Szukanie najkrótszych dróg z jednym ródłem
|
|
- Adrian Urban
- 8 lat temu
- Przeglądów:
Transkrypt
1 Szukanie najkrótszych dróg z jednym ródłem
2 Algorytm Dijkstry Załoenia: dany jest spójny graf prosty G z wagami na krawdziach waga w(e) dla kadej krawdzi e jest nieujemna dany jest wyróniony wierzchołek s Wyjcie: dla kadego wierzchołka v algorytm znajduje d[v], długo najkrótszej drogi z wierzchołka s do v. Przez długo drogi rozumiemy sum wag krawdzi nalecych do drogi. Uwaga: Algorytm mona łatwo zmodyfikowa tak, aby oprócz długoci drogi wyznaczał krawdzie do niej nalece oraz tak, aby działał w przypadku grafów skierowanych.
3 9 Pseudokod Uwaga S jest pomocniczym zbiorem wierzchołków (nazywany zbiorem pewnoci). O wierzchołku v nalecym do S wiadomo, e jego etykieta d[v] jest równa długoci najkrótszej drogi z s do v. Procedure Dijkstra(G, s) begin S := ; d[s] = ; d[ v] = dla v s; for i := to n do begin znajd v V\S, posiadajcy minimaln etykiet d[ v]; S := S {v}; for kady ssiad u V\S do begin d[ u] := min{d[ u], d[ v] + w({u,v}) };
4 4 Przykład s Procedure Dijkstra(G, s) begin S := ; d[s] = ; d[ v] = dla v s; for i := to n do begin znajd v V\S, o minimalnym d[ v]; S := S {v}; for kady ssiad u V\S do begin d[ u] := min{d[ u], d[ v] + w({u,v}) }; Szukamy długoci najkrótszej drogi z s do t. Elementy zbioru S oznaczamy kolorem czerwonym. Odpowied: najkrótsza droga z s do t ma długo. 4 t 5
5 4 Uwagi o implementacji operacje znajd v V\S, o minimalnym d[ v]; S := S {v}; s wykonywane O(n) razy operacja d[ u] := min{d[ u], d[ v] + w({u,v}) }; jest wykonywana O(m) razy do wydajnej implementacji wykorzystujemy kopiec binarny o tej własnoci, e klucz zapamitany w danym wle jest mniejszy od kluczy jego synów elementami kopca s wierzchołki V\S, a klucze to liczby d[v] w ogólnym przypadku czas budowy kopca to O(nlogn), lecz w algorytmie Dijkstry (wykorzystujc fakt, e inicjalnie wszystkie klucze, z wyjtkiem d[s] s identyczne) czas ten jest liniowy wyszukiwanie wierzchołka w zbiorze V\S o minimalnym kluczu, dziki własnoci kopca, moe by wykonana w czasie stałym usunicie elementu o minimalnym kluczu (czyli instrukcja S := S {v}; ) wymaga czasu O(log( V\S )) = O(logn) operacja d[ u] := min{d[ u], d[ v] + w({u,v}) }; wymaga czasu O(log( V\S )) ostatecznie, czas działania algorytmu Dijkstry to O((n+m)logn)
6 42 Algorytm Bellmana-Forda Wejcie: obciony spójny digraf G. Dozwolone ujemne wagi na krawdziach. Algorytm stwierdza czy istnieje cykl o ujemnej sumie wag. Jeli taki cykl istnieje, to algorytm zwraca informacj o błdzie Jeli powyszego cyklu nie ma, to algorytm znajduje długoci najkrótszych dróg ze ródła s do wszystkich pozostałych wierzchołków grafu
7 4 Szkic algorytmu algorytm szuka długoci najkrótszych dróg z wyrónionego wierzchołka s do wszystkich pozostałych wierzchołków grafu długo znalezionej drogi z s do v jest zapamitana jako d[v] inicjalnie d[s] = oraz d[v] = dla s v główna ptla algorytmu jest wykonywana n razy kady przebieg głównej ptli polega na wykonaniu relaksacji kadej krawdzi relaksacja krawdzi (u,v) jest zmniejszeniem oszacowania d[v] jeli warto dotychczas zapamitana jest wiksza ni d[u] + w((u,v)), gdzie w((u,v)) to waga krawdzi (u,v) po zakoczeniu oblicze w głównej ptli algorytmu nastpuje sprawdzenie czy w digrafie istnieje cykl o ujemnej sumie wag, co jest realizowane poprzez sprawdzenie czy mona dokona relaksacji dowolnej krawdzi jeli relaksacja jest moliwa, to graf zawiera cykl o ujemnej sumie wag, co oznacza, e najkrótszych dróg nie mona obliczy jeli relaksacja nie jest moliwa, to zapamitane wartoci d[v] s szukanymi długociami najkrótszych dróg z s
8 44 Pseudokod procedure Bellman-Ford( G, w, s ) begin d[s] = ; for each v V(G)\{s} do d[v] = + ; for i := to n do for each (u,v) E(G) do if d[u] + w((u,v)) < d[v] then d[v] := d[u] + w((u,v)); for each (u,v) E(G) do if d[u] + w((u,v)) < d[v] then return false; return true;
9 45 Przykład 2 Rys. : Sytuacja po inicjalizacji. 2 Rys. 2: Sytuacja po wykonaniu ptli dla i = 4 2 Rys. : Sytuacja po wykonaniu ptli dla i = Rys. 4: Sytuacja po wykonaniu ptli dla i = 2 5 Rys. 5: Sytuacja po wykonaniu ptli dla i = Rys. : Sytuacja po wykonaniu ptli dla i = 5
10 4 Poprawno Tw Jeli digraf G nie posiada ujemnych cykli osigalnych ze ródła s, to po zakoczeniu algorytmu Bellmana-Forda d[v] jest równe długoci najkrótszej cieki z s do v dla kadego wierzchołka v osigalnego z s. Dowód: niech s=v,...,v k =v bdzie najkrótsz ciek z s do v mamy k < V(G) dowodzimy indukcyjnie, e d[v i ] jest równe długoci najkrótszej cieki z s do v i po i-tym przebiegu drugiej ptli for jeli i=, to własno wynika z faktu, e w fazie inicjalizacji algorytmu podstawiamy d[s]= i równo ta nie ulega zmianie podczas działania algorytmu niech i >. Po dokonaniu relaksacji krawdzi (v i-,v i ) w i-tym przebiegu ptli liczba d[v i ] przyjmuje warto najkrótszej cieki z s do v i.
11 4 Poprawno Tw. Jeli digraf G zawiera cykl o ujemnej wadze osigalny z s, to algorytm Bellmana-Forda zwraca warto false. Dowód: niech v,...,v k =v bdzie cyklem o ujemnej sumie wag, tzn. i=, )) < Gdyby algorytm zwrócił warto true, to dla kadego wierzchołka cyklu mamy d[v i ] d[v i- ] + w((v i-,v i )). Sumujc nierównoci parami otrzymujemy k i= Wartoci pierwszych dwóch sum w powyszym wyraeniu s sobie równe wic co prowadzi do sprzecznoci. i k d[ v ] k i= w(( v i v i k i= w(( d[ v i ] + k i= v i, v i )) w(( v i, v )) i
Wstp. Warto przepływu to
177 Maksymalny przepływ Załoenia: sie przepływow (np. przepływ cieczy, prdu, danych w sieci itp.) bdziemy modelowa za pomoc grafów skierowanych łuki grafu odpowiadaj kanałom wierzchołki to miejsca połcze
1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza
165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.
Temat: Problem najkrótszych cieek w grafach waonych, cz. I: Algorytmy typu label - setting.. Oznaczenia i załoenia Oznaczenia G = - graf skierowany z funkcj wagi s wierzchołek ródłowy t wierzchołek
Pojcie grafu. { {v 1, v 2 }, {v 2, v 3 }, {v 3, v 4 }, {v 4, v 1 },{v 2, v 4 } } )
1 Pojcie grafu Def. Graf prosty G=(V,E) jest uporzdkowan par dwóch elementów: zbioru wierzchołków V oraz zbioru krawdzi E V V. Krawd pomidzy wierzchołkami u oraz v oznaczamy {u,v}. Graf prosty nie zawiera
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Minimalne drzewa rozpinaj ce
y i y i drzewa Spis zagadnie«y i drzewa i lasy cykle fundamentalne i rozci cia fundamentalne wªasno±ci cykli i rozci minimalne drzewa algorytm algorytm Drzewo y i spójnego, nieskierowanego grafu prostego
Najkrótsze drogi w grafach z wagami
Najkrótsze drogi w grafach z wagami Autor projektu: dr Andrzej Mróz (UMK) Projekt pn. Wzmocnienie potencjaªu dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziaªania
Skojarzenia. Najliczniejsze skojarzenia: Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych.
206 Skojarzenia Najliczniejsze skojarzenia: grafy proste dwudzielne, dowolne grafy proste. Dokładne skojarzenia o maksymalnej sumie wag w obcionych pełnych grafach dwudzielnych. 207 Definicje Def Zbiór
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
oraz spełnia warunki: (*) dla wszystkich wierzchołków
Temat: Problem najtaszego przepływu. Definicja problemu, przykład zastosowania. Algorytm Kleina. Algorytm Busackera Gowena. 1. Definicja problemu najtaszego przepływu Wejcie: Graf zorientowany G =
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne.
Temat: Problem minimalnego drzewa Steinera. Definicja problemu. Zastosowania. Algorytm dokładny Hakimi. Algorytmy aproksymacyjne. 1. Definicja problemu Wejcie: Graf spójny niezorientowany G =
Algorytmy grafowe 2. Andrzej Jastrz bski. Akademia ETI. Politechnika Gda«ska Algorytmy grafowe 2
Algorytmy grafowe 2 Andrzej Jastrz bski Akademia ETI Minimalne drzewo spinaj ce Drzewem nazywamy spójny graf nie posiadaj cy cyklu. Liczba wierzchoªków drzewa jest o jeden wi ksza od liczby jego kraw dzi.
Najkrótsze drogi w grafach z wagami
Najkrótsze drogi w grafach z wagami dr Andrzej Mróz (UMK w Toruniu) 013 Projekt wspóªnansowany ze ±rodków Unii Europejskiej w ramach Europejskiego Funduszu Spoªecznego Projekt pn. Wzmocnienie potencjaªu
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, algoritme Dijkstry Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XI Jesień 2013 1 / 25 Algorytmy zachłanne Strategia polegająca na
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Kolorowanie wierzchołków
240 Kolorowanie wierzchołków Def. Niech G bdzie grafem prostym. Przez kolorowanie wierzchołków rozumiemy takie etykietowanie elementów V(G) liczbami naturalnymi, e ssiednie wierzchołki otrzymuj róne liczby
5. Najkrótsze ścieżki
p. Definicja 5. Najkrótsze ścieżki 5.1 Odległości w grafach: definicje i własności (Długość ścieżki). Długościa ścieżki nazywamy liczbę krawędzi występujacych w tej ścieżce. Bardziej formalnie, jeżeli
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.
Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m
12: Znajdowanie najkrótszych ±cie»ek w grafach
12: Znajdowanie najkrótszych ±cie»ek w grafach Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3:
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury.
Temat: Technika zachłanna. Przykłady zastosowania. Własno wyboru zachłannego i optymalnej podstruktury. Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili
c Marcin Sydow Przepªywy Grafy i Zastosowania Podsumowanie 12: Przepªywy w sieciach
12: w sieciach Spis zagadnie«sieci przepªywowe przepªywy w sieciach ±cie»ka powi kszaj ca tw. Forda-Fulkersona Znajdowanie maksymalnego przepªywu Zastosowania przepªywów Sieci przepªywowe Sie przepªywowa
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje si w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymaln moliwo w nadziei, e doprowadzi
Spis treści. Przykład. Przykład 1 Przykład 2. Twórcy Informacje wstępne Pseudokod Przykład. 1 Grafy skierowane z wagami - przypomnienie
Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 1,11,1 B. Woźna-Szcześniak (UJD) Algorytmy
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II.
Zadania z kolokwiów ze Wst pu do Informatyki. Semestr II. Poni»sze zadania s wyborem zada«z kolokwiów ze Wst pu do Informatyki jakie przeprowadziªem w ci gu ostatnich lat. Marek Zawadowski Zadanie 1 Napisz
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Rys1 Rys 2 1. metoda analityczna. Rys 3 Oznaczamy prdy i spadki napi jak na powyszym rysunku. Moemy zapisa: (dla wzłów A i B)
Zadanie Obliczy warto prdu I oraz napicie U na rezystancji nieliniowej R(I), której charakterystyka napiciowo-prdowa jest wyraona wzorem a) U=0.5I. Dane: E=0V R =Ω R =Ω Rys Rys. metoda analityczna Rys
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu
Lab. 02: Algorytm Schrage
Lab. 02: Algorytm Schrage Andrzej Gnatowski 5 kwietnia 2015 1 Opis zadania Celem zadania laboratoryjnego jest zapoznanie si z jednym z przybli»onych algorytmów sªu» cych do szukania rozwi za«znanego z
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Znajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Zagadnienie najkrótszej drogi w sieci
L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Grafy i Zastosowania. 6: Najkrótsze ±cie»ki. c Marcin Sydow. Najkrótsze cie»ki. Warianty. Relaksacja DAG. Algorytm Dijkstry.
6: ±cie»ki Spis zagadnie«problem najkrótszych ±cie»ek z jednym ¹ródªem Rozwi zanie sznurkowe kraw dzi Wariant 1: Wariant 2: nieujemne kraw dzie (Dijkstra) Wariant 3: dowolny graf () ±cie»ki dla wszystkich
Wykład 9. Znajdowanie najlepszej drogi
Wykład 9 Znajdowanie najlepszej drogi 1 Algorytmy znajdowania najkrótszyh śieżek Właśiwośi najkrótszyh śieżek Algorytm Bellmana-Forda Algorytm Dijsktry Literatura Cormen, Leiserson, Rivest, Wprowadzenie
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
.! $ Stos jest list z trzema operacjami: dodawanie elementów na wierzch stosu, zdejmowanie elementu z wierzchu stosu, sprawdzanie czy stos jest pusty.
!"! " #$%& '()#$$ &%$! #$ %$ &%$& &$&! %&'" )$$! *$$&%$! +,- +-.! $ Celem wiczenia jest zapoznanie studenta ze strukturami: lista, stos, drzewo oraz ich implementacja w jzyku ANSI C. Zrozumienie działania
Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Nieklasyczne modele kolorowania grafów
65 Nieklasycze modele kolorowaia grafów 66 Kolorowaie sprawiedliwe Def. Jeli wierzchołki grafu G moa podzieli a k takich zbiorów iezaleych C,...,C k, e C i C j dla wszystkich i,j,...,k, to mówimy, e G
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków.
Temat: Geometria obliczeniowa cz II. Para najmniej odległych punktów. Sprawdzenie, czy istnieje para przecinajcych si odcinków. 1. Para najmniej odległych punktów WP: Dany jest n - elementowy zbiór punktów
Grafem skierowanym. Typowe zastosowania grafów skierowanych obejmują wiele dziedzin:
Grafem skierowanym D (inaczej digrafem) nazywamy parę(v, A), gdzie V jest skończonym zbiorem wierzchołków, A jest zbiorem par uporządkowanych(u, v) o elementach ze zbioru V. Elementy zbioru A nazywamy
TEORIA GRAFÓW. Graf skierowany dla ka»dej kraw dzi (oznaczanej tutaj jako ªuk) para wierzchoªków incydentnych jest par uporz dkowan {u, v}.
Podstawowe denicje: TEORIA GRAFÓW Graf (nieskierowany) G = (V, E) struktura skªadaj ca si ze: zbioru wierzchoªków V = {,,..., v n } oraz zbioru kraw dzi E = {e 1, e 2,..., e m }. Z ka»d kraw dzi e skojarzona
Przeszukiwanie przestrzeni stanów. Wprowadzenie do Sztucznej Inteligencji. Podstawowe problemy teorii przeszukiwania przestrzeni stanów
Przeszukiwanie przestrzeni stanów Wprowadzenie do Sztucznej Inteligencji Wykład Informatyka Studia Inynierskie Przestrze stanów jest to czwórka uporzdkowana [N,, S, GD], gdzie: N jest zbiorem wierzchołków
Algorytmy zwiazane z gramatykami bezkontekstowymi
Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
KLUCZ PUNKTOWANIA ODPOWIEDZI
Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartoci funkcji dla danych argumentów i jej miejsca zerowego. Zdajcy
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań praktycznych z egzaminów. Strona 1 z 12 Pytania praktyczne z kolokwium zaliczeniowego z 19 czerwca 2014 (studia dzienne)
Matematyka dyskretna - 5.Grafy.
Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Problem decyzyjny naley do klasy NP. (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM.
WYKŁAD : Teoria NP-zupełnoci. Problem decyzyjny naley do klasy P (Polynomial), jeeli moe by rozwizany w czasie conajwyej wielomianowym przez algorytm A dla DTM. (przynaleno ta jest zachowana równie dla
Drzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Przypomnij sobie krótki wstęp do teorii grafów przedstawiony na początku semestru.
Spis treści 1 Drzewa 1.1 Drzewa binarne 1.1.1 Zadanie 1.1.2 Drzewo BST (Binary Search Tree) 1.1.2.1 Zadanie 1 1.1.2.2 Zadanie 2 1.1.2.3 Zadanie 3 1.1.2.4 Usuwanie węzła w drzewie BST 1.1.2.5 Zadanie 4
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Matematyka Dyskretna. Andrzej Szepietowski. 25 czerwca 2002 roku
Matematyka Dyskretna Andrzej Szepietowski 25 czerwca 2002 roku ( Rozdział 1 Grafy skierowane W tym rozdziale zajmiemy siȩ algorytmami wyszukiwania najkrótszej drogi w grafach skierowanych Każdej krawȩdzi
Analiza algorytmów zadania podstawowe
Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika.
Temat: Liniowe uporzdkowane struktury danych: stos, kolejka. Specyfikacja, przykładowe implementacje i zastosowania. Struktura słownika. 1. Pojcie struktury danych Nieformalnie Struktura danych (ang. data
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Algorytmiczna teoria grafów Przepływy w sieciach.
Algorytmiczna teoria grafów Sieć przepływowa Siecią przepływową S = (V, E, c) nazywamy graf zorientowany G = (V,E), w którym każdy łuk (u, v) E ma określoną przepustowość c(u, v) 0. Wyróżniamy dwa wierzchołki:
Algorytm wyznaczania najkrótszej ścieżki w grafie skierowanym w zbiorze liczb rozmytych
NEUMNN Tomasz 1 lgorytm wyznaczania najkrótszej ścieżki w grafie skierowanym w zbiorze liczb rozmytych WSTĘP W systemach zarządzania transportem jedną z najbardziej istotnych kwestii jest zapewnienie najkrótszej
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Algorytmy i Struktury Danych
Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu
KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH POPRAWNA ODPOWIED 1 D 2 C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 10 C 11 B 12 A 13 A 14 B 15 D 16 B 17 C 18 A 19 B 20 D
KLUCZ ODPOWIEDZI DO ZADA ZAMKNITYCH NR ZADANIA POPRAWNA ODPOWIED D C 3 C 4 B 5 D 6 A 7 D 8 D 9 A 0 C B A 3 A 4 B 5 D 6 B 7 C 8 A 9 B 0 D Zadanie ( pkt) MODEL OCENIANIA ZADAN OTWARTYCH Uzasadnij, e punkty
Dzi kuj za uwag! Spotkania z Pythonem. Cz ± 1 - podstawy - rozwi zania zada« Michaª Alichniewicz. Gda«sk 2014. Studenckie Koªo Automatyków SKALP
Spotkania z Pythonem Cz ± 1 - podstawy - rozwi zania zada«michaª Alichniewicz Studenckie Koªo Automatyków SKALP Gda«sk 2014 Dzi kuj za uwag! Na licencji Creative Commons Attribution-NonCommercial-ShareAlike
stopie szaro ci piksela ( x, y)
I. Wstp. Jednym z podstawowych zada analizy obrazu jest segmentacja. Jest to podział obrazu na obszary spełniajce pewne kryterium jednorodnoci. Jedn z najprostszych metod segmentacji obrazu jest progowanie.
PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH
%!%*+,-.*+,/ 0103 6'7 PRAWIDŁOWE ODPOWIEDZI DO ZADA ZAMKNITYCH zadanie odpowied punkty 1 A D 3 D 4 E 5 C 6 A 7 A 8 B 9 6 10 zadania 6 11 otwarte 6 1 maksymalna moliwa łczna liczba punktów 6 40 strona 1
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Wykład 5. Sortowanie w czasie liniowologarytmicznym
Wykład 5 Sortowanie w czasie liniowologarytmicznym 1 Sortowanie - zadanie Definicja (dla liczb): wejście: ciąg n liczb A = (a 1, a 2,, a n ) wyjście: permutacja (a 1,, a n ) taka, że a 1 a n 2 Zestawienie
Teoria grafów II. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów II Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Graf planarny Graf planarny Graf, który może być narysowany tak, by uniknąć przecinania się krawędzi, nazywamy grafem
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20
Egzaminy i inne zadania. Semestr II.
Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały
Matematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Temat: Algorytmy aproksymacyjne (przyblione) cz. I. Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej:
Temat: Algorytmy aproksymacyjne (przyblione) cz. I. 1. Algorytmy aproksymacyjne Majc do rozwizania trudny obliczeniowo problem, moemy wybra jedno z dwóch nastpujcych podej: Zastosowa technik algorytmów
Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.
Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych
Temat: Algorytmy aproksymacyjne dla wybranych NP-trudnych problemów grafowych 1. Problem komiwojaera Wejcie: Graf G = pełny, zorientowany z dodatnimi wagami; w - funkcja wag grafu Wyjcie: Najtaszy
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Algorytmy z powracaniem
Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych
Program do konwersji obrazu na cig zero-jedynkowy
Łukasz Wany Program do konwersji obrazu na cig zero-jedynkowy Wstp Budujc sie neuronow do kompresji znaków, na samym pocztku zmierzylimy si z problemem przygotowywania danych do nauki sieci. Przyjlimy,
Przyspieszenie knn. Plan wykładu. Klasyfikacja w oparciu o przykładach. Algorytm klasyfikacji. Funkcja odległoci
Plan wykładu Przyspieszenie knn Ulepszone metody indeksowania przestrzeni danych: R-drzewo, R*-drzewo, SS-drzewo, SR-drzewo. Klasyfikacja w oparciu o przykładach Problem indeksowania przestrzeni obiektów
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Problemy optymalizacyjne - zastosowania
Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami
Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych. Algorytmy i struktury danych Laboratorium 7. 2 Drzewa poszukiwań binarnych
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Algorytmy i struktury danych Laboratorium Drzewa poszukiwań binarnych 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie studentów