Algorytmika Problemów Trudnych
|
|
- Władysław Milewski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17
2 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności. Algorytm 2-aproksymacyjny dla drzewa Steinera. Algorytm 3 -aproksymacyjny dla metrycznego komiwojażera. 2 Wielomianowe (PTAS) i w pełni wielomianowe (FPTAS) schematy aproksymacyjne. FPTAS dla problemu plecakowego.
3 Algorytm α(n)-aproksymacyjny Definicja Algorytm A dla problemu optymalizacyjnego P jest jest algorytmem α(n)-aproksymacyjnym jeżeli: A działa w czasie wielomianowym od rozmiaru wejścia n, dla każdej instancji I rozmiaru n, A zwraca rozwiązanie o koszcie val A (I ), gdzie: val A(I ) opt(i ) α(n) (jeżeli P jest problemem minimalizacyjnym), opt(i ) val A (I ) α(n) (jeżeli P jest problemem maksymalizacyjnym).
4 Problem drzewa Steinera Graf ważony to para (V, c), gdzie V to zbiór wierzchołków a c : ( V 2) (Q + {0}) to wagi krawędzi grafu (graf jest zatem grafem pełnym). Problem Drzewa Steinera: Wejście: Graf ważony G = (V, c) oraz zbiór wierzchołków K zwanych terminalami lub węzłami wymaganymi. Wyjście: Minimalne (o minimalnym sumarycznym koszcie) drzewo w G łączące wszystkie terminale. W Metrycznym Problemie Drzewa Steinera funkcja wag spełnia nierówność trójkąta, to jest: Dla każdych różnych u, v, w V : c(u, v) + c(v, w) c(u, w).
5 (Metryczny) Problem Drzewa Steinera Istnieje algorytm α-aproksymacyjny dla Istnieje algorytm α-aproksymacyjny dla metrycznego problemu drzewa Steinera. zwykłego problemu drzewa Steinera. Dowód: Załóżmy, że mamy instancję G = (V, c) problemu drzewa Steinera. Niech G = (V, c ) będzie domknięciem metrycznym grafu G, to jest grafem ważonym z funkcją kosztu c, gdzie c (u, v) jest długością najkrótszej ścieżki z u do v w G. Waga minimalnego drzewa Steinera w G jest równa wadze minimalnego drzewa Steinera w G. Jeżeli T jest drzewem Steinera w G o koszcie α OPT w G, to maksymalne drzewo rozpinające w grafie składającym się z najkrótszych ścieżek u v w G, gdzie uv jest krawędzią w T, jest drzewem Steinera o koscie α OPT w G.
6 Metryczny Problem Drzewa Steinera Algorytm: zwróć minimalne drzewo rozpinające (MST) w grafie indukowanym przez K. Powyższy algorytm jest algorytmem 2-aproksymacyjnym: Niech T będzie minimalnym drzewem Steinera w G o koszcie OPT. Podwajając krawędzie T otrzymujemy graf eulerowski E o koszcie 2 OPT. Przechodzimy cykl Eulera E odwiedzając jednokrotnie wierzchołki będące terminalami. Ponieważ G jest metryczny, długość nowego cyklu jest ograniczona przez 2 OPT. Istnieje więc ścieżka rozpinające na podgrafie indukowanym przez K o koszcie 2 OPT. MST na K ma więc koszt 2 OPT.
7 Metryczny Problem Drzewa Steinera Algorytm: zwróć minimalne drzewo rozpinające (MST) w grafie indukowanym przez K. Powyższy algorytm jest algorytmem 2-aproksymacyjnym. Analizy powyższego algorytmu nie można poprawić. Rozważmy graf składający się ze środka v i zbioru n terminali K w odległości 1 od r. Pozostałe krawędzie grafu mają wagę 2. Algorytm zwróci drzewo Steinera o wadze 2n 2. Minimalne drzewo Steinera ma wagę n. Powyższa rodzina jest rodziną przypadków trudnych dla powyższego algorytmu.
8 Metryczny problem Drzewa Steinera Aktualny stan wiedzy: istnieje algorytm 1.39-aproksymacyjny dla problemu drzewa Steinera (Byrka, Grandoni, Rothwoß, Sanità), nie da się aproksymować metrycznego problemu drzewa Steinera ze współczynnikiem 96 o ile P NP (Bern and Plassmann, Chlebík i 95 Chlebíkowá)
9 Problem Komiwojażera Problem Komiwojażera: Wejście: Graf ważony G = (V, c). Wyjście: Cykl Hamiltona o minimalnym koszcie. W przypadku problemu komiwojażera, wersja ogólna różni się istotnie od wersji metrycznej.
10 Problem Komiwojażera Dla dowolnej funkcji wielomianowo obliczalnej α : N N, problem komiwojazera nie posiada algorytmu α(n)-aproksymującego. Dowód: Wykażemy, że jeżeli istnieje algorytm α(n)-aproksymacyjny dla problemu komiwojażera, to problem cyklu Hamiltona można rozwiązać w wielomianowym czasie. Niech G = (V, E) będzie instancją wejściową dla problemu cyklu Hamiltona. Konstruujemy graf ważony G = (V, c ), gdzie { c (u, v) = 1 (u, v) jest krawędzią w G, nα(n) w przeciwnym przypadku. Łatwo zauważyć, że G posiada cykl Hamiltona wtedy i tylko wtedy, gdy G posiada trasę komiwojażera o wadze n. G nie posiada cyklu Haniltona wtedy i tylko wtedy, gdy minimalna trasa komiwojażera w G jest większa od α(n) n. Algorytm α(n)-aproksymacyjny dla problemu komiwojażera rozwiązywałby zatem w wielomianowym czasie problem cyklu Hamiltona.
11 Metryczny Problem Komiwojażera Algorytm: znajdź minimalne drzewo rozpinające T w grafie ważonym G = (V, c), podwój krawędzie T i otrzymaj graf eulerowski E, zwróć nastepującą trasę komiwojażera: startując od dowolnego wierzchołka v przejdź po cyklu Eulera na krawędziach z E opuszczając wierzchołki, które zostały już wcześniej odwiedzone, zatrzymaj się w v. Powyższy algorytm jest algorytmem 2-aproksymacyjnym: waga T jest mniejsza bądź równa optymalnej trasie komiwojażera OPT, waga E jest mniejsza bądź równa 2 OPT, z metryczności G, waga zwróconej trasy komiwojażera jest mniejsza bądź równa od wagi cyklu Eulera E.
12 Metryczny Problem Komiwojażera - algorytm Christofidesa Algorytm: znajdź minimalne drzewo rozpinające T w grafie ważonym G = (V, c), niech V będzie zbiorem wierzchołków, które w T mają nieparzysty stopień (jest ich zawsze parzyście wiele), niech M będzie minimalnym dopasowaniem w grafie indukowanym przez V, zauważ, że E = M T jest grafem eulerowskim w G, zwróć nastepującą trasę komiwojażera: startując od dowolnego wierzchołka v przejdź po cyklu Eulera na krawędziach z E opuszczając wierzchołki, które zostały już wcześniej odwiedzone, zatrzymaj się w v. Powyższy algorytm jest algorytmem 3 2 -aproksymacyjnym: waga T jest mniejsza bądź równa optymalnej trasie komiwojażera OPT, waga M jest mniejsza bądź równa 1 2 OPT, z metryczności G, waga zwróconej trasy komiwojażera jest mniejsza bądź równa od wagi cyklu Eulera E.
13 Metryczny Problem Komiwojażera Aktualny stan wiedzy: najlepszy znany algorytm ma współczynnik aproksymacji 3 2 (Christofides), nie istnieje algorytm 220 -aproksymacyjny o ile P NP (Papadimitriou, 219 Vempala).
14 Schematy aproksymacji PTAS i FPTAS Niech P będzie problemem optymalizacyjnym. Mówimy, że algorytm A jest schematem aproksymacyjnym dla problemu P jeżeli dla wejścia (I, ɛ) algorytm A zwraca rozwiązanie o koszcie val A (I ), gdzie: val A (I ) (1 + ɛ)opt (jeżeli P jest problemem minimalizacyjnym), val A (I ) (1 ɛ)opt (jeżeli P jest problemem maksymalizacyjnym). Dodatkowo, jeżeli czas działania A jest wielomianowy dla każdego ustalonego ɛ > 0 (np. gdy czas działania A to O(n 1 ɛ )), to A nazywamy wielomianowym schematem aproksymacyjnym (ang. polynomial-time approximation scheme, PTAS ). jeżeli czas działania A jest wielomianem od rozmiaru wejścia i 1 ɛ, to A nazywamy w pełni wielomianowym schematem aproksymacyjnym (ang. fully polynomial-time approximation scheme, FPTAS).
15 Problem plecakowy Problem Plecakowy: Wejście: Zbiór n przedmiotów a 1,..., a n, każdy z nich ma wagę size(a i ) oraz wartość profit(a i ), dopuszczalna waga plecaka B. Wyjście: Maksymalna łączna wartość (zysk) przedmiotów o wadze B.
16 Algorytmy pseudowielomianowe i problemy silnie NP-trudne Algorytm A dla problemu P jest algorytmem pseudowielomianowym jeżeli czas jego działania jest wielomianowy w zależności od rozmiaru wejścia przy założeniu, że liczby na wejściu kodowane są w systemie unarnym. Problem P nazywamy problemem silnie NP-trudnym jeżeli jest NP-trudny nawet w przypadku, gdy liczby na wejściu kodowane są w sposób unarny. Problemy silnie NP-trudne nie mają algorytmów pseudowielomianowych.
17 Pseudowielomianowy algorytm dla problemu plecakowego Niech: P maksymalna wartość obiektu w {a 1,..., a n}. S[i, p] najlżejszy podzbiór {a 1,..., a i } dający zysk p, A[i, p] waga S i,p. Tablicę A[i, p] możemy obliczyć w czasie O(n 2 P) zgodnie z regułą: { min{a[i, p], size(ai+1 ) + A[i, p profit(a A[i+1, p] = i+1 )]} jeżeli profit(a i+1 ) p A[i, p] w p.p. Maksymalny możliwy zysk dla przedmiotów o łącznym rozmiarze nie przekraczającym B jest równy max{p : A[n, p] B}. Powyższy algorytm jest algorytmem pseudowielomianowym dla problemu plecakowego.
18 FPTAS dla problemu plecakowego FPTAS dla problemu plecakowego: Dla danego ɛ > 0, niech K ɛp n (niech K będzie potęgą 2). Dla każdego przedmiotu a i niech profit (a i ) = profit(a i ) K. Korzystając z programowania dynamicznego, znajdź najkorzystniejszy zbiór S dla problemu plecakowego z zyskami profit (a i ). Wypisz zysk S. Uwagi: jeżeli K = 2 l, to profit (a i ) otrzymujemy z profit(a) przez skreślenie l ostatnich liczb z rozwinięcia dwójkowego profit(a i ), profit (a i ) O(n 1 ɛ ), algorytm działa w czasie O(n 3 1 ɛ ).
19 FPTAS dla problemu plecakowego Lemat profit(s ) (1 ɛ) OPT. Proof: O - zbiór obiektów z optymalnym zyskiem, profit(o) K profit (O) nk, Mamy: profit(s ) K profit(o ) profit(o) nk OPT ɛp (1 ɛ) OPT.
20 Silna NP-zupełność a istnienie FPTAS Twierdzenie Niech p będzie wielomianem i niech P będzie NP-trudnym problemem minimalizacji z funkcją celu f. Załóżmy, że f przyjmuje wartości całkowite oraz, że OPT (I ) < p( I ) gdy instancja I kodowana jest unarnie. Jeżeli istnieje FPTAS dla P, to istnieje algorytm pseudowielomianowy dla P. Dowód: Niech I będzie instancją wejściową problemu P, kodowaną w sposób unarny. Zauważ, że algorytm FPTAS A dla ɛ = 1 rozwiązuje problem P dokładnie. 2p( I ) Czas działania A dla ɛ = 1 jest wielomianowy od I. 2p( I ) Wniosek: Naturalne problemy silnie NP-trudne nie mają FPTAS.
21 Euklidesowy Problem Komiwojażera Euklidesowy Problem Komiwojazera: Wejście: Zbiór n punktów P = {P 1,..., P n} na płaszczyźnie, punkt P i ma współrzedne (x i, y i ). Wyjście: Trasa przechodząca przez wszystkie punkty P 1,..., P n o najtańszym koszcie OPT. Twierdzenie Istnieje PTAS dla euklidesowego problemu komiwojażera. Uwagi: twierdzenie pokazane niezależnie przez Arorę oraz Mitchela, Obaj za ten wynik otrzymali nagrodę Gödla.
Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań
Kombinatoryczne problemy optymalizacyjne to problemy wyboru najlepszego rozwiązania z pewnego zbioru rozwiązań dopuszczalnych. NP-optymalizacyjny problem Π składa się: zbioru instancji D Π rozpoznawalnego
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
9. Schematy aproksymacyjne
9. Schematy aproksymacyjne T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Wprowadzenie do algorytmów, WNT (2004) O.H. Ibarra, C.E. Kim Fast approximation algorithms for the knapsack and sum of subset
Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca
Algorytmy aproksymacyjne i parametryzowane
Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych
Suma dwóch grafów. Zespolenie dwóch grafów
Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1
Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem
Zadania z egzaminów z Algorytmiki
1 Najkrótsze ścieżki Zadania z egzaminów z Algorytmiki Zadanie 1 Dany jest spójny graf nieskierowany G = (V, E) z wagami na krawędziach w : E N oraz cztery wyróżnione wierzchołki a, b, c, d. Należy wybrać
7. Algorytmy aproksymacyjne
7. Algorytmy aproksymacyjne Algorytmy aproksymacyjne znajdują zastosowanie w przypadku, kiedy czas działania algorytmu dokładnego jest zbyt dużego rzędu: zazwyczaj w przypadku NP-trudnych problemów optymalizacyjnych.
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Opracowanie prof. J. Domsta 1
Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu
Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. i Hamiltona Wykład 4. i Hamiltona 1 / 35 Grafy Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie grafu, to taką
Zadania z egzaminów z Algorytmiki
Zadania z egzaminów z Algorytmiki 1 Geometria obliczeniowa Zadanie 1 Zaprojektuj efektywny algorytm dla następującego problemu. Dany jest zbior n prostokątów na płaszczyźnie (o bokach niekoniecznie równoległych
Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA
Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 14c 2 Definicje indukcyjne Twierdzenia dowodzone przez indukcje Definicje indukcyjne Definicja drzewa
Minimalne drzewa rozpinające
KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1B/14 Drogi w grafach Marszruta (trasa) w grafie G z wierzchołka w do wierzchołka u to skończony ciąg krawędzi w postaci. W skrócie
Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie
Więcej o sprawności algorytmów Porównanie czasów działania algorytmów sortowania przez wstawianie i scalanie Załóżmy, że możemy wykonać dane zadanie przy użyciu dwóch algorytmów: jednego o złożoności czasowej
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
Metody optymalizacji dyskretnej. Metody przybliżone
Metody optymalizacji dyskretnej Metody przybliżone Metody optymalizacji dyskretnej Większość problemów optymalizacji dyskretnej pochodzących z praktyki (szeregowanie, harmonogramowanie, transport, plany
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania
Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*
Wyznaczanie optymalnej trasy problem komiwojażera
Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Teoria obliczeń i złożoność obliczeniowa
Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Przykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy
a) 7 b) 19 c) 21 d) 34
Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie
Programowanie dynamiczne cz. 2
Programowanie dynamiczne cz. 2 Wykład 7 16 kwietnia 2019 (Wykład 7) Programowanie dynamiczne cz. 2 16 kwietnia 2019 1 / 19 Outline 1 Mnożenie ciągu macierzy Konstruowanie optymalnego rozwiązania 2 Podstawy
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
Komiwojażer na płaszczyźnie
Komiwojażer na płaszczyźnie Paweł Gawrychowski Uniwersytet Wrocławski & Max-Planck-Institut für Informatik 18 marca 2014 Paweł Gawrychowski Komiwojażer na płaszczyźnie 18 marca 2014 1 / 31 Paweł Gawrychowski
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
Trudność aproksymacji problemów NP-trudnych
Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki Anna Niewiarowska Nr albumu: 201074 Trudność aproksymacji problemów NP-trudnych Praca magisterska na kierunku INFORMATYKA Praca wykonana
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
Algorytmy aproksymacyjne dla problemów stochastycznych
Algorytmy aproksymacyjne dla problemów stochastycznych Marcin Mucha Uniwersytet Warszawski Warszawa 29.04.2011 - p. 1/44 Plan - Wykład II Boosted sampling: drzewo Steinera, problemy addytywne: lokalizacja
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Grafy dla każdego. dr Krzysztof Bryś. Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska.
Grafy dla każdego dr Krzysztof Bryś brys@mini.pw.edu.pl Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska www.mini.pw.edu.pl Warszawa, 28 marca 2015 Graf składa się z elementów pewnego zbioru
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Elementy teorii grafów Elementy teorii grafów
Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Matematyka dyskretna - 5.Grafy.
Matematyka dyskretna - 5.Grafy. W tym rozdziale zajmiemy się grafami. Są to wykresy zawierające rozmaite informacje, przedstawiające połączenia pomiędzy różnymi swoimi elementami. Algorytmy na nich oparte
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Znajdowanie skojarzeń na maszynie równoległej
11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Metody Programowania
POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie
PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE
D: PROBLEM: SORTOWANIE PRZEZ ODWRÓCENIA METODA: ALGORYTMY ZACHŁANNE I. Strategia zachłanna II. Problem przetasowań w genomie III. Sortowanie przez odwrócenia IV. Algorytmy przybliżone V. Algorytm zachłanny
Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów
Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
6a. Grafy eulerowskie i hamiltonowskie
6a. Grafy eulerowskie i hamiltonowskie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny6a. w Krakowie) Grafy eulerowskie i hamiltonowskie
Programowanie liniowe
Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
E ' E G nazywamy krawędziowym zbiorem
Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie
Lista 6 Problemy NP-zupełne
1 Wprowadzenie Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 6 Problemy NP-zupełne Problem abstrakcyjny Q jest to relacja dwuargumentowa
SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.
SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką
Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott
Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html
Algorytmy stochastyczne laboratorium 03
Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość
Matematyka dyskretna - 7.Drzewa
Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja
Ilustracja S1 S2. S3 ściana zewnętrzna
Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają
Algorytmy aproksymacyjne dla problemów stochastycznych
Algorytmy aproksymacyjne dla problemów stochastycznych Piotr Sankowski Uniwersytet Warszawski PhD Open, 5-6 grudzień, 2008 - p. 1/50 Plan - Wykład IV Uniwersalne algorytmy aproksymacyjne Uniwersalne stochastyczne
Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń
Kombinowanie o nieskończoności. 2. Wyspy, mosty, mapy i kredki materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 15 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Przykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Algorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
Programowanie sieciowe. Tadeusz Trzaskalik
Programowanie Tadeusz Trzaskalik 8.1. Wprowadzenie Słowa kluczowe Drzewo rozpinające Minimalne drzewo rozpinające Najkrótsza droga w sieci Wierzchołek początkowy Maksymalny przepływ w sieci Źródło Ujście
INTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Matematyka Dyskretna - zadania
zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu
Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne
y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza
Algorytmiczna teoria grafów
Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz
Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14
Algorytmy dynamiczne Piotr Sankowski - p. 1/14 Dynamiczne: drzewa wyszukiwanie wzorca w tekście spójność grafu problemy algebraiczne (FFT i inne) domknięcie przechodnie oraz dynamiczne macierze najkrótsze
Wykład 9: Markov Chain Monte Carlo
RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa
Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ
Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZŁOŻONOŚĆ OBLICZENIOWA ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ dr hab. Krzysztof SZKATUŁA, prof. PAN Instytut Badań Systemowych PAN Uniwersytet
Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
Problem komiwojażera ACO. Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym.
Problem komiwojażera ACO Zagadnienie optymalizacyjne, polegające na znalezieniu minimalnego cyklu Hamiltona w pełnym grafie ważonym. -Wikipedia Problem do rozwiązania zazwyczaj jest przedstawiany jako
Aproksymacja diofantyczna
Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Wstęp do programowania
Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów