne Dr inŝ. Piotr M. zczyiński Wynikiem akwizycji obrazów naturalnych są cyfrowe obrazy rastrowe: dwuwymiarowe (n. fotografia) trójwymiarowe
Laboratorium z Podstaw Automatyki. Laboratorium nr 4. Działanie układu automatycznej regulacji. Rodzaje regulatorów.
. Cele ćwczena Laboratorum nr 4 Dzałane ukłau automatycznej regulacj. ozaje regulatorów. zaoznane sę z buową załanem ukłau regulacj, zaoznane sę z różnym strukturam regulatorów, obór arametrów regulatorów
KLASYFIKACJA. Słownik języka polskiego
KLASYFIKACJA KLASYFIKACJA Słownik języka polskiego Klasyfikacja systematyczny podział przedmiotów lub zjawisk na klasy, działy, poddziały, wykonywany według określonej zasady Klasyfikacja polega na przyporządkowaniu
Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Sztuczne sieci neuronowe
Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe
Wykłady Jacka Osiewalskiego. z Ekonometrii. CZĘŚĆ PIERWSZA: Modele Regresji. zebrane ku pouczeniu i przestrodze
Wykłady Jacka Osewalskego z Ekonometr zebrane ku pouczenu przestrodze UWAGA!! (lstopad 003) to jest wersja neautoryzowana, spsana przeze mne dawno temu od tego czasu ne przejrzana; ma status wersj roboczej,
Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18
Eksploracja Danych wykład 4 Sebastian Zając WMP.SNŚ UKSW 10 maja 2017 Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja 2017 1 / 18 Klasyfikacja danych Klasyfikacja Najczęściej stosowana (najstarsza)
Markowa. ZałoŜenia schematu Gaussa-
ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów
Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość
Idea Niech θ oznacza parametr modelu statystycznego. Dotychczasowe rozważania dotyczyły metod estymacji tego parametru. Teraz zamiast szacować nieznaną wartość parametru będziemy weryfikowali hipotezę
ZAJĘCIA X. Zasada największej wiarygodności
ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Specjalnościowy Obowiązkowy Polski Semestr VI
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016 Z-ID-607a Wybrane modele klasyfikacji i regresji Selected Models of Classification
Rozpoznawanie obrazów
Rozpoznawane obrazów Końcowym etapem analzy obrazów może być ne tylko dentyfkacja obektów analzy oraz ch loścowa charakterystyka ale równeż klasyfkacja obektów ch symbolczna nterpretacja, te ostatne często
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
Rachunek niepewności pomiaru opracowanie danych pomiarowych
Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.
Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
MIARY ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU I ICH UŻYCIE W PROBLEMACH WIELOWYMIAROWEJ ANALIZY DANYCH
SZYMON ŁUKASIK 1,, PIOTR KULCZYCKI 1, MIARY ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU I ICH UŻYCIE W PROBLEMACH WIELOWYMIAROWEJ ANALIZY DANYCH TOPOLOGY PRESERVATION MEASURES AND THEIR APPLICATION IN PROBLEMS
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
Badania suwnicy pomostowej natorowej dwudźwigarowej
INSTYTUT KONSTRUKCJI MASZYN KIERUNEK: TRANSPORT PRZEDMIOT: TRANSPORT BLISKI LABORATORIUM Badana suwncy omostowej natorowej dwudźwgarowej Research of overhead travelng crane wth two grders. Cel zakres zajęć:
Sieci Neuronowe 1 Michał Bereta
Wprowadzene Zagadnena Sztucznej Intelgencj laboratorum Sec Neuronowe 1 Mchał Bereta Sztuczne sec neuronowe można postrzegać jako modele matematyczne, które swoje wzorce wywodzą z bolog obserwacj ludzkch
Zastosowanie Inteligentnego Systemu Nauczającego (ISN) w procesie nauczania ODL (Open and Distance Learning) badania ISN
amodzielna Pracownia Radiokomunikacji Morskiej w Gdańsku (P8) Zastosowanie Inteligentnego ystemu Nauczającego (IN) w rocesie nauczania ODL (Oen and Distance Learning) badania IN Praca nr 08300057 Gdańsk,
Minimalizacja globalna, algorytmy genetyczne i zastosowanie w geotechnice
Mnmalzacja globalna, algorytmy genetyczne zastosowane w geotechnce Metoda sejsmczna Metoda geoelektryczna Podstawowy podzał ZAGADNIENIE PROSTE (ang. forward problem) model + parametry modelu dane (ośrodek,
Ćwiczenie nr 1. Oznaczanie porowatości otwartej, gęstości pozornej i nasiąkliwości wodnej biomateriałów ceramicznych
Ćwiczenie nr 1 Oznaczanie orowatości otwartej, gęstości ozornej i nasiąkliwości wodnej biomateriałów ceramicznych Cel ćwiczenia: Zaoznanie się z metodyką oznaczania orowatości otwartej, gęstości ozornej
WikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
Systemy Inteligentnego Przetwarzania wykład 3: sieci rekurencyjne, sieci samoorganizujące się
Systemy Intelgentnego Przetwarzana wykład 3: sec rekurencyne, sec samoorganzuące sę Dr nż. Jacek Mazurkewcz Katedra Informatyk Technczne e-mal: Jacek.Mazurkewcz@pwr.edu.pl Sec neuronowe ze sprzężenem Sprzężena
Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:
Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH
Stansław KOWALIK e-mal: skowalk@wsb.edu.pl Wyższa Szkoła Bznesu Dąbrowa Górncza RÓWNOWAGA STACKELBERGA W GRACH SEKWENCYJNYCH Streszczene Praca dotyczy nekooperacynych sekwencynych ger dwuosobowych o sume
Metody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
Wprowadzenie. Support vector machines (maszyny wektorów wspierających, maszyny wektorów nośnych) SVM służy do: Zalety metody SVM
SVM Wprowadzene Support vector machnes (maszyny wektorów wsperających, maszyny wektorów nośnych) SVM służy do: w wersj podstawowej klasyfkacj bnarnej w wersj z rozszerzenam regresj wyboru najważnejszych
ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA
STUDIA INFORMATICA 2012 Volume 33 Number 2A (105) Alina MOMOT Politechnika Śląska, Instytut Informatyki Michał MOMOT Instytut Techniki i Aaratury Medycznej ITAM ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
Instytut Łączności. Praca statutowa nr
Instytut Łącznośc Praca statutowa nr 11.30.004.5 Opracowane narzędz analtycznych do wspomagana decyzj dotyczących wysokośc opłat taryfkacyjnych stawek rozlczenowych na konkurencyjnym rynku telekomunkacyjnym
Ą Ń Ę Ę Ą Ę Ć ź Ż Ż Ą ń Ź Ż Ż ń ń Ź Ą Ń Ą Ą Ę ń ź Ę Ę Ż Ć Ą ź Ą Ę ń ź Ę ń ń Ą Ż Ę ń Ą ń ń Ę Ę Ę Ź ń Ę ń ń ń ń Ź Ę Ś ź Ą Ń ń Ż Ź Ę Ź ń ń ń Ę Ę ń Ż Ą ń ńń Ś ń ń Ż Ż Ę Ż Ń Ę Ą Ń Ł ń ń ń ń ń ń ń ń Ś Ź Ę Ś
Ł ŚĆ ń Ś Ł Ź Ć Ł Ą ńń ć Ż Ą Ł Ś ń Ł ć Ś ń ć ć ć Ó Ż ć ć Ą Ś ć Ś ć Ń Ś ć Ś ć Ś Ć Ś Ż Ś Ś Ż Ś Ó ń ć ć Ź Ł ć ć ć ń ń ć ć Ą ć ć ć Ź ć ć ć ć ć ć Ó Ź Ó Ł Ł Ń ć ć Ź Ą ć ć ń ć Ą ć ć ć Ł Ź Ź Ź Ż Ł Ż Ł Ż ć ń ć Ą