MIARY ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU I ICH UŻYCIE W PROBLEMACH WIELOWYMIAROWEJ ANALIZY DANYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "MIARY ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU I ICH UŻYCIE W PROBLEMACH WIELOWYMIAROWEJ ANALIZY DANYCH"

Transkrypt

1 SZYMON ŁUKASIK 1,, PIOTR KULCZYCKI 1, MIARY ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU I ICH UŻYCIE W PROBLEMACH WIELOWYMIAROWEJ ANALIZY DANYCH TOPOLOGY PRESERVATION MEASURES AND THEIR APPLICATION IN PROBLEMS OF MULTIDIMENSIONAL DATA ANALYSIS S t r e s z c z e n e Przedmotem artykułu jest użyce mar zachowana struktury topologcznej zboru w problemach welowymarowej analzy danych. Zaproponowana metodologa jest nsprowana obserwacją, że ne wszystke elementy zboru perwotnego w toku redukcj są właścwe zachowane w ramach reprezentacj w przestrzen o zmnejszonej wymarowośc. W pracy omówono na wstępe stnejące mary zachowana topolog zboru, a następne przedstawono możlwośc ch włączena w klasyczne procedury eksploracyjnej analzy danych. Słowa kluczowe: welowymarowa analza danych, redukcja wymaru, zachowane topolog A b s t r a c t The artcle focuses on the use of topology preservaton measures n multdmensonal data analyss. Proposed methodology s based on an observaton that not all elements of an ntal dataset are equally preserved n ts low-dmensonal embeddng space representaton. The contrbuton frst overvews exstng topology preservaton measures, then ther ncluson n the classcal methods of exploratory data analyss s beng dscussed. Keywords: multdmensonal datasets, dmensonalty reducton, topology preservaton 1 Katedra Automatyk Technk Informacyjnych, Poltechnka Krakowska Instytut Badań Systemowych, Polska Akadema Nauk Adres do korespondencj: szymonl@pk.edu.pl

2 1. Wstęp Współczesna analza danych mus podejmować sę przetwarzana zborów o dużej wymarowośc znacznym rozmarze próby. Wynka to z szybkego wzrostu lośc nformacj przechowywanych w hurtownach danych oraz opracowana narzędz pozwalających na wykorzystane takch właśne rozproszonych źródeł nformacj [3]. Ekstrakcja wedzy wzualzacja danych w przypadku zborów welowymarowych stanową wyzwane, główne ze względu na trudnośc metodologczne mające mejsce w przypadku danych o znacznej wymarowośc. Wynkają przede wszystkm z szeregu zjawsk występujących w tego typu zborach, w lteraturze znanych pod pojęcem przekleństwa welowymarowośc [14]. Aby ogranczyć trudnośc z nch wynkające opracowano lczne procedury redukcj wymarowośc zboru. Celem redukcj wymaru jest transformacja zboru do nowej, N - wymarowej reprezentacj, gdze N jest znaczne mnejsze od n (czyl perwotnej wymarowośc rozważanych danych). Efekt ten można osągnąć mędzy nnym przez ekstrakcję konstrukcję zredukowanego, bazującego na perwotnym, zestawu cech (ang. feature extracton). Szczegółowe omówene metod redukcj wymaru należących do tej klasy, wraz z ch eksperymentalnym porównanem można znaleźć w pracy [10]. Charakterystyczną własnoścą wszystkch metod redukcj wymaru jest naturalna kompresja nformacj spowodowana zmnejszenem lczby dostępnych cech. Stopeń stratnośc tej kompresj może być zmerzony z użycem odpowednch mar zachowana struktury topologcznej zboru określających loścowo jej deformację. Nektóre z tych mar mogą być rozpatrywane w odnesenu do każdego elementu rozważanego zboru, co pozwala na określene w jakm stopnu dany element został zachowany w sense swego względnego położena w toku przeprowadzanej redukcj. Koncepcja ta jest przedmotem rozważań nnejszej pracy. Ponadto, proponuje sę tu także użyce wspomnanych mar określanych wagam elementów analzowanego zboru dla celów poprawy skutecznośc procedur analzy danych przeprowadzanych w przestrzen zredukowanej. Podejśce to zostało po raz perwszy zaproponowane w pracy [7] w kontekśce nowatorskej procedury redukcj wymaru opartej o metaheurystykę symulowanego wyżarzana.. Mary zachowana struktury topologcznej zboru Nech Y oznacza macerzową reprezentację rozważanego zboru w przestrzen zredukowanej, o wymarze N m : y m Y y y..., (1) 1 a X podobną reprezentację zboru perwotnego ( m oznacza lczność próby). Dla celów dalszych rozważań nech dodatkowo dj oraz j oznaczają, dla, j {1,,..., m}, odległośc eukldesowe mędzy elementam analzowanego zboru w przestrzen perwotnej zredukowanej. Jedną z ważnejszych mar zachowana struktury topologcznej, borących pod uwagę globalny kontekst redukcj tj. możlwe najlepszą zgodność odległośc mędzy wszystkm elementam rozważanego zboru w przestrzen perwotnej zredukowanej jest tzw.

3 surowy stres (ang. raw stress), powszechne używany w ramach welu warantów skalowana welowymarowego [1]. Jest on dany ścślej następującą zależnoścą: m m1 S R ( d j j ). () 1 j1 Często stosowany jest równeż zaproponowany przez Sammona [1] wskaźnk stresu, w ramach którego mnejszy nacsk kładze sę na duże odległośc, zdefnowany według wzoru: S S m m m1 1 ( dj j ) m1 d 1 j1 1 j1 j d j. (3) W globalnym ujęcu możlwe jest tu użyce mędzy nnym współczynnka korelacj rang Spearmana (naczej: rho Spearmana). Pozwala on na loścowe określene zachowana porządku odległośc w przestrzen zredukowanej, w odnesenu do porządku tych samych odległośc wyznaczonych w przestrzen perwotnej. Rho Spearmana stanow estymator współczynnka korelacj rang [13], w kontekśce redukcj wymaru wskazuje on zatem w jakm stopnu przeprowadzana transformacja zachowuje porządek odległośc wzajemnych mędzy poszczególnym elementam analzowanej próby. Współczynnk ten oblcza sę z użycem następującego wzoru: 6 M p1 ( r pd r ) p SP 1, (4) 3 M M gdze M m( m 1) / oznacza łączną lczbę odległośc podlegających porównanu, natomast r p d r p stanową rang uporządkowanych rosnąco odległośc (gdy 1,,..., M ) w przestrzen perwotnej oraz zredukowanej. Wartość współczynnka SP równa 1 odpowada perfekcyjnemu zachowanu porządku odległośc, w ogólnym zaś przypadku SP [1,1]. Ocenę realzacj redukcj wymaru o charakterze lokalnym przeprowadza sę zwykle poprzez weryfkację zgodnośc grafów lokalnego sąsedztwa. Istneje wele mar wykorzystujących tego typu podejśce przykładem może być tu mara Konga [5]. W ramach nnejszej pracy proponowane jest użyce prostej, wymagającej podana tylko jednego parametru, mary średnego względnego błędu rang MRRE (ang. Mean Relatve Rank Error) [6]. Nech zatem x ) oznacza zbór k - najblższych sąsadów elementu x, a R j d k ( R j stanową rang odległośc dj oraz j określone dla elementu x względem reszty analzowanego zboru. Współczynnk MRRE jest wtedy zdefnowany w sposób następujący:

4 MRRE C 1 x j k ( x ) R R m m 1 jd j R jd, (5) przy czym występująca w powyższej zależnośc stała normalzująca C, zapewnająca by MRRE [0,1], jest określana według wzoru: C m k p1 p m 1. (6) p Tak zdefnowana mara jest podobna do współczynnka cągłośc równa sę zeru, gdy w zborach najblższych sąsadów wyznaczonych dla każdego z elementów próby występuje taka sama kolejność w przestrzen perwotnej zredukowanej [6] Bardzej szczegółowe omówene porównane wymenonych wyżej mar zachowana struktury topologcznej zboru można znaleźć w pracy [4]. Następna część artykułu pośwęcona będze ch zastosowanu w analze danych realzowanej w zredukowanej przestrzen cech. 3. Ops proponowanej procedury Ubocznym efektem redukcj wymaru może być znaczna deformacja położena nektórych elementów analzowanego zboru, co zasygnalzowano wstępne w perwszej częśc nnejszego opracowana. Wpływ tej deformacj na skuteczność realzacj dalszych procedur analzy danych może nwelować nezaprzeczalny zysk wynkający z uzyskana zredukowanej reprezentacj rozważanych danych. Celowe wydaje sę zatem loścowe określene stopna tej deformacj dla każdego elementu analzowanego zboru. Wskaźnk tak, nazywany wagą oznaczany w, może być następne użyty dla celów poprawena skutecznośc procedur analzy danych realzowanych w przestrzen zredukowanej. Aby wyznaczyć wartośc wag dla poszczególnych elementów należy na wstępe oblczyć odpowadający m wkład w ostateczną wartość ndeksu deformacj struktury * topologcznej. Wkład ten oznaczony będze jako w, a metoda jego oblczena wynka bezpośredno ze wzorów (-5). W każdym z przedstawonych przypadków ne jest wymagane by suma wkładów dla poszczególnych elementów zboru stanowła ostateczną wartość rozpatrywanego ndeksu. Wag w otrzymywane są bowem z przeprowadzenem dodatkowej normalzacj wartośc * w, tak by w m m 1. Pozwalają one na uwzględnene deformacj struktury topologcznej zboru, która występuje w toku redukcj wymaru. Elementy o dużej wadze pownny być traktowane jako bardzej adekwatne w ramach dalszej analzy danych przeprowadzanej w przestrzen zredukowanej. Co węcej, z użycem zaproponowanego tu schematu można stotne zredukować wpływ znacząco zdeformowanych elementów zredukowanego zboru poprzez ustalene wartośc w 0 dla wszystkch elementów, dla których zachodz w W gdze W R jest wartoścą

5 progową, nazywaną równeż współczynnkem kompresj. Pozostałe wag należy wtedy dodatkowo znormalzować, lub ustalć w 1. Wag w zaproponowanej postac można użyć mędzy nnym w zadanach analzy skupeń (klasteryzacj) oraz klasyfkacj. W perwszym przypadku użyce wag w standardowym warance popularnego algorytmu procedury K-średnch jest możlwe na etape aktualzacj położena środków klastrów []. Są one wtedy wyznaczane jako ważone środk cężkośc. W zadanu klasyfkacj wag mogą być użyte m.n. w stworzenu alternatywnego warantu ważonego klasyfkatora k-najblższych sąsadów [11]. Zmodyfkowana procedura, uwzględnająca przedstawony powyżej schemat wag, dokonuje przypsana elementów do klas na podstawe ważonych odległośc, czyl podzelonych dodatkowo przez wartość w. Ten sposób postępowana można uogólnć na przypadek k Podsumowane W nnejszym artykule metodologę dedykowaną dla zagadneń welowymarowej analzy danych. Bazuje ona na obserwacj, że redukcja wymaru powoduje znaczną modyfkację struktury topologcznej zboru. Jej stotą jest wprowadzene mar zachowana struktury topologcznej w celu poprawy skutecznośc metod eksploracyjnej analzy danych realzowanych w zredukowanej przestrzen cech. Przeprowadzone eksperymenty oblczenowe dowodzą, że zastosowane zaproponowanego tu podejśca daje obecujące rezultaty. Dalsze nformacje na temat przedstawonej tu koncepcj można znaleźć w pracach [8,9]. * * * Badane zrealzowano dzęk dofnansowanu w ramach stypendum naukowego z projektu pn. Technologe nformacyjne: badana ch nterdyscyplnarne zastosowana współfnansowanego ze środków Un Europejskej w ramach Europejskego Funduszu Społecznego, Program Operacyjny Kaptał Ludzk (Umowa nr UDA-POKL /10-00). L t e r a t u r a [1] Borg, I., Groenen, P.J.F., Modern Multdmensonal Scalng: Theory and Applcatons, Sprnger, Hedelberg, 010. [] Evertt, B. S., Landau, S., Leese, M., Stahl, D., Cluster Analyss, Wley, New York, 011. [3] Furht, B., Escalante, A. (red.), Handbook of Data Intensve Computng, Sprnger, Hedelberg, 011.

6 [4] Karbauskate, R., Dzemyda, G., Topology Preservaton Measures n the Vsualzaton of Manfold-Type Multdmensonal Data, Informatca, vol. 0, 35-54, 009. [5] Kong, A., Interactve vsualzaton and analyss of herarchcal neural projectons for data mnng, IEEE Transactons on Neural Networks, vol. 11/3, , 000. [6] Lee, J.A., Verleysen, M., Nonlnear Dmensonalty Reducton, Sprnger, New York, 007. [7] Łukask, S., Kulcz yck, P., An Algorthm for Sample and Data Dmensonalty Reducton Usng Fast Smulated Annealng, Lecture Notes n Artfcal Intellgence, vol. 710, , 011. [8] Łukask, S., Kulczyck, P., Zastosowane mar zachowana struktury topologcznej zboru w welowymarowej analze danych w przestrzen zredukowanej, Czasopsmo Technczne, sera: Automatyka, vol. 1-AC, ss. 5-16, 01. [9] Łukask, S., Kulczyck, P., Usng Topology Preservaton Measures for Multdmensonal Intellgent Data Analyss n the Reduced Feature Space, Lecture Notes n Artfcal Intellgence, vol. 710, , 011. [10] Maaten, L.J.P.v., Postma, E.O., Herk, H.J., Dmensonalty Reducton: A Comparatve Revew, Tlburg Unversty Techncal Report, TCC-TR , 009. [11] Parvn, H., Alzadeh, H., Mnat, B., A Modfcaton on K-Nearest Neghbor Classfer, Global Journal of Computer Scence and Technology, vol. 10, 37-41, 010. [1] Sammon, J. W., A Nonlnear Mappng for Data Structure Analyss, IEEE Transactons on Computers, vol. 18, , [13] Sammut, C., Webb, G.I. (red.), Encyclopeda of Machne Learnng, Sprnger, New York, 011. [14] Verleysen M., Franços D., The Curse of Dmensonalty n Data Mnng and Tme Seres Predcton, w: Cabestany, J., Preto, A., Sandoval, F. (red.) Computatonal Intellgence and Bonspred Systems. Lecture Notes n Computer Scence, vol. 351, , Sprnger, Hedelberg, 005.

ZASTOSOWANIE MIAR ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU W WIELOWYMIAROWEJ ANALIZIE DANYCH W PRZESTRZENI ZREDUKOWANEJ

ZASTOSOWANIE MIAR ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU W WIELOWYMIAROWEJ ANALIZIE DANYCH W PRZESTRZENI ZREDUKOWANEJ SZYMON ŁUKASIK, PIOTR KULCZYCKI ZASTOSOWANIE MIAR ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU W WIELOWYMIAROWEJ ANALIZIE DANYCH W PRZESTRZENI ZREDUKOWANEJ USING TOPOLOGY PRESERVATION MEASURES FOR HIGH-DIMENSIONAL

Bardziej szczegółowo

ZASTOSOWANIE MIAR ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU W WIELOWYMIAROWEJ ANALIZIE DANYCH W PRZESTRZENI ZREDUKOWANEJ

ZASTOSOWANIE MIAR ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU W WIELOWYMIAROWEJ ANALIZIE DANYCH W PRZESTRZENI ZREDUKOWANEJ 1 SZYMON ŁUKASIK, PIOTR KULCZYCKI ZASTOSOWANIE MIAR ZACHOWANIA STRUKTURY TOPOLOGICZNEJ ZBIORU W WIELOWYMIAROWEJ ANALIZIE DANYCH W PRZESTRZENI ZREDUKOWANEJ USING TOPOLOGY PRESERVATION MEASURES FOR HIGH-DIMENSIONAL

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Zmodyfikowana technika programowania dynamicznego

Zmodyfikowana technika programowania dynamicznego Zmodyfkowana technka programowana dynamcznego Lech Madeysk 1, Zygmunt Mazur 2 Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 27, 50-370 Wrocław Streszczene.

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

POJAZDY SZYNOWE 2/2014

POJAZDY SZYNOWE 2/2014 ANALIZA PRZYCZYN I SKUTKÓW USZKODZEŃ (FMEA) W ZASTOSOWANIU DO POJAZDÓW SZYNOWYCH dr nż. Macej Szkoda, mgr nż. Grzegorz Kaczor Poltechnka Krakowska, Instytut Pojazdów Szynowych al. Jana Pawła II 37, 31-864

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

MODELOWANIE ROZMYTE Z ZASTOSOWANIEM ALGORYTMU OPTYMALIZACJI ROJEM CZĄSTEK FUZZY MODELING WITH THE PARTICLE SWARM OPTIMIZATION ALGORITHM

MODELOWANIE ROZMYTE Z ZASTOSOWANIEM ALGORYTMU OPTYMALIZACJI ROJEM CZĄSTEK FUZZY MODELING WITH THE PARTICLE SWARM OPTIMIZATION ALGORITHM DOMINIKA FALKIEWICZ *, SZYMON ŁUKASIK ** MODELOWANIE ROZMYTE Z ZASTOSOWANIEM ALGORYTMU OPTYMALIZACJI ROJEM CZĄSTEK FUZZY MODELING WITH THE PARTICLE SWARM OPTIMIZATION ALGORITHM Streszczene Abstract Głównym

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Artur Zaborsk Unwersytet Ekonomczny we Wrocławu ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO Wprowadzene Od ukazana

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

OCENA SEGMENTACJI RYNKU ZA POMOCĄ MIAR JAKOŚCI GRUPOWANIA DANYCH

OCENA SEGMENTACJI RYNKU ZA POMOCĄ MIAR JAKOŚCI GRUPOWANIA DANYCH STUDIA INFORMATICA 2014 Volume 35 Number 2 (116) Łukasz PAŚKO, Galna SETLAK Poltechnka Rzeszowska, Zakład Informatyk OCENA SEGMENTACJI RYNKU ZA POMOCĄ MIAR JAKOŚCI GRUPOWANIA DANYCH Streszczene. Celem

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

WIELOKRYTERIALNE WSPOMAGANIE DECYZJI W HARMONOGRAMOWANIU PROJEKTÓW 1

WIELOKRYTERIALNE WSPOMAGANIE DECYZJI W HARMONOGRAMOWANIU PROJEKTÓW 1 DECYZJE nr 13 czerwec 2010 WIELOKRYTERIALNE WSPOMAGANIE DECYZJI W HARMONOGRAMOWANIU PROJEKTÓW 1 Tomasz Błaszczyk* Akadema Ekonomczna w Katowcach Macej Nowak** Akadema Ekonomczna w Katowcach Streszczene:

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku

Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku B u l e t y n WAT Vo l. LXI, Nr 3, 2012 Wyznaczane lokalzacj obektu logstycznego z zastosowanem metody wyważonego środka cężkośc studum przypadku Emla Kuczyńska, Jarosław Zółkowsk Wojskowa Akadema Technczna,

Bardziej szczegółowo

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene

Bardziej szczegółowo

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności Jacek Batóg Unwersytet Szczecńsk Propozycja modyfkacj klasycznego podejśca do analzy gospodarnośc Przedsęborstwa dysponujące dentycznym zasobam czynnków produkcj oraz dzałające w dentycznych warunkach

Bardziej szczegółowo

KONCEPCJA ZASTOSOWANIA ALGORYTMU FAKTORYZACJI DO OCENY NIEZAWODNOŚCI CIĄGÓW KOMUNIKACYJNYCH

KONCEPCJA ZASTOSOWANIA ALGORYTMU FAKTORYZACJI DO OCENY NIEZAWODNOŚCI CIĄGÓW KOMUNIKACYJNYCH 2-2007 POBLEMY ESPLOATACJI 29 obert PILCH, Jan SZYBA Akadema Górnczo-Hutncza, raków ONCEPCJA ZASTOSOWANIA ALGOYTMU FATOYZACJI DO OCENY NIEZAWODNOŚCI CIĄGÓW OMUNIACYJNYCH Słowa kluczowe Nezawodność układów

Bardziej szczegółowo

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa

Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)

Bardziej szczegółowo

WSHiG Karta przedmiotu/sylabus. Studia stacjonarne 15 w Studia niestacjonarne 8 w Studia stacjonarne 45 ćw Studia niestacjonarne 12 ćw

WSHiG Karta przedmiotu/sylabus. Studia stacjonarne 15 w Studia niestacjonarne 8 w Studia stacjonarne 45 ćw Studia niestacjonarne 12 ćw WSHG Karta przedmotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka Rekreacja Obsługa Ruchu Turystycznego Stacjonarny / nestacjonarny VI / I stopna Nazwa przedmotu Analza turystycznego ORT_MKK_S_21

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

Pesymistyczna złożoność obliczeniowa algorytmu faktoryzacji Fact

Pesymistyczna złożoność obliczeniowa algorytmu faktoryzacji Fact Pesymstyczna złożoność oblczenowa algorytmu faktoryzacj Fact Lech Madeysk 1, Zygmunt Mazur Poltechnka Wrocławska, Wydzał Informatyk Zarządzana, Wydzałowy Zakład Informatyk Wybrzeże Wyspańskego 7, 50-370

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Statystyczne metody przetwarzania danych

Statystyczne metody przetwarzania danych Artfcal Intellgence Krzysztof Ślot, 2008 Statystyczne metody rzetwarzana danych Klasyfkacja mnmalnoodległoścowa Krzysztof Ślot Instytut Informatyk Stosowanej Poltechnka Łódzka Artfcal Intellgence Krzysztof

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Wielokryterialny Trójwymiarowy Problem Pakowania

Wielokryterialny Trójwymiarowy Problem Pakowania Łukasz Kacprzak, Jarosław Rudy, Domnk Żelazny Instytut Informatyk, Automatyk Robotyk, Poltechnka Wrocławska Welokryteralny Trójwymarowy Problem Pakowana 1. Wstęp Problemy pakowana należą do klasy NP-trudnych

Bardziej szczegółowo

WSHiG Karta przedmiotu/sylabus. Studia stacjonarne 15 w Studia niestacjonarne 8 w Studia stacjonarne 45 ćw Studia niestacjonarne 12 ćw

WSHiG Karta przedmiotu/sylabus. Studia stacjonarne 15 w Studia niestacjonarne 8 w Studia stacjonarne 45 ćw Studia niestacjonarne 12 ćw WSHG Karta przedmotu/sylabus KIERUNEK SPECJALNOŚĆ TRYB STUDIÓW SEMESTR Turystyka Rekreacja Obsługa Ruchu Turystycznego Stacjonarny / nestacjonarny VI / I stopna Nazwa przedmotu Analza ORT_MKK_S_21 ORT_MKK_NST_21

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Ewa Pośpech Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk posp@ue.katowce.pl WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Streszczene: W artykule rozważano zagadnene

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA

ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA TUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Katarzyna Zeug-Żebro * Unwersytet Ekonomczny w Katowcach ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA TREZCZENIE Perwsze prawo

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER

ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Macej Wolny ASPEKT SYTUACJI STATUS QUO WE WSPOMAGANIU WIELOKRYTERIALNEGO WYBORU BAZUJĄCEGO NA TEORII GIER Wprowadzene Zagadnena welokryteralne dotyczą sytuacj, w których rozpatruje sę elementy zboru dopuszczalnych

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo

ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO FRAGMENTU SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA W ASPEKCIE WYBORU METODY ESTYMACJI OBCIĄŻEŃ SIECI

ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO FRAGMENTU SIECI ROZDZIELCZEJ ŚREDNIEGO NAPIĘCIA W ASPEKCIE WYBORU METODY ESTYMACJI OBCIĄŻEŃ SIECI POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 94 Electrcal Engneerng 2018 DOI 10.21008/j.1897-0737.2018.94.0010 Wojcech BĄCHOREK *, Marusz BENESZ * Andrzej MAKUCH * ANALIZA STRAT MOCY CZYNNEJ WYBRANEGO

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana

Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana Kodowane nformacj Instytut Informatyk UWr Studa weczorowe Wykład nr 2: rozszerzone dynamczne Huffmana Kod Huffmana - nemłe przypadk... Nech alfabet składa sę z 2 lter: P(a)=1/16 P(b)=15/16 Mamy H(1/16,

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ Radosław Trojanek Katedra Inwestycj Neruchomośc Unwersytet Ekonomczny w Poznanu e-mal: r.trojanek@ue.poznan.pl

Bardziej szczegółowo

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH

MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH Adam Mchczyńsk W roku 995 grupa nstytucj mędzynarodowych: ISO Internatonal Organzaton for Standardzaton (Mędzynarodowa Organzacja Normalzacyjna),

Bardziej szczegółowo

NOWA EMERYTURA Z FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH

NOWA EMERYTURA Z FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH NOWA EMERYTURA Z FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Warunk nabywana prawa do nowej emerytury oraz jej wysokość określa ustawa z dna 17 grudna 1998 r.

Bardziej szczegółowo

KONCEPCJA OCENY HYBRYDOWYCH SYSTEMÓW ENERGETYCZNYCH

KONCEPCJA OCENY HYBRYDOWYCH SYSTEMÓW ENERGETYCZNYCH 2-2010 PROBLEMY ESPLOATACJI 159 Robert DZIERŻAOWSI Poltechnka Warszawska OCCJA OCEY HYBRYDOWYCH SYSTEMÓW EERGETYCZYCH Słowa kluczowe Hybrydowy system energetyczny, skojarzony system energetyczny, generator

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW

OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Inżynera Rolncza 8(96)/2007 OKREŚLENIE CZASU MIESZANIA WIELOSKŁADNIKOWEGO UKŁADU ZIARNISTEGO PODCZAS MIESZANIA Z RECYRKULACJĄ SKŁADNIKÓW Jolanta Królczyk, Marek Tukendorf Katedra Technk Rolnczej Leśnej,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010 Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene

Bardziej szczegółowo

Alternatywne metody grupowania i wizualizacji wykorzystujące sieci konkurencyjne

Alternatywne metody grupowania i wizualizacji wykorzystujące sieci konkurencyjne Alternatywne metody grupowana wzualzacj wykorzystujące sec konkurencyjne Janusz Stal Akadema Ekonomczna w Krakowe Katedra Informatyk Streszczene: Samoogranzujące sę mapy cech (SOM) są jednym z rodzajów

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo